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Null steering is essential in collaborative beamforming (CB) in wireless sensor networks (WSNs) to ensure minimal radiation
power and interference in the direction of unintended receivers. Current research in null steering in CB in WSNs is mainly from
the perspective of planar arrangements of sensor nodes and sink(s). Furthermore, there is no research dedicated to the formation
of multiple wide nulls during CB in 3-dimension WSNs. Wide nulls are ideal in scenarios featuring mobile unintended sink(s). A
new multiple and wide null steering scheme applicable to CB in WSNs is presented in this work (from the perspective of a 3-
dimensional random arrangement of static sensor nodes). It is assumed that desired nulling directions are implicitly known at a
CB cluster head. A particle swarm optimization (PSO) algorithm variant is applied in concurrent node transmit amplitude and
phase perturbation with an aim of achieving beam steering alongside multiple and wide null steering. Te performance of the
proposed null steering scheme is validated against a basic null steering approach (with reference to current literature). Fur-
thermore, a comparative null depth, width, and nulling accuracy analysis are done upon varying the count of collaborating nodes
and the collaborating cluster radius. An increase in the number of collaborating nodes is found to increase nulling depth at an
exponentially decaying rate. An increase in the collaborating nodes’ cluster radius yields a reduction in null width. Te con-
tributions of this work to the existing literature are as follows: (i) the design and investigation of a null steering scheme from the
perspective of a 3-dimension random arrangement of sensor nodes; (ii) the design of a concurrent beam steering and multiple
wide null steering scheme on the basis of concurrent node transmit amplitude and phase perturbation whilst ensuring null depth
uniformity; (iii) a statistical analysis of the impact of a count of collaborating nodes and collaborating cluster radius on nulling
performance; (iv) investigation of capacity improvement at unintended receivers upon null steering.

1. Introduction

Collaborative beamforming (CB) is a useful tool for
establishing energy-efcient and reliable communication
links between wireless sensor network (WSN) nodes and
far-of sinks [1–3]. CB in WSNs is vital given that sensor
nodes are usually energy-limited and sinks are usually
located beyond individual nodes’ transmission range. CB

serves to overcome the shortcomings associated with
multihop transmission in WSNs such as the dependency
of transmission quality on individual sensors, high
communication overheads, delay, and increased network
interference [4]. CB is achieved through appropriate
transmit amplitude and phase weighting at a carefully
selected set of nodes with an aim of ensuring a con-
structive combination of individual node radiation
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energy in the sink’s direction. Collaborating nodes more
or less form a virtual random antenna array.

CB is often associated with high sidelobes owing to the
usual random placement of collaborating nodes [5–7]. Te
high sidelobes are bound to yield interference at unintended
cochannel terminals. Minimizing CB radiation in unin-
tended receiver(s)’ direction(s) is of utmost necessity. In
centralized antenna arrays, null-steering beamformers have
been applied to yield a destructive combination of radiation
in the undesired direction(s) while ensuring a constructive
combination of radiation in the desired direction(s) [8–12].
Metaheuristic optimization algorithms are essential towards
this end. A typical application of a metaheuristic optimi-
zation algorithm can be found in [13].

1.1. Related Work. In [8], an adaptive null steering beam-
former is designed on the basis of a uniform linear array
(ULA). Te bat algorithm (BA) is utilized in the designed
beamformer to optimally adjust transmit amplitude at each
array element. Te resultant null steering performance has
been analyzed against approaches utilizing accelerated
particle swarm optimization (APSO) and genetic algorithm
(GA). Te BA-driven beamformer is noted to outperform
the APSO and GA-driven beamformers in terms of null
steering precision, null breadth, and convergence speed. Te
essence of deep and broad nulls alongside efective opti-
mizing algorithms is clearly brought to the fore. In [9], a
triple-mode circular microstrip patch antenna bearing the
capability of forming two nulls within a select hemisphere is
presented. Furthermore, the two nulls can be steered in-
dependently. Te designed antenna consists of

(i) A central circular patch supporting TM11 mode
(ii) A TM21 mode shorted annular ring around the

central circular patch
(iii) A shorted annular ring supporting TM31 mode

encircling the other two radiators

Te three modes (TM11, TM21, and TM31) are fed using
two feed points with an aim of creating right-handed circular
polarization. Te resultant radiation pattern is manipulated
to yield two independently steerable nulls through apt
control of individual feed amplitude and phase. A hybrid
particle swarm optimization (PSO) and pattern search al-
gorithm are applied in feed amplitude and phase optimi-
zation. A beamforming network consisting of digital variable
gain attenuators, digital phase shifters, and low-noise am-
plifers is utilized in the optimal feed amplitude and phase
implementation process. Te designed beamformer bears
limited main beam steering. Te research brings to the fore
the practical aspects of null steering implementation. In [10],
an improved invasive weed optimization (IWO) algorithm is
applied in concurrent multiple beamforming and null
steering. Te improved IWO algorithm is utilized in opti-
mizing the excitation amplitude at a linear time -modulated
antenna array elements to yield optimal beams and nulls. In
[11], a coherently radiating periodic structure (CORPS)
beamforming network with beam and null steering capa-
bility is proposed. Te PSO algorithm is applied in

optimizing excitation weights in the CORPS beamforming
network to generate an array factor bearing desired sidelobe
level, directivity, and null depth. In [12], a combined
minimum variance distortionless response (MVDR) and
frefy algorithm (FA) approach is utilized in null steering in
a linear antenna array. Deep and accurate nulls are obtained.
In [14], an array of four patch antennas in conjunction with a
set of eight phase shifters is utilized to synthesize steerable
nulls. In [15], a distributed beamforming network made up
of multiple dual transmitters is investigated in terms of beam
and null steering. A groupwise null forming scheme is
proposed. Numerical simulations validate the efectiveness
of the proposed scheme. Te authors in [16] a set of novel
beamforming schemes for synthetic aperture radar are
presented. A notable outcome is a trough-like beam pattern
with wide nulls. Consequently, interference signals received
by synthetic aperture radar can be suppressed efectively.
Numerical simulations alongside experimental results vali-
date the efectiveness of the proposed schemes. Null steering
is investigated in the planar ring; uniformly distributed and
volumetric shell antenna element distributions are shown in
reference [17]. In [18], a null steering scheme based on the
partitioning of a Mobile ad hoc Network (MANET) node
into a set of 2 subarrays is presented. Te authors in [19]
present a novel heuristic optimization algorithm christened
Fibonacci branch search (FBS). Te algorithm is applied in
the design of a low sidelobe and deep nulling adaptive
beamformer.

As per the reviews done, research in null steering in
conventional (stand-alone) antenna array beamformers is
mainly on the basis of uniform array geometry (particularly
linear confguration). On the other hand, WSN nodes are
usually randomly arranged. In stand-alone antenna array
beamforming, there is complete and accurate knowledge of
antenna element positioning (geometry) unlike in CB in
WSNs.

Te null-steering concept has been extended to CB in
WSNs in [20, 21]. Application of null-steering is bound to
increase Signal to interference and noise ratio (SINR) at the
unintended receivers and potentially enhance network se-
curity against intercepting terminals.

In [20], a fully distributed nulling steering procedure is
proposed in the domain of an Internet of Tings (IoT)
network (bearing a decentralized architecture). Herein,
nulling steering is applied to enhance secrecy performance.
Tis is particularly important when an eavesdropper is lo-
cated in a high sidelobe region of a CB outcome. It is shown
that there exists an optimal degree of nulling that maximizes
the secrecy performance. In [21], a node selection-based
mechanism (in the sense of yielding a virtual linear array) is
utilized in null steering.

Other recent studies pertaining to CB in WSNs (al-
though without nulling considerations) can be found in
[22–27].

In [27], research entailing simultaneous optimization of
beamforming, power consumption, and energy harvesting
schemes in a WSN is carried out. Te applied beamforming
concept entails the use of multiple antennas at base stations,
resulting in optimal signal and energy transmission toward
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intended sinks. Te transmitted signals encompass data and
energy that ought to be sent to mobile nodes. Te nodes are
expected to split received power into data and energy
(energy harvesting). Although the presented research is to a
great extent diferent from the null steering research pre-
sented in this paper, the authors highlight the signifcance of
power saving at WSN nodes (in particular extending node
lifetime).

General studies entailing the application of meta-
heuristic optimization algorithms in WSNs can be found in
[28–33]. Recent artifcial intelligence applications (not
limited to WSNs) can be found in [34–36].

In [6] capacity improvement analysis at unintended
receivers (accrued from sidelobe reduction in CB) is ana-
lyzed. In the paper, an average reduction of 20 dB in peak
sidelobe level and 162 percent capacity improvement is
reported in the worst case scenario.

1.2. Literature Review Summary. Observations made in
current null steering research (in the context of CB in
WSNs) are as per the following listing:

(1) Multiple unintended sink(s) in 3-dimension WSN
confguration have not been considered

(2) Tere is no research on the formation of wide nulls
(ideal in scenarios featuring mobile unintended
sink(s))

Te contributions brought forward in this paper include

(1) Formulation of a wide multiple nulling scheme from
the perspective of a 3-dimension WSN using an
appropriate metaheuristic optimization algorithm

(2) Analysis of capacity performance at unintended
receivers upon nulling

(3) Nulling performance analysis with changes in CB
cluster radius and number of collaborating nodes

Utilized performance measures include nulling depth,
width, and accuracy.

Practical applications of the outcomes presented in this
manuscript would be in

(i) Environmental monitoring problems as addressed
in [37, 38]

(ii) Trafc control in cities [39]
(iii) Industrial monitoring/control [40]
(iv) “Smart” cities [41, 42]
(v) Health monitoring [43]
(vi) “Smart” home applications [44]
(vii) “Smart” agriculture applications [45, 46]

Te rest of the paper is organized as follows: Section 2
presents the methodology. Te sections presented in the
methodology include the development of a 3-dimension CB
model and the development of a multiple and wide nulling
scheme, alongside the general simulation setup. Te ob-
tained results are presented and discussed in Section 3. Te
overall concluding remarks are presented in Section 4.

2. Methodology

2.1. 3-Dimension CB Model. Figure 1 illustrates a 3-di-
mensional random distribution of WSN nodes.

Te considered model encompasses a large variety of
practical WSN deployment scenarios wherein sensor nodes
are randomly distributed in a 3-dimensional manner. Te
considerations made in the model design process are as per
the following list:

(1) 3-dimension sensor node and sink distribution.
(2) A node is selected from a set of collaborating nodes

to act as a cluster head/CB coordinator. Te cluster
head also serves as the reference point in mapping
out the other collaborating nodes’ geometric po-
sitions: the nodes are taken as situated at a distance
r, azimuth angle ψ, and elevation angle ϑ) with
reference to the cluster head.

(3) With reference to the cluster head location, the sink
is located at an elevated location (A, ϕ, θ).

(4) All nodes are synchronized in phase and frequency.
As such, this condition is difcult to meet in
practice unless high-precision clocks are utilized in
the collaborating nodes.

(5) All nodes are location-aware.
(6) Te nodes are equipped with identical isotropic

antennas.
(7) Tere is negligible mutual coupling between nodes.
(8) Path loss is identical between the sink and all nodes

participating in the CB process.
(9) Te nodes and sinks are static during the CB

process.
(10) Tere is a perfect time-invariant channel between

the sink and nodes participating in the CB process.

Figure 2 depicts a typical far-feld radiation problem.
In subsequent expressions and with reference to Figure 2,

(i) Angle P′OQ is symbolized as ψ
(ii) r is the position vector of the far-feld observation

point
(iii) r′ is the position vector of the radiator

Te magnetic potential at the far-feld observation point
as a consequence of the radiator current density is as per the
following equation [47]:

A(r, t) � 􏽚
v

μJ r′, t − R/C( 􏼁

4πR
d
3
r′, (1)

where

(i) 􏽒
v
is representative of the volume integral about the

immediate region surrounding the radiator
(ii) μ: permeability constant
(iii) J is the radiator current density
(iv) t: observation time
(v) C: wave velocity
(vi) d: radiator dimension
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Considering a single-frequency wave, equation (1) takes
the form of the following equation:

A(r)ejwt
� 􏽚

v

μJ(r)ejw(t− R/C)

4πR
d
3r′. (2)

Equation (2) can be written as follows:

A(r) � 􏽚
v

μJ r′( 􏼁e
− jkR

4πR
d
3r′, (3)

where k � ω/C � 2π/λ.
As per Figure 2, the dimensions PP′ and PQ of the triangle

PQP′ are approximately equal (considering far distances).
PQ � OP − OQ. Te distance R can be expressed as follows:

R≃r − 􏽢r.r′ � r − r′ cos(ψ). (4)

Using the approximation given in equation (4) in the
exponential part of (3) and the approximation R≃r in the
denominator yields

A(r) � 􏽚
v

μJ r′( 􏼁e
− jk r−􏽢r.r′( 􏼁

4πr
d
3r′. (5)

Equation (5) can be written as

A(r) �
μe

− jkr

4πr
􏽚

v
J r′( 􏼁e

jk􏽢r.r′
d
3r′. (6)

Te integral factor (equation (7) radiation vector) in
equation (6) determines the directional properties of the
radiated feld.

F(k) � 􏽚
v
J r′( 􏼁e

jk.r′
d
3r′, (7)

where k � k􏽢r.
Given a three-dimension array of several identical an-

tennas located at positions [R0,R1,R2, . . .RT], with relative
feed current coefcients [a0, a1, a2, . . . aT], the current
density corresponding to the tth antenna is as

Jt r′( 􏼁 � atJ r − Rt( 􏼁. (8)

Te corresponding radiation vector is as

Ft(k) � ate
jk.RtF(k). (9)

Te total radiation vector given T radiators is as follows,
the respective array factor being 􏽐

T
t�0 ate

jk.Rt .

Ftot(k) � 􏽘

T

t�0
ate

jk.Rt􏼐 􏼑F(k). (10)

Given a set of T nodes featuring arbitrary placement/
distribution, the array factor magnitude in the direction
(ϕ, θ) may be expressed as

AFϕ,θ ≈ 􏽘
T

t�1
wte

j2π/λ Rt ·􏽢r􏼂 􏼃
, (11)

where

(i) Rt: position vector of tth node. Rt � rtxax+

rtyay + rtzaz

(ii) 􏽢r � sin(θ)cos(ϕ)ax + sin(θ) sin(ϕ)ay + cos(θ)az

(iii) ∙ is the dot product operator

Upon wavelength normalization, equations (11) can be
expressed as

AFϕ,θ ≈ 􏽘
T

t�1
wte

j2π 􏽥Rt ·􏽢r􏼂 􏼃
, (12)

where 􏽥Rt � Rt/λ.

2.2. Proposed Null Steering Scheme. In the proposed CB
scheme, null steering is done concurrently with beam
steering. Wide and deep nulls are the intended outcome.
Wide nulls are benefcial in the following two ways:

x

y

A0

dk

rk

θ0

z

ϑk

(rk, ψk, ϑk)

(A0, ϕ0, θ0)

Figure 1: Wireless sensor network model (a 3-dimensional per-
spective from the point of view of both node distribution and sink
location). Cluster head: rectangular symbol; sensor nodes: star
symbol; sink: circular symbol.
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Figure 2: Far-feld radiation problem.
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(i) Reduction of interference in other distinct CB
clusters (collaborating nodes are bound to be
spatially distributed)

(ii) Reduction of CB frequency in cases of slightly
mobile unintended receivers

(iii) Let
(iv) (ϕ0, θ0) be the direction of the intended sink with

reference to the cluster head.
(v) (ϕu, θu) be a substantial subset of all undesired

radiation directions, where u ∈ [1, 2 . . . U].
(vi) (ϕn, θn) be the unintended sink direction(s) with

reference to the cluster head, where n ∈ [1, 2 . . . N].
(vii) MAF(ϕn,θn)(W) be the mean AF in the immediate

neighborhood of (ϕn, θn).

Te objectives to be met are as per equations (13)–(16).
Te objective function in equation (13) is geared towards

beam steering (maximizing radiation in the intended sink
direction).

maximize: AFϕ0,θ0(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (13)

Te objective function in equation (14) ensures minimal
radiation power spread in all directions outside of the
intended sink direction.

minimize:
1
U

􏽘

U

u�1
AFϕu,θu

(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (14)

Te objective function in equation (15) is geared towards
null steering (minimizing radiation in the unintended sink
direction(s)).

minimize:
1
N

􏽘

N

n�1
AFϕn,θn

(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (15)

Te objective function in equation (16) specifcally caters
to wide nulls.

minimize:
1
N

􏽘

N

n�1
MAF ϕn,θn( )(W)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (16)

Te overall objective function to be optimized is a
weighted (gx) combination of the objectives given in
equations (13)–(16) as per (17) where 􏽐

4
x�1 gx � 1. Te

weighting values (gx) have been carefully selected to yield
the best possible outcome. In particular, the values uti-
lized for g1, g2, g3 and g4 are 03, 0.2, 0.3, and 0.2, re-
spectively. Te values so chosen accord beam steering and
nulling comparatively higher weighting in comparison to
generalized minimization of radiation in undesired di-
rections and null widening. An exhaustive search
entailing various sets of values for g1, g2, g3 and g4
yielded the afore-stated values as optimal in terms of
overall CB solution quality.

minimize: f(W) � −g1 AFϕ0 ,θ0(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒

+g2
1
U

􏽘

U

u�1
AFϕu,θu

(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
⎞⎠

+ g3
1
N

􏽘

N

n�1
tn AFϕn,θn

(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝

+g4
1
N

􏽘

N

n�1
MAF ϕn,θn( )(W)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
⎞⎠.

(17)

tn is a weighting factor selected for every optimization
iteration in accordance with the value of AFϕn,θn

.Tis allows for
a balanced nulling scheme wherein all null values are nearly
identical. In particular, for a 3-null case, the utilized values of tn

are 0.5, 0.3, and 0.2 for descending values of AFϕn,θn
.

A PSO algorithm variant (Culled-Fuzzy-Adaptive PSO
(CFAPSO) algorithm [48]) has been utilized in optimizing
(selecting the best possible node weights W) the designed
multiobjective function (equation (17)) Te CFAPSO al-
gorithm is described in Section 2.3.

2.3. Culled-Fuzzy-Adaptive PSO Algorithm. PSO algorithm
entails a carefully checked movement of a swarm of “par-
ticles” (bearing potential solutions to a given problem) in a
defned search space [49–51]. Equations (18) (velocity up-
date equation) and (19) (position update equation) represent
the basic PSO algorithm.

vi(t + 1) � wvi(t)( 􏼁 + cprp pi − xi( 􏼁􏼐 􏼑

+ csrs li − xi( 􏼁( 􏼁,
(18)

xi(t + 1) � xi(t) + vi(t + 1). (19)

In the velocity and position update equations above

(i) t represents iteration count.
(ii) i denotes a swarm particle.
(iii) xi and vi denote the position and velocity of

particle i, respectively.
(iv) w denotes inertia weight. w controls the infuence

of the immediate previous velocity in the velocity
update equation. In the basic PSO algorithm, w is
decreased linearly from 0.9 in the frst algorithm
iteration to 0.4 in the last algorithm iteration [52].

(v) pi represents the personal best position.
(vi) li represents the global best position.
(vii) cp and cs represent the personal/self and social

confdence parameters, respectively. cp and cs

control the infuence of the personal and global
best positions, respectively, in the velocity update
equation. In the standard PSO algorithm, cp and cs

are fxed at 2 [53].
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(viii) rp/rs are random numbers within the range [0 − 1].
rp and rs enhance exploration capabilities of per-
sonal and social infuences.

cp and cs have a fundamental infuence on the PSO
algorithm performance. cp and cs values ought to be judi-
ciously chosen in line with the optimization problem under
consideration. Large values of cp relative to cs heighten
search space exploration. Large values of cs relative to cp

heighten exploitation and convergence to a global solution.
Consequently, it is ideal to have adaptive values of cp and cs

rather than the static values distinctive of the basic PSO
algorithm.

In the CFAPSO algorithm used in this manuscript, the
values of cp and cs are mapped onto the range (2–2.4) and
(2.2–2.6), respectively on the basis of iteration count and
particle performance index [48]. w is mapped onto the range
(0.4–0.9). Te mapping process of cp, cs, and w is done using
a fuzzy logic inference system.

In summary, the procedure followed in implementing
the CFAPSO Algorithm 1 is as per the following steps:

2.4. Simulation Setup. Te research work laid out in this
manuscript has been carried out through appropriate
simulations in Matlab software. Te Matlab environment
ofers a numeric computing platform suitable for beam-
forming strategies modeling, optimization, and analysis.

CB analysis entailing varying WSN node count and
cluster radius has been carried out. Te utilized WSN ar-
rangements with node count variation are as per Figure 3
and Tables 1 and 2. Te utilized WSN arrangements with
cluster radius variation are as per Figure 4 and Table 3. All
node distances are normalized with respect to wavelength.

In this research work, ffty independent tests have been
used for every optimization procedure. Tis conforms to the
requirement that sample sizes greater than 30 are by and
large sufcient for a bulk of data distributions for the central
limit theorem to hold [54]. Te central limit theorem is
crucial in statistical data analysis for two chief reasons [55].

(i) Precise data analysis estimates: sampling distribu-
tions of the mean cluster tightly around the pop-
ulation mean with increasing sample size.

(ii) Normality assumption: the fact that sampling dis-
tributions can approximate a normal (Gaussian)
distribution is critical for use of parametric hy-
pothesis tests of the mean.

In this manuscript, the statistical tools used in the results
analysis process are as follows:

(1) Analysis of variance (ANOVA) test: a test aimed at
testing whether or not two or more sample/pop-
ulation means are statistically identical [56]

(2) Tukey–Kramer test: a post hoc analysis test aimed at
pin-pointing the exact sample/population means
that have statistically signifcant diferences [57]

Listed below are the general simulation considerations.

(i) 3 null steering directions

(ii) A single-beam steering direction
(iii) All node distances are wavelength-normalized
(iv) Sixty CFAPSO algorithm iterations are utilized for

the CB optimization problems addressed
(v) A CFAPSO algorithm swarm size of thirty has been

adopted
(vi) Beamforming outcomes have been presented

qualitatively in the form of radiation power pattern
plots and quantitatively in terms of null depth
values, null width values, nulling accuracy, and
radiation power in desired/undesired directions.

3. Results and Discussion

Herein, the performance of the developed null steering
beamformer (as per equation (17)) is weighed against that of a
basic null steering beamformer. Te applied basic null steering
beamformer does not take into consideration aspects of null
width control, null depth fne-tuning, and generalized mini-
mization of radiation in undesired directions as featured in
equation (17). Furthermore, nulling performance with changes
in the number of collaborating nodes and cluster radius is
analyzed. Performance measures utilized include achieved null
depth, width, nulling accuracy, and the resultant capacity at
unintended receivers in nulling directions.

3.1. Performance Analysis against a Basic Null Steering
Beamformer. Te performance of the developed null
steering beamformer as per equation (17) is compared
against that of the basic null steering beamformer depicted
in equation (20). Typical research entailing basic null
steering can be found in [8, 10, 12, 21].

minimize: f(W) � −ga AFϕ0 ,θ0(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ gb

1
N

􏽘

N

n�1
AFϕn,θn

(W)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

(20)

where ga � 0.3 and gb � 0.7 are carefully selected constants
intended to balance out a beam and null steering,
|AFϕ0 ,θ0(W)| is the magnitude of the array factor in the beam
steering direction and 1/N 􏽐

N
n�1 |AFϕn,θn

(W)| is the average
magnitude of the array factor in the null steering directions.

Te utilized beam steering and null steering directions
are as given in Table 4.

Typical radiation power patterns (in the form of mesh
plots) obtained upon null steering using the schemes under
study are as per Figures 5 and 6.

Typical radiation power patterns (in the form of contour
plots) obtained upon null steering using the schemes under
study are as per Figures 7 and 8.

A qualitative analysis of the radiation patterns presented
in Figures 5–8 indicates the following:

(i) Te proposed null steering scheme yields lower
sidelobes

(ii) Te proposed null steering scheme in general yields
lower radiation in all undesired directions
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(1) Step 1: initialize swarm particles (in a random manner).
(2) Step 2:
(a) Evaluate the optimization function at all swarm particles.
(b) Pick the optimal swarm particle as per the obtained optimization function values.
(3) Step 3: if the maximum number of iterations permitted has been exhausted, terminate the algorithm, else proceed to step 4.
(4) Step 4: if the count of iterations is half the specifed maximum value, proceed to step 5, else proceed to step 7.
(5) Step 5: sort and rank swarm particles in accordance with their performance (as per the optimization function).
(6) Step 6: cull and randomly reinitialize swarm particles associated with poor performance.
(7) Step 7: update cp, cs, and w values (using a fuzzy logic-based look-up table).
(8) Step 8: update vi and xi. Revert to Step 2.

ALGORITHM 1: Culled-Fuzzy-Adaptive PSO Algorithm.
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Figure 3: Collaborating nodes’ positions 3 dimension confguration with varying node count: (a) 5 nodes; (b) 10 nodes; (c) 15 nodes; (d) 20
nodes.

Table 1: Collaborating nodes’ positions 3 dimension confguration with varying node count: 5 and 10 nodes.

S. no.
10 nodes 5 nodes

Norm. rad. dist. (m) El. angle (deg.) Az. angle (deg.) Norm. rad. dist. (m) El. angle (deg.) Az. angle (deg.)
1 0.4 61 −27 0.7 14 14
2 0.7 14 14 0.8 25 144
3 0.5 10 −59 0.6 26 99
4 0.8 25 144 0.5 34 −117
5 0.6 −9 72 0.7 −53 −63
6 0.8 −12 49
7 0.6 26 99
8 0.5 34 −117
9 0.7 −53 −63
10 0.6 16 −135
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Table 2: Collaborating nodes’ positions 3 dimension confguration with varying node count: 15 and 20 nodes.

S. No.
20 nodes 15 nodes

Norm. rad. dist. (m) El. angle (deg.) Az. angle (deg.) Norm. rad. dist. (m) El. angle (deg.) Az. angle (deg.)
1 0.4 61 −27 0.4 61 −27
2 0.7 14 14 0.7 14 14
3 0.5 10 −59 0.5 10 −59
4 0.5 58 108 0.5 58 108
5 0.8 25 144 0.8 25 144
6 0.8 43 −39 0.8 43 −39
7 0.3 56 180 0.3 56 180
8 0.6 −9 72 0.6 −9 72
9 0.8 −12 49 0.8 −12 49
10 0.7 54 −143 0.7 54 −143
11 0.4 24 117 0.6 26 99
12 0.6 26 99 0.5 34 −117
13 0.5 34 −117 0.7 −53 −63
14 0.8 13 −36 0.6 16 −135
15 0.8 40 −34 0.8 −42 −153
16 0.5 −22 37
17 0.7 −22 −164
18 0.7 −53 −63
19 0.6 16 −135
20 0.8 −42 −153
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Figure 4: 3-dimension cluster arrangements featuring cluster radii 1, 2, 3, and 4 (identical node distribution patterns have been utilized to
allow for a fair comparison).
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Figure 9 comparatively depicts azimuth cut radiation
power patterns corresponding to the null steering schemes
under study. An outcome associated with conventional
beam steering without nulling is also portrayed in the fgure.
A qualitative analysis of the azimuth cut radiation patterns
indicate the following:

(i) Te proposed null steering scheme yields wider nulls
(ii) Te proposed null steering scheme yields a slightly

narrower main lobe width

Table 5 gives the exact null depth values obtained using
the proposed and basic null steering mechanisms. Te

proposed null steering approach yields deeper and low
variance nulls (nearly identical depth values) in comparison
to the basic null steering approach.

3.2. Performance Analysis with Change in the Number of
Collaborating Nodes. In this section, 3-null placement is
considered as per the listing given in Table 6.

Table 3: Collaborating nodes’ positions 3 dimension confguration
with varying cluster radius.

S. no. El. angle (deg.) Az. angle (deg.)
Norm. rad. dist. (m)
1 2 3 4

1 61 −27 0.4 0.8 1.2 1.6
2 14 14 0.7 1.5 2.2 3.0
3 10 −59 0.5 1.0 1.5 2.1
4 58 108 0.5 1.0 1.5 2.1
5 25 144 0.8 1.6 2.5 3.3
6 43 −39 0.8 1.5 2.3 3.1
7 56 180 0.3 0.6 0.9 1.3
8 −9 72 0.6 1.1 1.7 2.2
9 −12 49 0.8 1.6 2.5 3.3
10 54 −143 0.7 1.5 2.2 3.0
11 24 117 0.4 0.9 1.3 1.7
12 26 99 0.6 1.2 1.8 2.4
13 34 −117 0.5 0.9 1.4 1.9
14 13 −36 0.8 1.5 2.3 3.1
15 40 −34 0.8 1.6 2.4 3.3
16 −22 37 0.5 0.9 1.4 1.9
17 −22 −164 0.7 1.4 2.1 2.7
18 −53 −63 0.7 1.3 2.0 2.6
19 16 −135 0.6 1.3 1.9 2.6
20 −42 −153 0.8 1.6 2.3 3.1
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Figure 6: Normalized power pattern: proposed null steering.

Table 4: Nulling and beam steering directions (in degrees). No-
tation: Az, azimuth; El, elevation; B.st., beam steering direction.

Null 1 Null 2 Null 3 B. st.
Az −100 0 150 80
El 40 40 40 40
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Figure 5: Normalized power pattern: basic null steering.
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Figure 7: Normalized power pattern: basic null steering.
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Figure 8: Normalized power pattern: proposed null steering.
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Figure 9: Azimuth cut of the normalized power pattern (at the
elevation angle of 40 degrees) in a decibel scale.
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Sets of 5, 10, 15, and 20 collaborating nodes are utilized
in the null steering process.

Figure 10 comparatively illustrates the evolution of the
nulling cost function (average outcome of 50 independent
runs for the algorithms under study). It can be clearly
deciphered that the 20-node confguration outperforms the
other node confgurations. Noteworthy, an increase in the
number of collaborating nodes in a CB process might be
associated with increased phase/time/frequency jitter at the
nodes. Tis would inadvertently lead to unpredictable CB
performance. It is expected that the performance superiority
associated with an increase in collaborating nodes over-
comes the performance downgrade associated with phase/
time/frequency jitter at the collaborating nodes.

3.2.1. Beam Pattern Analysis

(1) Radiation Power Pattern.Te azimuth cut of the resultant
normalized radiation power pattern is as per Figure 11. Te
presented pattern is the average of 50 independent out-
comes. It can be observed that an increase in the number of
collaborating nodes yields slightly deeper and more accurate
nulls. Beam steering performance is roughly identical.

(2) Null Depth Values. Te obtained null depth values are
given in Table 7. Te values are the average outcomes of 50
independent runs. Analysis of variance test P-values are
5.0688E− 102, 1.4277E− 132, and 4.5124E− 166 for null 1, 2,
and 3, respectively. Going by the low P-values, the null depth
values given in Table 7 bear statistically signifcant difer-
ences. Te diferences are captured/summarized in Table 8
following a Tukey–Kramer comparison test.

Table 9 presents null depth performance ranking (in ac-
cordancewith the Tukey–Kramer comparison test results) upon
using 20, 15, 10, and 5 nodes. A tie in rank in Table 9 implies
statistically equivalent null depth values. Overall, the 20-node
nulling procedure yields the best null depth performance.

Figure 12 comparatively illustrates the average nor-
malized power observed in the nulling directions against the
count of nodes. Tere is an exponential power decrease with
an increase in the number of CB nodes.

(3) Null Width Values. Null width values are given in
Table 10. Te values are measures corresponding to the
azimuth-cut radiation pattern presented in Figure 11. Tere

Table 5: Null depth values (in dB) as obtained from the simulation
results entailing the proposed and basic null steering mechanisms.

Proposed null st. Basic null st. Conv. beamst.
Null 1 −36.67 −23.48 −3.29
Null 2 −37.73 −26.66 −7.99
Null 3 −37.59 −20.77 −9.66
Average −37.33 −23.63 −6.98
Variance 0.22 5.78 7.28

Table 6: Nulling and beam steering directions (in degrees). No-
tation: Az, azimuth; El, elevation; B.st., beam steering direction.

Null 1 Null 2 Null 3 B.st.
Az −130 10 140 −60
El 60 60 60 60

Table 7: Null depth (in dB) corresponding to null steering using 20,
15, 10, and 5 nodes. SD denotes standard deviation.

20 nodes 15 nodes 10 nodes 5 nodes
Depth SD Depth SD Depth SD Depth SD

Null 1 −29.23 1.04 −26.42 1.08 −24.71 1.12 −19.61 1.21
Null 2 −28.92 1.13 −29.37 1.13 −27.70 1.25 −15.94 1.29
Null 3 −35.26 1.26 −29.98 1.07 −26.32 1.18 −12.56 1.33
Average −31.14 −28.59 −26.24 −16.04

Table 8: Tukey–Kramer comparison test. MD means diferent.
MnD means not diferent.

Comparison Null 1 Null 2 Null 3
20 vs. 15 MD MnD MD
20 vs. 10 MD MD MD
20 vs. 5 MD MD MD
15 vs. 10 MD MD MD
15 vs. 5 MD MD MD
10 vs. 5 MD MD MD
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Figure 10: Average objective function value against algorithm
iterations.
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is no clear-cut trend in null width values for the 20, 15, and
10 nodes procedures. Tis can be attributed to

(i) Unpredictable relationship between the random
collaborating nodes layout and null steering
directions

(ii) Te fact that the undertaken optimization process
does not implicitly consider uniformity in the null
width values

(4) Nulling Accuracy. Nulling accuracy values are given in
Table 11. Te 20 and 15 nodes nulling procedures yield
higher nulling precision in comparison to the 10 and 5 nodes
nulling.

(5) Power in the Desired and Undesired Directions. Nor-
malized power values corresponding to the desired (beam
steering) direction and all undesired directions are given in
Table 12. Te values are the average outcomes of 50 inde-
pendent runs. Tere is a power performance mix cutting
across node counts. For instance, moving from 15 to 10
nodes, there is an unexpected improvement in the power
radiated towards the desired direction, but an expected
increase in power radiated towards undesired directions.
Tis can be attributed to the unpredictable relationship

between random node placement and the beam steering
direction. A comprehensive performance comparison/trend
is given in Table 13. Analysis of variance test P values are
8.4544E− 291 and 0.0000E+ 00 for the power in the desired
and undesired directions, respectively. Going by the low P

values, the power values given in Table 12 bear statistically
signifcant diferences. Te diferences are captured/sum-
marized in Table 14 following a Tukey–Kramer comparison
test.

Table 13 presents the power performance ranking (in
accordance with the Tukey–Kramer comparison test results)
upon using 20, 15, 10, and 5 nodes. Overall, the 20-node
nulling procedure yields the best power performance.

Figure 13 gives a comparative view of the average
normalized power in the desired and undesired directions
against the count of nodes.

3.2.2. Comparative Analysis of Communication Capacity at
Unintended Receivers

(1) Capacity at Unintended Receivers Positioned in the
Nulling Directions. Herein, communication capacity is
evaluated at unintended receivers lying in the direction of
the distinct 3 nulling points (as per the listing given in
Table 6). Tis is done over a range of SNR values running
from 0 to 40 dB.

Given an unintended receiver positioned at (−130 de-
grees azimuth, 60 degrees elevation), interference values are
−29.23, −26.42, −24.71, and −19.61 for 20, 15, 10, and 5
nodes null steering, respectively. Te resultant capacity is as
per Figure 14. At a lower range of SNR values (0 to 10 dB),
capacity performance is roughly identical for the four cases
under comparison. At higher SNR values, 20 nodes of null
steering ofer distinctively better capacity performance. Te
best capacity improvement realized is 46 percent (at an SNR
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Figure 12: Average normalized power in the nulling directions
against the count of nodes.

Table 9: Null depth performance ranking corresponding to null
steering using 20, 15, 10, and 5 nodes.

Null 1 Null 2 Null 3 Total
20 nodes 1 1 1 3
15 nodes 2 1 2 5
10 nodes 3 3 3 9
5 nodes 4 4 4 12

Table 10: Null width (in degrees) corresponding to null steering
using 20, 15, 10, and 5 nodes. Te null width has been measured at
the −20 dB power level in the average array factor.

20 15 10 5
Null 1 14 20 19 13
Null 2 15 10 10 N/A
Null 3 41 50 37 N/A
Average 23.33 26.67 22.00 N/A

Table 11: Nulling accuracy (in degrees) corresponding to null
steering using 20, 15, 10, and 5 nodes.

20 15 10 5
Null 1 1 3 4 6
Null 2 2 1 1 4
Null 3 0 1 5 15
Average 1.00 1.67 3.33 8.33

Table 12: Average power in the desired and all undesired directions
corresponding to null steering using 20, 15, 10, and 5 nodes. SD
denotes standard deviation.

No. Desired dir. Undesired dir.

20 Value 0.9528 0.1278
SD 0.0007 0.0004

15 Value 0.9037 0.1214
SD 0.0033 0.0001

10 Value 0.9357 0.1596
SD 0.0050 0.0002

5 Value 0.6801 0.2281
SD 0.0041 0.0001
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value of 40 dB); this is as evaluated with the capacity out-
comes associated with 5 nodes and 20 nodes null steering.

Given an unintended receiver positioned at (10 degrees
azimuth, 60 degrees elevation), interference values are
−28.92, −29.37, −27.70, and −15.94 for 20, 15, 10, and 5
nodes null steering, respectively. Te resultant capacity is as
per Figure 15. At the lower range of SNR values (0 to 7.5 dB),

capacity performance is roughly identical for the four cases
under comparison. At higher SNR values, 15, 20, and 10
nodes null steering ofer better capacity performance. Te
best capacity improvement realized is 86 percent (at an SNR
value of 40 dB); this is as evaluated with the capacity out-
comes associated with 5 nodes and 15 nodes null steering.

Given an unintended receiver positioned at (140 degrees
azimuth, 60 degrees elevation), interference values are
−35.26, −29.98, −26.32, and −12.56 for 20, 15, 10, and 5
nodes null steering, respectively. Te resultant capacity is as
per Figure 16.

At the lower range of SNR values (0 to 5 dB), capacity
performance is roughly identical for the four cases under
comparison. Noise is dominant over interference hence the
observed outcome. At higher SNR values, a higher node
count ofers better capacity performance. Te best capacity
improvement realized is 167 percent (at an SNR value of
40 dB); this is as evaluated with the capacity outcomes as-
sociated with 5 nodes and 20 nodes null steering. Tis ca-
pacity improvement value exceeds that reported in [6] (162
percent).

(2) Capacity at Unintended Receivers Distributed over
Approx. All Directions Apart From the Beamsteering Di-
rection. Herein, average communication capacity is evalu-
ated over unintended receivers distributed over all azimuth
and elevation directions (less the beam steering direction) at
a one-degree precision. Te resultant capacity is as per
Figure 17. 20 and 15 nodes null steering ofers better capacity
performance. Te best capacity improvement realized is 45
percent (at an SNR value of 40 dB); this is as evaluated with
the capacity outcomes associated with 5 nodes and 20 nodes
null steering.

3.3. Performance Analysis with Change in the Beamforming
Cluster Radius. 3-null placement is considered as per the
listing given in Table 15.

Wavelength-normalized CB cluster radius values of 1, 2,
3, and 4 are utilized in the null steering process.

Figure 18 comparatively illustrates the evolution of the
nulling cost function (average outcome of 50 independent
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Figure 13: Average normalized power in the desired and undesired
directions against the count of nodes (as per the data given in
Table 12).
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Figure 14: Capacity comparison: unintended receiver at (−130
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Figure 15: Capacity comparison: unintended receiver at (10 de-
grees azimuth, 60 degrees elevation).

Table 13: Power performance ranking corresponding to null
steering using 20, 15, 10, and 5 nodes.

Desired Undesired Total
20 nodes 1 2 3
15 nodes 3 1 4
10 nodes 2 3 5
5 nodes 4 4 8

Table 14: Tukey–Kramer comparison test. MD means diferent.
MnD means not diferent.

Comparison Desired Undesired
20 vs. 15 MD MD
20 vs. 10 MD MD
20 vs. 5 MD MD
15 vs. 10 MD MD
15 vs. 5 MD MD
10 vs. 5 MD MD
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runs for the algorithms under study). Tere is no clear-cut
performance trend with changes in the CB cluster radius.

3.3.1. Beam Pattern Analysis

(1) Radiation Power Pattern. Te azimuth cut of the resultant
normalized radiation power pattern is as per Figure 19. Te
presented pattern is the average of 50 independent out-
comes. An increase in cluster radius is associated with a
decrease in null width and main beam width.

(2) Null Depth Values. Null depth values are given in Ta-
ble 16. Te values are the average outcomes of 50 inde-
pendent runs. Analysis of variance test P values are
9.8641E− 88, 9.2259E− 40, and 3.6124E− 91 for null 1, 2,
and 3, respectively. Going by the low P values, the null depth
values given in Table 16 are statistically diferent. Te dif-
ferences are captured/summarized in Table 17 following a
Tukey–Kramer comparison test.

Table 18 presents null depth performance ranking (in ac-
cordancewith the Tukey–Kramer comparison test results) upon
using cluster radii 1, 2, 3, and 4. A tie in rank in Table 18 implies
statistical equivalence. Overall, the radii 1 nulling procedure
yields the best null depth performance. In general, there is no
distinct relationship between cluster radius and null depth.

Figure 20 comparatively illustrates the average nor-
malized power observed in the nulling directions against
cluster radius. Tere is no clear-cut relationship between the
power values and cluster radius.

(3) Null Width Values. Null width values are given in Ta-
ble 19. Te values are measures corresponding to the azi-
muth-cut radiation pattern presented in Figure 19. A large
cluster radius is associated with narrow nulls.

(4) Nulling Accuracy. Nulling accuracy values are given in Ta-
ble 20. Increase in cluster radius yields better nulling accuracy.

(5) Power in the Desired and Undesired Directions. Normalized
power values corresponding to the desired direction and all
undesired directions are given in Table 21. Te values are the
average outcomes of 50 independent runs. Analysis of variance
testP values are 1.1228E− 197 and 0.0000E+00 for the power in
the desired and undesired directions, respectively. Going by the
lowP values, the power values given in Table 21 bear statistically
signifcant diferences.Tediferences are captured/summarized
in Table 22 following a Tukey–Kramer comparison test.

Table 23 presents power performance ranking (in ac-
cordance with the Tukey–Kramer comparison test results)
upon using cluster radii 1, 2, 3, and 4. A tie in rank in
Table 23 implies statistical equivalence. Overall, as per Ta-
ble 23, there is a power performance “mix.” Tis can be
attributed to the following facts:

(i) At a small cluster radius, prominent outcomes are awide
main beam, wide nulls, and few low-leveled sidelobes

(ii) At a large cluster radius, prominent outcomes are a
narrow main beam, narrow nulls, and a number of
average-leveled sidelobes
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Table 15: Nulling and beam steering directions (in degrees).
Notation: Az, azimuth; El, elevation; B.st., beam steering direction.

Null 1 Null 2 Null 3 B.st.
Az −135 30 110 −80
El 35 35 35 35
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Figure 16: Capacity comparison: unintended receiver at (140
degrees azimuth, 60 degrees elevation).
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Figure 21 gives a comparative view of the average
normalized power in the desired and undesired directions
against cluster radius.

3.3.2. Comparative Analysis of Communication Capacity at
Unintended Receivers

(1) Capacity at Unintended Receivers Positioned in the
Nulling Directions. Herein, communication capacity is
evaluated at unintended receivers lying in the direction of
the distinct 3 nulling points (as per the listing given in

Table 17: Tukey–Kramer comparison test. MD means diferent.
MnD means not diferent.

Comparison Null 1 Null 2 Null 3
Radii 1 vs. Radii 2 MD MnD MD
Radii 1 vs. Radii 3 MD MD MD
Radii 1 vs. Radii 4 MnD MnD MD
Radii 2 vs. Radii 3 MD MD MD
Radii 2 vs. Radii 4 MD MnD MD
Radii 3 vs. Radii 4 MD MD MD

Table 18: Null depth performance ranking corresponding to null
steering using cluster radii 1, 2, 3, and 4 (wavelength normalized).

Null 1 Null 2 Null 3 Total
Radii: 1 1 1 2 4
Radii: 2 3 1 3 7
Radii: 3 4 4 1 9
Radii: 4 1 1 4 6

Table 19: Null width (in degrees) corresponding to null steering at
radii 1, 2, 3, and 4 (wavelength normalized). Te null width has
beenmeasured at the −20 dB power level in the average array factor.

1 2 3 4
Null 1 14 15 15 8
Null 2 20 16 7 5
Null 3 31 8 6 7
Average 21.67 13.00 9.33 6.67

Table 20: Nulling accuracy (in degrees) corresponding to null
steering at wavelength normalized radii 1, 2, 3, and 4 (as per the
average array factor).

Rad 1 Rad 2 Rad 3 Rad 4
Null 1 0 1 1 0
Null 2 1 0 0 0
Null 3 2 1 0 1
Average 1.00 0.67 0.33 0.33

Table 21: Average power in the desired and all undesired directions
corresponding to null steering at cluster radii 1, 2, 3, and 4
(wavelength normalized). SD denotes standard deviation.

Rad. Desired dir. Undesired dir.

1 Value 0.984171708 0.095203404
SD 0.000360835 0.000113346

2 Value 0.961331761 0.066133465
SD 0.001395834 6.14076E− 05

3 Value 0.978670252 0.069050449
SD 0.000666423 0.00027976

4 Value 0.976489929 0.089864776
SD 0.000542081 0.000200544

Table 22: Tukey–Kramer comparison test. MD means diferent.
MnD means not diferent.

Comparison Desired Undesired
Radii 1 vs. radii 2 MD MD
Radii 1 vs. radii 3 MD MD
Radii 1 vs. radii 4 MD MD
Radii 2 vs. radii 3 MD MD
Radii 2 vs. radii 4 MD MD
Radii 3 vs. radii 4 MD MD

Null 1 Null 2 Null 3
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Figure 19: Azimuth cut of the normalized power pattern (at the
elevation angle of 35 degrees) in a decibel scale. Te radius values
are wavelength-normalized.

Table 16: Null depth (in dB) corresponding to null steering at radii
1, 2, 3, and 4 (wavelength-normalized). SD denotes standard
deviation.

Radii: 1 Radii: 2 Radii: 3 Radii: 4
Depth SD Depth SD Depth SD Depth SD

Null 1 −32.07 1.04 −31.13 1.08 −25.02 1.12 −31.83 1.21
Null 2 −32.03 1.13 −31.47 1.13 −28.26 1.25 −31.44 1.29
Null 3 −30.48 1.26 −28.78 1.07 −34.37 1.18 −25.17 1.33
Average −31.53 −30.46 −29.22 −29.48
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Figure 20: Average normalized power in the nulling directions
against cluster radius. Te radius values are wavelength-
normalized.
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Table 15). Tis is done over a range of SNR values running
from 0 to 40 dB.

Given an unintended receiver positioned at (−135 de-
grees azimuth, 35 degrees elevation), average interference
values are −32.07, −31.13, −25.02, and −31.83 for 1, 2, 3, and
4 cluster radius confgurations, respectively. Te resultant
capacity is as per Figure 22. At the lower range of SNR values
(0 to 15 dB), capacity performance is roughly identical for
the four cases under comparison. At higher SNR values, the
3-cluster radius confguration ofers better capacity per-
formance. Te best capacity improvement realized is 25
percent (at an SNR value of 40 dB); this is as evaluated with
the capacity outcomes associated with cluster radii 1 and
cluster radii 3 null steerings.

Given an unintended receiver positioned at (30 degrees
azimuth, 35 degrees elevation), average interference values
are −32.03, −31.47, −28.26, and −31.44 for 1, 2, 3, and 4
cluster radius confgurations respectively. Te resultant
capacity is as per Figure 23. At the lower range of SNR values
(0 to 20 dB), capacity performance is roughly identical for
the four cases under comparison. At higher SNR values, 1, 2,
and 4 cluster radius confgurations ofer roughly identical
capacity performance. Te best capacity improvement re-
alized is 11 percent (at an SNR value of 40 dB); this is as
evaluated with the capacity outcomes associated with cluster
radii 1 and cluster radii 3 null steerings.

Given an unintended receiver positioned at (110 degrees
azimuth, 35 degrees elevation), average interference values
are −30.48, −28.78, −34.37, and −25.17 for 1, 2, 3, and 4
cluster radius confgurations respectively. Te resultant
capacity is as per Figure 24. At the lower range of SNR values
(0 to 15 dB), capacity performance is roughly identical for
the four cases under comparison. Te best capacity im-
provement realized is 35 percent (at an SNR value of 40 dB);

this is as evaluated with the capacity outcomes associated
with cluster radii 3 and cluster radii 4 null steerings.

(2) Capacity at Unintended Receivers Distributed Over
Approx. All Directions apart from the Beam steering Direc-
tion. Herein, average communication capacity is evaluated
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Figure 21: Average normalized power in the desired and undesired
directions against cluster radius (wavelength normalized).
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Figure 22: Capacity comparison: unintended receiver at (−135
degrees azimuth, 35 degrees elevation). Te radius values are
wavelength normalized.

Table 23: Power performance ranking corresponding to null
steering at radii 1, 2, 3, and 4 (wavelength normalized).

Des Undes Total
Radii: 1 1 4 5
Radii: 2 4 1 5
Radii: 3 2 2 4
Radii: 4 3 3 6
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Figure 23: Capacity comparison: unintended receiver at (30 de-
grees azimuth, 35 degrees elevation). Te radius values are
wavelength normalized.
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Figure 24: Capacity comparison: unintended receiver at (110
degrees azimuth, 35 degrees elevation). Te radius values are
wavelength normalized.
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over unintended receivers distributed over all azimuth and
elevation directions (less the beam steering direction) at a
one-degree precision. Te resultant capacity is as per Fig-
ure 25. Te cluster radius 1 confguration ofers slightly
better capacity performance.Te best capacity improvement
realized is 12 percent (at an SNR value of 40 dB); this is as
evaluated with the capacity outcomes associated with cluster
radii 1 and cluster radii 4 null steerings.

4. Conclusion

Tis paper has presented a nulling procedure aimed at re-
ducing interference at unintended receivers upon CB in
WSNs. A multiobjective criterion has been developed with
the considerations listed as follows:

(i) Beam steering.
(ii) Deep and wide nulling.
(iii) Minimizing radiation power in all directions out-

side of the intended sink direction.
(iv) Simultaneous optimization of node transmit am-

plitude and phase to achieve the aforementioned
items. In current literature, nulling is performed
through phase weighting after a conventional beam
steering procedure.

(v) 3-dimension WSN node layout.

Te performance of the developed (improved) null
steering beamformer has been validated through a com-
parison with a basic null steering procedure yielding the
following outcomes:

(i) Lower sidelobes
(ii) Lower radiation in all undesired directions
(iii) Wider nulls
(iv) Slightly narrower main lobe width

Te above positive outcomes listed above can be at-
tributed to

(i) Introduction of a worthwhile undesired radiation
suppression mechanism as per equation (14)

(ii) Introduction of a mechanism aimed at null widening
as per equation (16)

Furthermore, performance analysis has been carried out
with the considerations listed as follows:

(i) Performance analysis with change in the number of
collaborating nodes

(ii) Performance analysis with change in beamforming
cluster radius

Performance measures utilized include null depth, null
width, and nulling accuracy. It has been established that an
increase in the number of collaborating nodes leads to
deeper nulls, a marginal decrease in null width, and in-
creased nulling accuracy. A higher number of collaborating
nodes has the advantage of distributing radiation power
across more nodes. On the negative side, there is an increase
in intra-CB cluster communication. Moreover, an increase
in the number of collaborating nodes in a CB process might
be associated with increased phase, time, and frequency jitter
at the collaborating nodes. Tis would inadvertently lead to
unpredictable CB performance. It is expected that the ad-
vantages associated with an increase in the number of
collaborating nodes overcome performance downgrade as-
sociated with phase, time, and frequency jitter at the col-
laborating nodes. An increase in CB cluster radius leads to
slightly deeper nulls at the expense of null width. Increased
cluster radius is disadvantageous in terms of an increase in
transmission energy usage at collaborating nodes when
performing intracluster communication. A node count/
cluster radius balance should be struck to yield an optimal
null steering outcome. Deep nulls directly imply reduced
interference at unintended receivers. Wide nulls reduce CB
frequency in cases of mobile unintended receivers and re-
duce interference in other distinct CB clusters (collaborating
nodes are bound to be spatially distributed). Nulling is
associated with a reduction in interference/capacity im-
provement at unintended receivers. Te best capacity im-
provement realized is 167 percent (at an SNR value of 40 dB);
this is as evaluated with the capacity outcomes associated
with 5 nodes and 20 nodes null steering. Tis capacity
improvement value exceeds that reported in [6] (162
percent).

5. Limitations and Future Work

Te research work presented herein assumes that there is no
“expiry” or failure of sensor nodes participating in the CB
process. Sensor nodes are failure-prone owing to energy
exhaustion. A potential area of future research would entail
working on CB imperfectness upon failure of a collaborating
node. In this research work, it has been assumed that there is
no phase/time/frequency jitter at the collaborating nodes.
Phase/time/frequency jitter would inadvertently lead to
unpredictable CB performance. It is essential to analyze CB
performance with phase/time/frequency jitter at the col-
laborating nodes. As per the observed research outcomes,
beam pattern nulls lacked uniformity in null widths. It is
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Figure 25: Capacity comparison: average outcome. Te radius
values are wavelength normalized.
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crucial to develop a scheme that ascertains null width
uniformity when executing multiple nulling procedures.

Abbreviations

APSO: Accelerated particle swarm optimization
BA: Bat algorithm
CB: Collaborative beamforming
CORPS: Coherently radiating periodic structure
FA: Firefy algorithm
FBS: Fibonacci branch search
GA: Genetic algorithm
IoT: Internet of things
IWO: Invasive weed optimization
MANET: Mobile ad hoc network
MVDR: Minimum variance distortionless response
PSO: Particle swarm optimization
SNR: Signal-to-noise ratio
ULA: Uniform linear array
WSN: Wireless sensor network
A(r, t): Magnetic potential at location r, time t

J: Current density
C: Wave velocity
F(k): Radiation vector at wave number k
AF: Array factor
Rt: Position vector of tth node
MAF: Mean array factor
ϕ: Azimuthal direction
θ: Elevation direction
W: Node transmit weight.
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