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Te measurement of radiated emission (RE) in an anechoic chamber becomes very challenging at high frequencies, up to 60GHz,
because the scanning plane of the receiver is in measurement standard deviation from the actual wavefront. As a result, the RE
intensity of the devices may be underestimated, resulting in electromagnetic interference. Te deviation between the electric feld
at the far-feld vertical scanning point and the actual wavefront is researched. Ten, in an anechoic chamber, a hybrid deep
learning amendment model of convolutional neural network (CNN) and transformer is proposed to correct the RE measurement
at a 3m distance. Te results indicate that the correction is reliable, with an average error of 6.35% for a 3m distance in a
semianechoic chamber and less than 4.83% for other test scenarios. Te proposed method provides a promising solution for RE
measurement at a millimeter wave band in an anechoic chamber.

1. Introduction

Higher frequency bands, such as 24–28GHz, 37–40GHz,
and even 67–71GHz in 5G NR communication, will inev-
itably become more used with the exponential growth of
wireless devices and ever-increasing bandwidth usage [1].
Te radiation emission (RE) of electronic equipment is an
important determinant in electromagnetic compatibility
(EMC) tests. Te highest fundamental frequency of the
equipment under test (EUT) determines the measurement
frequency ranges [2]. Several standards for measuring RE at
frequencies up to 6GHz [3] and 18GHz [4–8] are described,
but only a few standards for millimeter wave (mmW) bands
are presented. However, with the emergence of an increasing
number of electronic devices for 5G NR in the market, RE
measurement in the mmW band has become crucial and has
drawn the attention of EMC Standard Committees [9]. Te
measured distances between the vertical scanning plane and
the EUTare specifed in the RE test standard as 1m, 3m, and

10m. Because of its greater accuracy and lower cost, an
anechoic chamber with a distance of 3m is regularly used at
high frequency.When the measured frequencies are not very
high, this measurement distance approximates far-feld
conditions (measurement distance greater than or equal to
2D2/λ, where D is the maximum size of the antenna and λ is
the wavelength of interest) [3]. To capture the maximum
signal of the EUT radiated feld under the limited 3 dB
coverage, the receive antenna must be moved from 1m to
4m in height along a vertical axis on the scanning surface as
the electrical size of the EUT increases. As a result, as the
frequency increases, the typical measurement distances for
EUTmay no longer meet the far-feld condition, resulting in
the scanning surface no longer overlapping the wavefront.
As the operating frequency of EUT increases to the mmW
band, the scanning position rises and the scanning surface
moves away from the wavefront, consequently making the
actual measurement distance exceed the specifed one.Tese
inconsistencies lead to the underestimation of the actual RE
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level of the EUT, which may pose safety risks during
equipment use [10].

Te aperture radiation source is replaced by an equiv-
alent vertical dipole radiation model in this paper, which is
based on the theory of line antenna theory. To solve the
inverse radiation problem, we investigate the non-
correspondence between the equiphase surface and the
vertical scanning surfaces during the RE measurement in an
anechoic chamber, i.e., how to obtain the maximum radiated
intensity on the wavefront using the far-feld scanning
technique. Despite signifcant advances in full-wave elec-
tromagnetic simulation methodologies, the electromagnetic
analysis tools currently available are inadequate to address
the inverse radiation problem. To address this limitation,
this study proposes a hybrid deep learning model of the
convolutional neural network (CNN) and transformer to
correct the RE measurement. Te transformer model en-
codes input sequences to solve sequential data problems and
consists of an encoder and a decoder based on the self-at-
tention mechanism [11, 12]. Te transformer is used in
computer vision for image classifcation and object detection
due to its performance in sequence data processing [13–15]
and because of its ability to accurately and efciently capture
long-range dependencies between inputs and labels, it is also
used for long-term serial data trend prediction. Despite its
advantages over traditional neural network models, there
have been few reports on its use to determine microwave
radiation emission. As a result, the proposed hybrid deep
learning method can be used to radiate emission data over
continuous frequencies while predicting trends and cor-
recting deviations.

Te remainder of this study is organized as follows. We
frst review the literature on radiated emissions calculation
and deviation correction using the deep learning method in
Section 2, followed by the proposed radiated emission
calculation model in Section 3, detailing the algorithm and
feld data deviation analysis in radiated emission measure-
ment. Te RE measurement correction and analysis were
performed by a transformer-based algorithm presented in
Section 4. Finally, we conclude our work in Section 5, along
with future work.

2. Related Works

Te analysis of electromagnetic radiation is an essential work
in the problem of electromagnetic compatibility with elec-
tronic devices. Almost no equipment can function without
connection accessories such as cables and electronic con-
nectors, as well as holes and slots in the enclosure that serve
as paths for electromagnetic power leakage. Worse, some
slits may become radiation antennas, resulting in electro-
magnetic radiation overload. Because diferent electro-
magnetic sources produce various radiation felds, a simple
method of calculating the radiation feld is to replace the
radiated emissions with a set of tiny dipoles with the same
radiated felds. An equivalent dipole model was used in the
literature [16] to simulate the radiated emissions within an
aperture enclosure. Te authors proposed a method for
representing electromagnetic emissions from a printed

circuit board using a near-feld scanning equivalent dipole
model [17]. Te authors used transmission-line theory and a
dipole antenna model to present a novel method for esti-
mating radiated emissions from electrically long printed
circuit board traces [18]. Some other studies on RE mea-
surement include discussions of the efects of test sites on the
measurement results concerning site voltage standing wave
ratio [19], absorber refectivity and chamber size [20],
measurement uncertainty, and the efects of site variability
and measurement equipment [21, 22].

All these studies performed well in terms of calculating
radiated emissions. More research studies on deviation
correction using numerical simulations or measured radi-
ation emission data combined with neural network algo-
rithms are still needed. Te researchers presented a deep
learning approach based on a convolutional neural network
combined with far-feld wave data generated from a near-
feld resonant metal body at microwave frequencies for
subwavelength imaging in the far-feld [23]. In other studies,
researchers used near-feld scanning microscopy or an
equivalent set of elemental dipoles methods associated with
genetic algorithms [24], convolutional neural networks
[25, 26], hierarchical attention-based deep neural networks
[27], extreme gradient boosting method [28], or strategies
based on artifcial neural networks and optimizer algorithm
[29, 30]. We use the transformer model to capture the re-
lationship on feature maps to establish the correlations
between two multivariate data series. Te transformer is an
encoder model based on the self-attention tool that breaks
the limitation that the recurrent neural network cannot be
calculated in parallel. As a result, it has got much attention.
In [31], the authors proposed a Transformer-based long-
term sequence prediction model that reduces the time and
space complexity through the sparse self-attention mecha-
nism. In [32], Wu et al. proposed a new decomposition
structure with an autocorrelationmechanism, which embeds
the sequence decomposition techniques to improve pre-
diction accuracy. Te studies mentioned earlier have
demonstrated the great potential of the transformer model
in the feld of sequence data analysis. However, there are
limited studies on error correction in the existing EMC
domains for the radiated emission measurement. Terefore,
this paper provides an in-depth discussion of the application
of the CNN-transformer model in multivariate sequential
data prediction and correction.

3. Field Deviation in RE Measurement

3.1. RE Calculation Model. Figure 1 briefy describes the RE
measurement method using CISPR 16-2-3. Te EUT was
mounted on a turntable platform 0.8m above the ground to
measure, the radiated electric feld receiving antenna was
scanned from 1m to 4m and set for horizontal and vertical
polarization to determine the maximum electric feld value
for EUTs with a size less than 3 dB (the beam width of the
receiving antenna), and a receiving antenna center height
equal to the EUT. Te receiving antenna was scanned in the
vertical/horizontal direction for EUTs with vertical/hori-
zontal sizes greater than 3 dB. Te feld measured by the
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receiving antenna on the scanning surface (at point P) is not
the actual feld (at pointQ) on the same wavefront, as shown
in Figure 2. Te felds measured by the receiver scanning
along the vertical plane difer from those at the wavefront, as
shown by points P and Q. Because the propagation path (R)
changes after reaching the scanning surface, the total electric
feld on the equiphase surface was attenuated. Te actual
propagation path causes more signifcant attenuation as the
scanning height increases.

For simplicity, the radiated electric felds of apertures
and cables of the EUT were assumed to be equivalent to
those of vertical dipole antennas. Te calculation model of a
vertical dipole above the perfect electric conductor (PEC) is
shown in Figure 2. Te diference in electric felds between
the actual wavefront and the scanning surface was calculated
in the fully anechoic chamber (FAC) and the semianechoic
chamber (SAC), respectively. When RE is measured in the
FAC, the corresponding model only considers elemental
dipole A. However, when measuring in the SAC, the ground
refection must be regarded as a PEC condition. Terefore,
the radiated electric feld is produced by superimposing the
electric felds generated by dipole A and its mirror image
elemental dipole B.

Te total feld of the dipoles was calculated by dis-
cretizing N current elements with length dh at each point in
space, and the electric feld was the superposition of the
electric felds generated by the N current elements at that
point [33, 34]. Electric felds dERi and dEθi of the current

elements of the dipoles A and B, respectively, are described
in the following equation.
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where I is the current of the current element, k0 is the
number of waves in the free spaces, ω is the angular fre-
quency, Ri is the distance between the short electric dipole
and the feld point, and θi is the angle between the line
connecting the element to the feld point and the z-axis. Te
variable i can take the value of 1 or 2. Ten, the total electric
feld radiated by the current element at the two symmetrical
positions on dipoles A and B is shown in the following
equation.

dE � dER + dEθ + dER2 + dEθ2, (2)

where dER and dEθ represent the electric felds radiated by
current elements on dipoleA and dER2 and dEθ2 are those by
current elements on dipole B. Te electric feld expression
was converted from the spherical to the Cartesian coordinate
system to obtain the feld component received by the ver-
tically polarized antenna, as shown in the following
equation.
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(3)

Te distance R1 from a single current element on dipole
A to the measurement point and the distance R2 from the
corresponding current element on the mirror dipole B to the
measurement point are depicted in the following equation.
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where z′ are the coordinates of the short current element, z

are the coordinates of the feld point, r is the distance be-
tween the origin and the feld point, and θ is the angle
between the line connecting the origin to the point and the z

-axis. It is assumed in the calculation that the current dis-
tribution on the entire vertical dipole antenna satisfes the
following equation.

I z′( 􏼁 �

I0 sin
2π
λ
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h

2
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(5)

where I0 is the peak value of the current on the dipole, λ is
the wavelength, h0 (�0.8m) is the height of the dipole of the
ground, and h is its length. Tus, the total radiated electric
feld of the vertical dipole antenna at the feld is given by the
following equation.

EZ � 􏽘
N

n�1
dEzn,

Ex � 􏽘
N

n�1
dExn.

(6)

Te accuracy of the simulations based on the above
equations was numerically verifed. First, the electric feld on
the scanning surface of the dipole antenna (length� 1.6m;
operating frequency� 300MHz) at a measurement distance
of 3m was calculated and compared with the numerical
electromagnetic code (NEC) [35]. Te dipole antenna
feedback point was used as the coordinate origin and the axis
of the antenna as the z-axis of a Cartesian coordinate system.
Figure 3 indicates that the NEC calculation results corre-
spond well with the calculation program results, with only a
slight diference in the extrema near the feedback point.

3.2. RE Calculation Results and Analysis. Te electric felds
on the equiphase and scanning surfaces were calculated for
the frequency band 1–60GHz, with antenna lengths of 2U
and 6U (1U� 44.45mm) in the FAC and SAC test sites,
respectively, to analyze the efect of the 3m and 10m
measurement distances on the REmeasurement. Because the
size of the current communication devices is in the 2U–6U
range, antenna lengths of 2U and 6U were chosen. Te
vertical polarization receiving antenna was used as an ex-
ample because the linear polarization antenna could mea-
sure either the vertical or horizontal electric feld
component. Te maximum total feld strength on the
equiphase surface and the maximum Ez component on the
scanning surface were calculated at the same frequency point
(coordinates shown in Figure 2). Ten, equation (7) was
used to calculate the relative diference.Te scanning surface
heights corresponding to the two maximum electric felds
were recorded, as required in the RE test. Te scanning
height corresponding to the maximum total electric feld on
the equiphase surface is the height of the point extending
along the radial line to the scanning surface, as the scanning

height of point Q and the height of point P shown in
Figure 2.
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where |Ez max|P represent the maximum Ez component of
the electric feld on the scanning surface and |Etotal max|Q
represent the total electric feld on the equiphase surface.

Figure 4 depicts the diference inmaximum electric felds
between the scanning and equiphase surfaces and the cor-
responding scanning heights for the 3m measurement
distance and antenna length of 2U in the FAC. For fre-
quencies, less than 5GHz, the maximum electric felds on
the equiphase and scanning surfaces are roughly equal, as are
the scanning heights. However, there is a deviation in both
the maximum position and the maximum radiation value
for frequencies greater than 5GHz. As the frequency in-
creases, so does the divergence in the maximum electric feld
on the scanning surface and the corresponding scanning
height. Te far-feld condition of 3m is satisfed for an
antenna with a length of 2U if the frequency is less than
56GHz. However, as the frequency increases, the electrical
length of the antenna gradually increases, as does the
number of lobes. Te maximum radiation direction is also
constantly changing, resulting in the sawtooth distribution
of scanning height shown in Figure 4(a). Meanwhile, as the
frequency increases, the electrical length of the antenna
increases, resulting in the maximum radiation deviation
increasing as the path attenuation. As a result, the height of
the maximum electric feld on the scanning surface changes
and becomes smaller than on the equiphase surface, as
shown in Figure 4(b). Terefore, at more considerable
scanning heights, the equiphase surface still behaves ap-
proximately as a plane but with a more signifcant error.
Figure 4 indicates that the deviation is more than 15% when
the frequency is higher than 5GHz. When the frequency
exceeds 25GHz, the variation is greater than 20%, with a
maximum relative diference of 42.89%. Tus, the deviation
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between the scanning surface and the equiphase surface for
the RE measurement must be considered.

Figure 5 shows the results as the electrical size of the EUT
increases and the equivalent radiating antenna length be-
comes 6U. It can be seen from Figure 5 that as the size of the
antenna increases, the electrical size and the number of
antenna lobes increases. Te maximum electric felds on the
scanning and equiphase surfaces and the corresponding
scanning heights are consistent only when the frequency is
lower than 1.6GHz. Compared with the antenna length 2U
in Figure 4, when the frequency is greater than 6GHz, the
measurement distance of 3m no longer satisfes the far-feld
conditions. Consequently, the ER component at the feld
point cannot be ignored, resulting in a signifcant deviation
in the electric felds on the two surfaces and changes in
corresponding positions, as shown in Figure 5(a).

When the far-feld condition is unsatisfed, the relative
deviation in the maximum electric felds on the two surfaces
can be as high as 43% (near 26GHz) or as low as 2% (near
45GHz), as shown in Figure 5(b). Te reason is that, in the
near-feld region, the projections of ER and Eθ components
on the z-axis can be either in the same or opposite directions
depending on the changes in their electrical dimensions.
When the frequency is above 44GHz, the relative deviation
in the maximum electric felds on the two surfaces is at most
10% at some frequency points because of the infuence of the
ER component. However, with the electrical size of the
antenna getting longer, its maximum radiation direction
exceeds the scanning height of 4m. Terefore, the relative
diference between the maximum electric felds on the two
surfaces within the scanning height range becomes smaller.
If the measurement site is the SAC, the positions of the
maximum electric felds on the two surfaces change more
drastically than those in the FAC, owing to ground refec-
tion. As shown in Figure 6, the relative diference between
the maximum electric felds of the two surfaces is more
signifcant than 20%, with a maximum relative deviation of
47.89% in the frequency range close to 90%.

Te results of the antenna with a length of 6U in the FAC
with a measurement distance increased from 3m to 10m are
shown in Figure 7, where the frequency bands below 21GHz
satisfy the far-feld condition. Figure 7(a) shows that the
deterioration in the far-feld condition is less than that when
the measurement distance is 3m, and the scanning surface is
closer to the equiphase surface. Te variations in the
scanning height corresponding to the maximum electric
felds on the two surfaces resemble the pattern in Figure 4.
Te scanning heights of the maximum electric felds on the
two surfaces coincide in the frequency range of 1–7.5GHz.
Terefore, the path and polarization attenuation decreased
compared with the distance of 3m, and the relative dif-
ference between the maximum electric felds on the two
surfaces was reduced. As Figure 7(b) indicates, the relative
deviation is lower than 8.6%.

Te results are summarized in Table 1 to show the
diference between the maximum electric felds on the
scanning and equiphase surfaces and the corresponding
heights for a given measurement distance. It also demon-
strates that the uncertainty caused by the mismatch of the
equiphase and scanning surfaces cannot be ignored when
measuring the RE in the FAC. Te deviations grow as the
electrical size of the EUT increases.Tey are worsened by the
deterioration of the far-feld conditions caused by the in-
crease in frequency, which is more dramatic at a mea-
surement distance of 3m.

4. Transformer Algorithm-Based Correction of
RE Measurement

4.1. Transformer Algorithm. Te transformer model is based
on the encoder-decoder architecture, including a multihead
attention module and the feed-forward neural network
layers. Te residual connection and layer normalization are
used in the encoder and decoder sections to prevent model
degradation, as shown in Figure 8.Te encoder generates the
vector corresponding to the input sequence, while the
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decoder generates the target sequence according to the
output of the encoder. Te encoder maps the input sequence
X � (X1, X2, . . . , Xn) with N features to the linear em-
bedding sequence data Z � (Z1, Z2, . . . , Zd mode l) and then
fed to a multihead attention layer. Te decoder then gen-
erates the output sequence Y � (Y1, Y2, . . . , Yn). To extract
the local features of the input data, three layers of one-di-
mensional convolution operations are performed on the
original input data before inputting the embedding layer,
each layer with 128 neurons and a convolution kernel size of
11. X � Conv1d(X). Te convolution of the input data
sequence captures its local features using local receptive
felds and shared weights, so it achieves a certain degree of
displacement, scale, and distortion invariance. On the other
hand, the hierarchical structure of convolutional kernels
only learns from simple low-level textures to higher-order
semantic patterns. However, compared to the transformer
model, they cannot capture long-term dependencies and
require deeper networks with several layers to increase their
receptive felds. Combining the efciency and inductive
priors of CNN with the ability of attention to capture long-
range information can create a better architecture for se-
quential data applications.

Because information about the positions of the input
data sequence is valuable, some information about the
relative position of the tokens in the sequence must be

injected to make the multihead attention layer aware of the
sequence order. Positional encoding with fxed sine and
cosine functions is used to identify position information,
and position encoding was implemented in the following
equation.

PE(pos,2i) � sin
pos

100002i/d mode l􏼠 􏼡,

PE(pos,2i+1) � cos
pos

100002i/d mode l􏼠 􏼡,

(8)

where pos is the position in the embedding tokens, i is the
embedding depth index that takes a value in [0, d mode l],
and the d mode l is the embedding depth. Te values
generated by sine and cosine functions are concatenated
pairwise and added to the embedding of the input sequence.

Te multihead attention layer is the main layer where
attention scores are calculated, and the attention scores of
the input sequence are modeled using a self-attention
mechanism based on three main concepts: the query vector
Q, the key vector K, and the value vector V. A single se-
quence query searches potential relationships by fnding
similarities in the sequence through keys. Te comparison
between the query and key pairs gives weight to the value.
Te interaction between the attention weights and values

Table 1: Summary of calculation results.

Dipole length (U) Measurement feld Measurement distance (m) Frequency of max Max_RMD (GHz) Max_RMD (%)
2 FAC 3 5.2 42.88
6 FAC 3 26.8 43.39
6 SAC 3 26.8 47.89
6 FAC 10 2.2 8.60
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determines how much focus to place on other parts of the
sequence while representing the current sequential data. Te
query, key, and value matrices are calculated by multiplying
the input convolutional sequence X with three diferent
weight matrices: WQ, WK, and WV.

Q � XW
Q

, K � XW
K

, V � XW
V

. (9)

In equation (9), Q, K, V represent query, key, and value,
respectively. Te multihead attention calculations are
implemented by scaled dot-product attention, as shown in
the left half of Figure 8. Scaled dot-product attention can be
denoted as equation (10). Te weight of value is calculated
through query and key, which is used to determine a
weighted sum of values.

Attention(Q, K, V) � Softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (10)

where dk represents the dimension of the key vector se-
quence; Figure 9 presents the calculation of multihead at-
tention. In the multihead attention mechanism, the
calculation of the ith attention head can be represented as
equation (11). Te multihead attention is the concatenation
of each attention head.

Headi � attention QW
Q
i , KW

QK
i , VW

V
i􏼐 􏼑,

Multihead(Q, K, V) � Concat headi, . . . , headn( 􏼁W
O

.
(11)

In equation (11), W
Q
i , WK

i , and WV
i denote the linear

transformation of Q, K, V of the ith attention head, re-
spectively; the parametric matrix W

Q
i ∈ R

d mode l×dk,
WK

i ∈ R
d mode l×dk, WV

i ∈ R
d mode l×dk, and

WO
i ∈ R

ndv×d mode l are the linear projection parameters; n

refers to the number of heads in the multihead attention;
dk, dv represents the dimension of key and query, respec-
tively; Concat represents concatenate operation, and WO

represents the linear transformation of concatenated output.
Temultihead attention model can focus on the information
of diferent representation spaces and simulate more levels
of detailed information.

Te feed-forward layer comprises two linear transfor-
mations and a rectifed linear unit (ReLU) activation
function. ReLU is used for mitigating gradient vanishing and
gradient explosion. Te computation of the feed-forward
network is position-wise, and the weight of the linear
transformation of each step is identical. Te formula of the
feed-forward network can be given as shown in the following
equation.

FFN(x) � max 0, xW1 + b1( 􏼁W2 + b2. (12)

Te last two layers in the decoder are an afne trans-
formation layer, which consists of a learnable scaling factor
and a bias factor, and amultilayer perceptron, which consists
of two linear transformations. Te afne transformation
layer and the multilayer perceptron are sequentially added
for the trend prediction of the sequence data. Te corre-
sponding formula is expressed as

Affα,β(x) � Diag(α)x + β,

MLP(x) � max 0, xW1 + b1( 􏼁W2 + b2,
(13)

where Wi, Diag(α), and bi, β are linearly learnable weights
and biases, respectively.

4.2. Transformer Algorithm-Based Correction of RE
Measurement. Teproposed CNN-transformer algorithm is
implemented with Python 3.7 and PyTorch 1.9.1 and runs on
a Tesla P100 GPU server. It is necessary to determine the
input and output data when using a deep learning algorithm
for data error correction. According to the analysis in
Section 3, the electric length of the dipole, the maximum
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Figure 9: (a) Prediction results of a vertical dipole measured in a FAC: length h� 2U and 6U, distance d� 3m. (b) Deviation in the
predicted results and the actual electric feld on the equiphase surface.
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electric felds on the scanning plane, and the location in-
formation strongly correlate with the maximum value of
electric feld intensity on the equiphase surface and its
location information. Terefore, input data include the
electric length of the dipole, the maximum electric feld
strength, and the scanning height. Te output data contain
the maximum electric feld strength and height on the
equiphase surface. Because the radiated emissions from the
dipole with a length of 6U include the results of the
corresponding dipole length of 2U, all the two 591 data
sequences are divided into a training set, a validation set,
and a test set. To construct the sequential dataset, one
striding is used to generate sequential data with a length of
96 data points, yielding a total of 1054 sequential data, and
the fnal data dimension is (1054, 128, 5). Te frst 900
sequences of data are used as the training set, the middle 25
data sequences are used as the validation set, and the last
sequence is used as the test set. Te sequence length be-
tween the validation and the test set is 128, ensuring that it
does not participate in the training and testing process. To
improve the correction accuracy of the measured data, a
convolution kernel of size 11 was operated on the original
data sequentially to extract the local features [36–39]. Due
to the measurement site diferences (FAC and SAC) and the
measurement distances (3m and 10m), after combining
the 2 U and 6U vertical dipole test data, there are 4 cases:
(1) the measurement site is FAC, and the measurement
distance is 3m; (2) the site is SAC, and the distance is 3m;
(3) the site is FAC, and the distance is 10m; (4) the site is
SAC, and the distance is 10m.

We investigated the prediction results of several deep
learning models to evaluate the prediction accuracy of the
proposed models for radiated emissions. First, we conducted
experiments on several models, which include CNN-GRU,
CNN-LSTM, and CNN-transformer [40]. Ten, to evaluate
the performance of these models, one sequential data in-
cluding 128 samples were selected from the test data for
prediction. Te predicted results are shown in Figures 9–12,
wherein the red, brown, and light green curves are the
predicted values by the three diferent models based on the
test data. As observed from the fgure, deep learning models
can predict future trends. Moreover, the predicted value can
be used to solve the problem of deviations. Te proposed
model for the performance of prediction is assessed on bias,
mean absolute error (MAE), and mean relative error (MRE)
metrics where the mathematical equations are shown in
equation (14). Basically, the MAE metrics calculate the
absolute diference between predicted values and the actual
and predicted values from the presented deep learning
models.

Bias � y − 􏽢y,

MAE �
1
n

􏽘

n

1
|y − 􏽢y|,

MRE �
1/n 􏽐

n
1|y − 􏽢y|

y
× 100%,

(14)

where y and 􏽢y are the actual and predicted values,
respectively.

Te performance of the CNN-transformermodel is quite
good when compared with the other two models in terms of
the curve morphological characteristics of the predicted
values and the calculated bias, MAE, and MRE values. Te
MRE of the CNN-transformer is 4.83%, 6.35%, 2.61%, and
6.32% in diferent test sites, respectively, as demonstrated in
Table 2. From the comparison fgure of the three diferent
models and Table 2, it can be seen that the CNN-transformer
model has the highest degree of ftting between the true value
and the predicted value. After comparing these three models
horizontally and vertically, we fnd that the prediction ac-
curacies of CNN-transformer models are higher than that of
CNN-LSTM and CNN-GRU models.

Figures 9 and 10 reveal that the prediction results of the
proposed model in the 3m FAC are better than the pre-
diction results of the SAC, and the two correspond well to
local minimum values, but the deviation is near the maxi-
mum value. Te overall deviation of the prediction results in
the SAC test is greater, the maximum deviation from the true
value is 20.79%, with an average deviation of 6.35%, while
the maximum deviation relative to the real value in the FAC
test is approximately 12.57%, and the average deviation is
4.83%. Although there is a small deviation between the
predicted value and the real value for the local maximum
value, the overall trend is consistent, indicating that the
model has captured the relationship between the maximum
electric feld strength on the equiphase and scanning sur-
faces. Figures indicate that the model can be used to correct
the maximum electric feld on the equiphase surface based
on the feld value on the scanning surface with a distance of
3m in SAC or FAC sites.

Figures 11 and 12 show that the prediction results of the
presented model in the 10m anechoic chambers correspond
well to the real values and that the two are consistent be-
tween the local minimum and maximum values. Te pre-
diction results for the FAC test site indicate that the
maximum deviation from the true value is 8.29%, with an
average deviation of 2.61%; the results for the SAC test site
only show a signifcant deviation at the last local maximum
value, and the predicted deviation relative to the real value is
about 15.69% and the average deviation is 4.40%.Te results
of the tests in the anechoic chambers are nearly identical.
Tese fgures indicate that the model can correct the
maximum electric feld on the equiphase surface based on
the value on the scanning surface in the 10m method full-
wave and half-wave anechoic chambers.

From the visual analysis of the bias between the pre-
dicted data and the actual data, it can be found that the
model can accurately predict radiated emissions from a
vertical antenna for diferent test sites. In a predicted data
series, the predicted data change with the actual data, and the
local maximum and minimum values can be perfectly ftted.
In contrast, it demonstrates the CNN-transformer model’s
capability of modeling the long-term dependencies in se-
quential data. Meanwhile, the CNN-GRU and CNN-LSTM
are slightly inadequate in ftting the long-term patterns of
the sequential data.
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Table 2: Performance of the three deep learning models.

Measurement condition Model type Minimum bias Maximum bias MAE MRE (%) Time-consuming (s)

3m distance in FAC
CNN-transformer −3.36 4.63 2.12 4.83 2448

CNN-GRU −7.75 12.59 5.75 12.58 417
CNN-LSTM −2.39 10.38 5.39 11.50 886

3m distance in SAC
CNN-transformer −12.09 15.41 4.71 6.35 2464

CNN-GRU −10.66 12.19 4.82 6.46 413
CNN-LSTM −11.13 13.52 6.00 8.12 883

10m distance in FAC
CNN-transformer −0.86 0.21 0.26 2.61 2397

CNN-GRU −0.35 0.42 0.14 1.48 409
CNN-LSTM −0.72 0.88 0.39 4.33 875

10m distance in SAC
CNN-transformer −2.14 1.77 0.74 4.40 2400

CNN-GRU −2.31 1.63 0.89 5.74 409
CNN-LSTM −2.15 1.66 0.79 5.06 877
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Figure 10: (a) Prediction results of a vertical dipole measured in a SAC: length h� 2U and 6U, distance d� 3m. (b) Deviation in the
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5. Conclusions

Te electric felds on the equiphase and scanning surfaces
at diferent measurement distances in the frequency band
1–60 GHz were calculated and analyzed using the sym-
metric dipole antenna theory. By comparing the maxi-
mum electric felds on the scanning and equiphase
surfaces as well as the corresponding scanning heights, it
was found that when the measurement distance is 3 m, the
noncoincidence between the equiphase and scanning
surfaces and the deterioration of the far-feld conditions
caused by the frequency increase brought large uncer-
tainties in the RE measurement. Using the hybrid deep
learning algorithm of CNN and the transformer model to
learn the relationship between the maximum electric feld
strength of the scanning surface and the values of the
equiphase surface enables the rectifcation of discrep-
ancies in the maximum electric feld on the scanning
surface. Te error was about 6.35%, and the average error
of the other scenarios was within 4.83%. Te correction
accuracy was relatively reliable. While the existing test site
and method remain unchanged, the actual radiation of the
EUT at high frequencies can be obtained through deep
learning algorithm correction. Future research could
focus on the RE measurement errors caused in annular
aperture slits or multiaperture arrays and explore the use
of other deep learning algorithms for deviation
correction.
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