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*is work proposes an effective high-resolution multisource direction-of-arrival (DOA) estimation method in impulsive noise
scenarios based on convolutional neural networks (CNNs). First of all, the array observation matrix is preprocessed and fed into a
denoising network to suppress outliers and filter out impulsive noise. Secondly, the denoising network output is fed into a model
order selection network to estimate the model order. Next, according to the estimation, the denoising network output is fed into a
DOA subnetwork corresponding to the model order in a DOA network to estimate the DOA of each signal. Comprehensive
simulations demonstrate that, in the presence of impulsive noise, the proposed method is effective and superior in accuracy and
computation speed for multisource DOA estimation. *erefore, it is concluded that CNN can be well generalized for
DOA estimation.

1. Introduction

In recent years, direction-of-arrival (DOA) estimation has
been extensively applied in many fields, such as radar, sonar,
electronic monitoring, and mobile communication [1–3]. It
is the critical technology of array signal processing, and the
purpose is to estimate the transmitter positions of the signals
received by arrays. *e representative conventional DOA
estimation algorithms are the estimation of signal param-
eters via rotational invariance techniques (ESPRIT) [4, 5]
and multiple signal classification (MUSIC) [6, 7]. ESPRIT
uses two subarrays with translation invariance to realize
DOA estimation. Although the calculation is less than that of
MUSIC, its accuracy is not enough. MUSIC obtains the
spatial spectrum by constructing orthogonal signal subspace
and noise subspace, and the DOA can be estimated via
spectral peak search. *e smaller the search step, the higher
the estimation accuracy, while the computational burden
may increase. In addition, both the ESPRIT and MUSIC
algorithms are developed in Gaussian noise. However, many
noises and signals in applications are impulsive, such as

underwater acoustic signals, radar clutter, and artificial
interference. In the presence of impulsive noise, the per-
formance of algorithms represented by ESPRIT and MUSIC
would be significantly degraded because of the non-
convergence of array output second-order moments. To
improve the robustness, FLOM [8], PFLOM [9], CRCO [10],
COBU [11], and other algorithms, which effectively achieve
DOA estimation in impulsive noise, have been developed
successively. However, the high computational complexity
may make these algorithms difficult to be applied in real-
time.

Many DOA estimation methods based on neural net-
works have been developed in recent years to reduce the
computational burden. References [12–15] using a convolu-
tional neural network (CNN), references [16, 17] using a
support vector regression (SVR), reference [18] using a re-
sidual network, reference [19] using a fully connected neural
network (FNN), reference [20] using a long short-term
memory network, and references [21, 22] using a radial basis
function (RBF) achieve high accuracy DOA estimation.
However, they can only be used in single-source scenarios,

Hindawi
International Journal of Antennas and Propagation
Volume 2022, Article ID 5325076, 11 pages
https://doi.org/10.1155/2022/5325076

mailto:yhjoo@kunsan.ac.kr
https://orcid.org/0000-0001-6039-5524
https://orcid.org/0000-0002-4662-1916
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5325076


which may be extremely limited in practical applications.
*erefore, reference [23] using CNN, references [24, 25] using
SVR, and references [26, 27] using RBF achieve multisource
DOA estimation. Although high estimation accuracy is ob-
tained, these networks are only suitable for fixed model order
scenarios and may not adapt to a variable source number. To
improve the robustness to model orders, reference [28] di-
vides the region of interest into several subregions, and each
subregion corresponds to an RBF. A multilayer perceptron is
used to judge the presence of a single source in each sub-
region, and RBFs perform position estimations of subregions
with a source. Likewise, reference [29] using a circularly fully
convolutional network divides the region of interest into
several subregions. In the first stage, a coarse DOA is esti-
mated, and then a refined result is obtained in the second
stage. Although references [28, 29] can adapt to a variable
model order, multiple sources are not permitted to be pre-
sented simultaneously in a subregion, which will affect the
resolution of DOA estimation. *e above neural network-
based methods have effectively overcome computational
complexity and improved DOA estimation accuracy. Yet, it
may be difficult for these neural network-based methods to
meet both high-resolution and variable model order re-
quirements. Furthermore, these methods do not consider
impulsive noise scenarios, in which neural networks may fail
to be fed into practical input features, resulting in perfor-
mance degradation of neural networks.

Motivated by the above investigation, we propose a high-
resolution DOA estimation method with a variable model
order using CNNs in impulsive noise environments. A DOA
estimation model is developed, which comprises four
modules: the preprocessing, denoising network, model order
selection (MOS) network, and DOA network. *e pre-
processing processes array observation matrices into input
features for the denoising network. *e MOS network input
is from the denoising network, and the output is the model
order estimation.*e DOA network comprises several DOA
subnetworks corresponding to different model orders. *e
subnetworks, which adopt the transfer learning strategy, are
trained sequentially from the model order of 1. *e esti-
mation of the MOS network decides to feed the denoising
network output into the DOA subnetwork corresponding to
the model order, which outputs DOA estimation. A series of
simulation experiments verify the effectiveness and supe-
riority of the DOA estimation model.

*e main contributions of the study are as follows: (1) a
high-resolution DOA estimation method with a variable
model order using CNNs is achieved; (2) the robustness of
DOA estimation is improved in impulsive noise scenarios;
(3) for DOA estimation, it is proved that employing transfer
learning can reduce training data.

*e remainder of this paper is organized as follows:
Section 2 briefly introduces the impulsive noise and CNN, and
the problem of interest is defined; Section 3 develops the novel
DOA estimationmodel; the experimental results are presented
in Section 4, and the study is summarized in Section 5.

Table 1 lists the main notations used in this study. Other
notations follow the conventional expression unless other-
wise specified.

2. Preliminary and Problem Formulation

2.1. Impulsive Noise. *e a-stable distribution, a highly
flexible tool, can model the impulsive noise. It is normally
defined via the characteristic function containing four
variables: location parameter a (−∞<a<+∞), symmetric
parameter β (−1≤β≤ 1), dispersion coefficient c (c> 0), and
characteristic exponent α (0<α≤ 2) [30]. a reflects the de-
viation of the probability density function (PDF) on the x-
axis (a� 0 in the study). β indicates the PDF inclination to
the left or right about a (β� 0 in the study). c denotes the
dispersion of samples (c �1 in the study). α signifies the
thickness of the a-stable distribution tails. Figure 1 displays
the PDF of impulsive noise with different α. *e smaller the
α, the stronger the impulses, and the more impulsive the
outliers.

2.2. Convolutional Neural Network. Compared with RBF,
SVR, and FNN, the weight sharing strategy of CNN effec-
tively improves the problem of the enormous input feature
dimension of neural networks. Usually, CNN comprises
multiple convolutional layers, pooling layers, and fully
connected layers [31]. As an essential part of CNN, the
convolutional layer comprises convolution filters. *e fea-
ture image, as the input of the next layer, can be obtained by
convolution of the input image and convolution filters.

*e convolution process is displayed in Figure 2. *e
input image size is 8×8. Convolve with a 3×3 convolution
filter with a stride of 1, and obtain an 8×8 feature image. For
ensuring the equal size of the input and feature images, the
periphery of the input image is filled with zeros. *e con-
volution filter is sliding on the input image, and the element
ai,j in row i and column j of the feature image can be
calculated by

ai,j � F υ + 
i+2

I�i



j+2

J�j

ωI−i+1,J−j+1a′I,J
⎛⎝ ⎞⎠, (1)

where F indicates a nonlinear activation function. ωI−i+1,
J−j+1 denotes the weight in row I−i+1 and column J−j+1 of
the convolution filter, and υ denotes the bias. a’

I,J signifies
the element in row I and column J of the padded input
image. Typically, a convolution layer has multiple convo-
lution filters. *e number of feature images equals that of
convolution filters. *e channel number of a convolution
filter equals that of the input image.

Table 1: Main notations.

Notations Descriptions
|·| Modulus of a complex number
&Verbar;·&Verbar;∞ Infinite norm of a vector
Diag(·) Diagonal matrix operator
Re(·) Real part operator
Im(·) Imaginary part operator
E(·) Expectation operator
[A1: A2: A3] A set from A1 to A3 (A2 step)
&Verbar;·&Verbar;1 L1 norm of a matrix
&Verbar;·&Verbar;F Frobenius norm of a matrix
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2.3. Problem Formulation. Figure 3 depicts p far-field stable
electromagnetic signals impinge on a uniform linear array
(ULA). *e array element number is M, and the distance

between two elements is d. *e incident angle of the i-th
signal si(n) is θi (0°≤θi≤180°). *e element denoted by 1 is
selected as the phase reference point, and the M×p steering
matrix can be expressed as [32]

A �

1 1 · · · 1

e
− j2π(df/c)sin θ1 e

− j2π(df/c)sin θ2 · · · e
− j2π(df/c)sin θp

⋮ ⋮ ⋮ ⋮

e
− j(M− 1)2π(df/c)sin θ1 · · · · · · e

− j(M− 1)2π(df/c)sin θp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where c denotes the propagation speed and f indicates the
known carrier frequency. *e p×N signal matrix can be
expressed as

s �

s1(1) s1(2) · · · s1(N)

s2(1) s2(2) · · · s2(N)

⋮ ⋮ ⋮ ⋮

sP(1) sP(2) · · · sP(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where N signifies the snapshot number. *e M×N obser-
vation matrix is expressed as

x � As + ei (4)

where ei signifies the M×N impulsive noise matrix and
subscript i indicates impulse.

Obviously, θi to θp can be obtained from x, while the
impulsive noise may disturb x. *e problem addressed in the
study is establishing the mapping between x and θi to θp via
the developed DOA estimation model.
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Figure 2: Convolution process diagram.
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Figure 1: PDF of impulsive noise.
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3. DOA Estimation Model

In this section, we proposed the DOA estimation model, of
which the input is x and the output is p DOA estimations, as
shown in Figure 4. *e model contains four modules: the
preprocessing, denoising network, MOS network, and DOA
network. x is processed by the preprocessing module and fed
into the denoising network, of which the output is fed into the
MOS and DOA networks. *e DOA network comprises a set
of DOAp (1≤p≤ P) subnetworks corresponding to different
model orders. *e estimation of the MOS network decides to
feed the denoising network output into the DOAp subnet-
work corresponding to the model order of p. For the con-
venience of training, the denoising network, MOS network,
and each DOAp subnetwork are trained independently.

3.1. Preprocessing. *e preprocessing input is x, and the
output is the input feature of the denoising network. In the
presence of impulsive noise, elements of x may be extreme
outliers at some moments. First of all, x is normalized with
the infinite norm to suppress impulsive outliers and facilitate
the training of the denoising network. *e definition of the
infinite norm is

‖x(n)‖∞ � max
1≤i≤M

xi(n)


, (5)

where xi(n) indicates the n-th snapshot of the i-th array
element. After normalizing x with the infinity norm, x
expressed by (4) should be modified as

x∞ � xΛ∞, (6)

where Λ∞ � diag(1/‖x(1)‖∞, 1/‖x(2)‖∞, · · · , 1/‖x(N)‖∞),.
Secondly, x∞ is used to construct the covariance matrix R∞
to reduce the dimension of neural network input features.
Considering that R∞ is a Hermitian matrix and CNN re-
quires input features to be real numbers, we construct the
following M×M input feature Fd for the denoising network:

Fd �

R∞11 Im R∞12(  · · · Im R∞1M( 

Re R∞12(  R∞22 · · · Im R∞2M( 

⋮ ⋮ ⋮ ⋮

Re R∞M1(  Re R∞M2(  · · · R∞MM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where R∞jk represents the element in row j and column k of
R∞.

3.2. Denoising Network. *e function of the denoising
network is to eliminate the effect of noise and signal powers
from Fd on the MOS network and DOA network.*erefore,
we must construct appropriate labels for Fd to train the
denoising network.

In the absence of impulsive noise, the observation matrix
is expressed by xd, and (4) can be modified as

xd � As, (8)

xd is used to construct the covariance matrix Rd, and the
M×M label Ld constructed with Rd can be expressed as

Ld �

0 Im Rd12(  · · · Im Rd1M( 

Re Rd21(  0 · · · Im Rd2M( 

⋮ ⋮ ⋮ ⋮

Re RdM1(  Re RdM2(  · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where Rdjk � Rdjk/NRd. Rdjk indicates the element in row j
and column k of Rd, and NRd � ‖Rd11Rd22 · · · RdMM‖1/M,
namely, the estimation of the signal power sum. And the
principal diagonal elements of Rd are replaced by zeros
because they fail to contain angle information. Obviously, Ld
does not contain impulsive noise, and NRd normalizes the
elements of Rd to eliminate the effect of signal powers.

*e cost function of the denoising network employs the
mean squared error (MSE), which is expressed by MSEd as

MSEd(ω, υ) �
1

M
2 E Ld − Ld

����
����
2
F , (10)

where Ld signifies the denoising network response. ω and υ
denote the denoising network weights and biases,
respectively.

3.3. MOS Network. *e MOS network input is Ld from the
denoising network. *e P×1 label Lmos using one-hot [33]
represents the model order, and P denotes the preset
maximummodel order. When the model order is p, the p-th
element of Lmos is 1, and other elements are zeros.

Because of the independent MOS network training, the
input feature is designed separately for the MOS network.
Considering that the previous denoising network may not
wholly filter out noise, Gaussian noise is added to the MOS
network training set to improve the robustness of the DOA
estimation model. In this case, the observation matrix is
expressed by xmos, and (4) is modified as

xmos � As + eg, (11)

where eg signifies the M×N Gaussian noise matrix and
subscript g indicates Gauss. *e covariance matrix Rmos is
constructed by xmos, and the noise power σ2 can be esti-
mated by eigenvalue decomposition. *e input feature is
expressed by Fmos, and (9) can be modified as

Fmos �

0 Im Rmos12(  · · · Im Rmos1M( 

Re Rmos21(  0 · · · Im Rmos2M( 

⋮ ⋮ ⋮ ⋮

Re RmosM1(  Re RmosM2(  · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where Rmosjk � Rmosjk/NRmos. Rmosjk signifies the element
in row j and column k of Rmos, and NRmos � (‖Rmos11
Rmos22 · · · RmosMM‖1 − σ2)/M, namely, the estimation of
the signal power sum. Compared with Ld, elements in
Fmos are disturbed by Gaussian noise. Training the
MOS network with Fmos can improve the network
robustness.

*e cost function of the MOS network employs cross-
entropy, which is expressed as
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C(ω, υ) � −E 

P

i�1
Lmosilog Lmosi

⎛⎝ ⎞⎠, (13)

where Lmosi and Lmosi represent the i-th element of the
response and ground-truth label, respectively. ω and υ
denote the MOS network weights and biases,
respectively.

3.4. DOA Network. *e DOA network comprises a set of
DOAp subnetworks (1≤p≤P) corresponding to different
model orders. *e MOS network output activates the cor-
responding DOAp subnetwork. *e input feature of each
DOAp subnetwork is the denoising network output, and the
response is the DOA estimation of p sources.

*eoretically, a single large-scale network can be trained
to achieve multisource DOA estimation with a variable
model order. However, this method is challenging to im-
plement because of the limitation of computing power and
the difficulty in obtaining a large number of training data to
ensure the DOA estimation accuracy. *erefore, we adopt
the strategy of training each DOAp subnetwork indepen-
dently. Even so, to ensure the DOAp subnetwork estimation
accuracy, the amount of training data required by con-
ventional training methods also increases significantly with
p. Given that DOA estimation of p sources and p+1 sources
are two different but related tasks, we adopt parameter-
transfer learning [34] to train DOAp subnetworks se-
quentially from p� 1 to P, and training sets are generated
separately according to (12). First of all, we construct a single
source training set to train the DOA1 subnetwork. Secondly,
based on the DOAp subnetwork architecture, convolution
filters, convolution layers, or lengths of fully connected
layers are increased, and then one output layer port is added.
Finally, the DOAp+1 subnetwork architecture is developed.
*e parameters of the trained DOAp subnetwork archi-
tecture are used as initialization parameters for corre-
sponding parts of the DOAp+1 subnetwork architecture,
and other newly added parameters of the DOAp+1 sub-
network adopt conventional initialization methods. *us,
the training data required by the DOAp+1 network can be
significantly reduced.

*e cost function of each DOAp subnetwork adopts the
MSE, which is expressed by MSEp as

MSEp(ω, υ) �
1
p

E 

p

i�1
θi − θi 

2⎛⎝ ⎞⎠ +
λ
2

E 

L

l�1
ωl

����
����
2
F

⎛⎝ ⎞⎠, (14)

where θi and θi denote the ground-truth label and DOA
estimation of the i-th signal, respectively. L signifies the layer
number of the subnetwork, and λ is the regularization pa-
rameter. ω and υ denote the DOAp subnetwork network
weights and biases, respectively.

4. Simulation Results

Firstly, the denoising network performance is presented.
Secondly, Section 4.2 shows the MOS network accuracy and
compares it with a modified Akaike information criterion
(AIC) method and a modified minimum description length
(MDL) method. Finally, Section 4.3 demonstrates the DOA
estimation model performance, and the MSE and compu-
tation speed are compared with those of CRCO and COBU.

Unless otherwise specified, the simulation conditions are
as follows: (1) the ULA element number of M is 8, and the
maximum model order P is set to 3; (2) the signal carrier
frequency is 600MHz, and the ULA element spacing is set to
0.48 times the wavelength; (3) the signal amplitude is
randomly sampled to improve the DOA estimation model
robustness for the signal amplitude [35], and the snapshot
number is set to 2,000.*e network initialization settings are
as follows: (1) initialize the network weights with lecun_-
normal [36] and the biases with zeros; (2) the convolution
filter is 3×3, and the stride is 1; (3) the padding mode is
“same”; (4) the mini-batch [37] is 512; (5) Adam [38] is
adopted in the backpropagation. Also, in Gaussian noise
scenarios, the signal-to-noise ratio (SNR) is defined as
SNR � 10lg(σ2s /σ2), where σ2s denotes the signal power. In
non-Gaussian noise scenarios, the ratio of the signal to noise
dispersion, as generalized SNR, is defined as
GSNR � 10lg(σ2s /c) [11].

4.1. Performance of the Denoising Network. GSNR is set to
0 dB and 20 dB, respectively, and 30,000 samples are gen-
erated in p∈[1 :1: 3], α∈[0.1 : 0.1: 2.0], and θ∈[0°: 1°: 180°].
60,000 samples constitute the data set, which is divided into
the training set (90%) and validation set (10%). GSNR is set
to 0 dB to enhance the network generalization ability in the

DOA Network

1 P

Preprocessing MOS Network

…

DOA1 Subnetwork …

…

Denoising Networkx Fd Ld
ˆ

L̂mos
Switch

2

DOA2 Subnetwork DOAp Subnetwork

θ̂1 θ̂1 θ̂2 θ̂1 θ̂2 θ̂p

Figure 4: Block diagram of the DOA estimation model.
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scenario of low GSNR, while 20 dB is set to prevent the
network from overfitting. *e learning rate gradually de-
creases with the epoch. Table 2 illustrates the denoising
network architecture.

*e relative error (RE) is defined as the evaluation
criterion, which can be defined as

RE � Ε Ld − Ld
����

����1/ Ld
����

����1 . (15)

Figure 5(a) depicts the variation of RE with GSNR of the
denoising network in different characteristic exponents after
preprocessing test data. GSNR∈[−5 dB: 1 dB: 20 dB], and 500
test samples are generated in p∈[1 :1: 3] and θ∈ [0°: 1°: 180°]
for each GSNR. Figure 5(b) depicts the variation of RE with
the snapshot number in different characteristic exponents
with GSNR of 10 dB. N∈[100 :100: 2000], and 500 test
samples are generated in p∈[1 :1: 3] and θ∈[0°: 1°: 180°] for
each N. Figure 5 illustrates that increasing the GSNR,
snapshot number, or characteristic exponent can improve
the denoising network performance.

4.2. Performance of the MOS Network. *e MOS network
and denoising network are trained independently. Con-
sidering that the denoising network RE is challenging to be
0%, Gaussian noise is added during the MOS network
training to enhance the model generalization ability. *e
SNR is set as −15 dB and 20 dB, respectively, and 20,000
samples are generated in p∈[1 :1: 3] and θ∈[0°: 1°: 180°].
40,000 samples constitute the data set, which is divided into
the training set (85%) and validation set (15%). *e learning
rate gradually decreases with the epoch. Table 3 illustrates
the MOS network architecture.

Accuracy NC/NT is defined as the evaluation criterion.
NT is the total amount of test data, and NC is the amount of
correctly estimated data. *e test data is the same as that in
Section 4.1, and the denoising network output is fed into the
MOS network. Figure 6 demonstrates the relationship be-
tween the MOS network accuracy and SNR or snapshot
number. When α< 0.4, the MOS network performance is
significantly degraded. *e main reasons are as follows: (1)
the amplitude of outliers is extreme, resulting in significant
attenuation to sources after normalization with the infinite
norm; (2) the angle step of random sampling is set to 0.01°,
which may cause the angular distance of simultaneous in-
cident sources to be very close, resulting in the inability of
the MOS network to distinguish. However, when α> 0.4, the
MOS network accuracy approaches 1 and hardly changes
with the SNR or snapshot number, indicating that the MOS
network has high-resolution and better robustness.

To the best of our knowledge, no MOS algorithm has
been published in the presence of impulsive noise. To val-
idate that the MOS network is superior to conventional
algebraic algorithms, we replace the covariance matrix in
AIC and MDL [39] with R∞ in Section 3.1 and obtain the
modified AIC and MDL. Figure 7 shows that the MOS
network outperforms the modified AIC and MDL, and the
test data is the same as that with α� 1.3 in Figure 5. In
addition, the processing time of the modified AIC and MDL
is about 3 times that of the MOS network.

4.3. Performance of the DOA Estimation Model

4.3.1. DOA Network Architecture. Each subnetwork of the
DOA network corresponds to a different model order and is
trained independently. Firstly, the data set is constructed for
the DOA1 subnetwork. *e SNR is set as −15 dB and 20 dB,
respectively, and 4,500 samples are generated in θ∈[0°: 1°:
180°] with p of 1.9,000 samples constituting the data set,
which is divided into the training set (80%) and validation
set (20%). *e learning rate gradually decreases with the
epoch. Table 4 illustrates the DOA1 subnetwork
architecture.

Secondly, *e SNR is set as −15 dB and 20 dB, respec-
tively, and 20,000 samples are generated in θ∈[0°: 1°: 180°]
with p of 2.40,000 samples constitute the data set, which is
divided into the training set (90%) and validation set (10%).
*e learning rate gradually decreases with the epoch, and
early stopping is adopted to prevent overfitting. Table 5
illustrates the DOA2 subnetwork architecture obtained by
expanding the corresponding layer of the DOA1
subnetwork.

*en, the SNR is set as −15 dB and 20 dB, respectively,
and 80,000 samples are generated in θ∈[0°: 1°: 180°] with p of
3.160,000 samples constituting the data set, which is divided
into the training set (85%) and validation set (15%). *e
learning rate gradually decreases with the epoch. Early
stopping and regularization are adopted to avoid overfitting.
Table 6 illustrates the DOA3 subnetwork architecture. L1 to
L4, L7, and L8 of the DOA3 subnetwork are expanded from
L1 to L4, L6, and L7 of the DOA2 subnetwork in turn, and L5
is a new layer.

4.3.2. Performance of the Model. *e MSE is defined as the
evaluation criterion, which can be expressed as

MSE � E
1
p



p

i�1
θi − θi 

2
⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (16)

where p represents a variable model order. After the test data
is preprocessed, the MOS network decides to feed the
denoising network output into the corresponding subnet-
work in the DOAnetwork. Figure 8(a) shows the variation of
the MSE with GSNR of the DOA estimation model in
different characteristic exponents. GSNR∈[−5 dB: 1 dB:
20 dB], and 500 test samples are generated in p∈[1 :1: 3] and
θ∈ [0°: 2°: 180°] for each GSNR. Figure 8(b) shows the
variation of the MSE with snapshot number in different
characteristic exponents with GSNR of 10 dB. N∈[100 :100:

Table 2: Denoising network architecture.

Layer and activation Output shape Parameter
L0: Input 8×8 0
L1: Convolution +Relu 64× 8× 8 640
L2: Convolution +Relu 32× 8× 8 18464
L3: Convolution +Relu 32× 8× 8 9248
L4: Convolution +Relu 32× 8× 8 9248
L5: Convolution +Relu 16× 8× 8 4624
L6: Convolution 8×8 145
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2000], and 500 test samples are generated in p∈[1 :1: 3] and
θ∈[0°: 2°: 180°] for each N. Figure 8 suggests that increasing
the GSNR, snapshot number, or characteristic exponent can
improve the model performance. Still, DOA estimation is a
challenging task in small characteristic exponent scenarios.
*erefore, Figure 8 does not display the DOA estimation
model performance when α< 0.7.

To highlight the superiority of the DOA estimation
model, the model is compared with COBU and CRCO,
which have been proved to be superior to classic FLOM and
PFLOM in references [10, 11]. *e search steps of COBU
and CRCO are set as 0.01°. Both the weight factor and kernel
size of COBU are set as 1.*e scale factor and parameter μ of
CRCO are set as 1.4 and 0.5, respectively. Other simulation
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Figure 5: Performance of the denoising network. (a) RE versus GSNR. (b) RE versus snapshot number.

Table 3: MOS network architecture.

Layer and activation Output shape Parameter
L0: Input 8×8 0
L1: Convolution +Relu 64× 8× 8 640
L2: Convolution +Relu 32× 8× 8 18464
L3: Convolution +Relu 16× 8× 8 4624
L4: Convolution +Relu 8× 8× 8 1160
L5: Flatten 512 0
L6: Dense +Relu 16 8208
L7: Dense + Softmax 3 51
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Figure 6: Performance of the MOS network. (a) Accuracy versus GSNR. (b) Accuracy versus snapshot number.
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conditions are the same as those of the DOA estimation
model. Assume that three signals impinge the ULA with the
incident angles of 50.01°, 100.08°, and 120.05°, respectively.
Based on 500 Monte Carlo runs, Figure 9 demonstrates the
variation of theMSEwith GSNR or snapshot number of each
method with α of 1.3. GSNR∈[−5 dB: 1 dB: 20 dB] and N∈
[100 :100: 2000]. Although COBU and CRCO are high-
resolution algorithms based on spatial spectrum search, the
estimation is still a discrete value limited by search step, and
appropriate parameters should be set according to the
characteristic exponent and GSNR. However, the DOA
estimation model needs no prior knowledge about the

characteristic exponent and GSNR, and its output is a
continuous value. *erefore, the DOA estimation model is
superior to COBU and CRCO.

Furthermore, the processing time of the three methods is
compared, and Table 7 displays the results from 500 Monte
Carlo runs. *e calculations are performed on a computer
equipped with 16GB RAM and Intel Core i7-9700K CPU.
*e processing time of the proposed model is mainly spent
on preprocessing. If the snapshot number is slightly reduced,
Figure 8(b) reveals that the DOA estimation model per-
formance will not be significantly degraded, while the
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Figure 7: Performance comparison of the MOS network, modified AIC, and modified MDL. (a) Accuracy versus GSNR. (b) Accuracy
versus snapshot number.

Table 4: DOA1 subnetwork architecture.

Layer and activation Output shape Parameter
L0: Input 8×8 0
L1: Convolution +Relu 32× 8× 8 320
L2: Convolution +Relu 32× 8× 8 9248
L3: Convolution +Relu 16× 8× 8 4624
L4: Convolution +Relu 16× 8× 8 2320
L5: Flatten 1024 0
L6: Dense +Relu 8 820
L7: Dense +Relu 1 9

Table 5: DOA2 subnetwork architecture.

Layer and activation Output shape Parameter
L0: Input 8×8 0
L1: Convolution +Relu 64× 8× 8 640
L2: Convolution +Relu 64× 8× 8 36928
L3: Convolution +Relu 32× 8× 8 18464
L4: Convolution +Relu 16× 8× 8 4624
L5: Flatten 1024 0
L6: Dense +Relu 10 10250
L7: Dense +Relu 2 22

Table 6: DOA3 subnetwork architecture.

Layer and activation Output shape Parameter
L0: Input 8×8 0
L1: Convolution +Relu 80× 8× 8 800
L2: Convolution +Relu 80× 8× 8 57680
L3: Convolution +Relu 48× 8× 8 34608
L4: Convolution +Relu 48× 8× 8 20784
L5: Convolution +Relu 16× 8× 8 6928
L6: Flatten 1024 0
L7: Dense +Relu 12 12300
L8: Dense +Relu 3 39
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Figure 8: Performance of the DOA Estimation Model. (a) MSE versus GSNR. (b) MSE versus snapshot number.
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Figure 9: Performance comparison of the DOA estimation model, COBU, and CRCO. (a) MSE versus GSNR. (b) MSE versus snapshot
number.

Table 7: Processing time of the methods.

Methods Phases Times (s) Total time (s)

COBU Construct spatial spectrum
Spectral peak search

58.2012
0.6669 58.8681

CRCO Construct spatial spectrum
Spectral peak search

61.6728
0.6669 62.3397

Proposed method

Preprocessing
Denoising network

MOS network
DOA network

12.1932
0.0268
0.0215
0.0352

12.2767
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processing time of preprocessing will be dramatically re-
duced. However, the processing time of COBU and CRCO
will not be reduced considerably.

5. Conclusions

*is study presented the DOA estimation model in im-
pulsive noise environments. *e model consists of the
preprocessing, denoising network, MOS network, and DOA
network. For the convenience of training, each network is
trained independently. *e preprocessing processes array
observation matrices into appropriate input features for the
denoising network. *e DOA network consists of several
DOA subnetworks corresponding to different model orders.
*e estimation of the MOS network decides to feed the
denoising network output into the corresponding DOA
subnetwork, which outputs DOA estimation.

*e experiments reached the following conclusions: (1)
in the presence of impulsive noise, the preprocessing and
denoising network effectively suppress outliers and filter out
impulsive noise; (2) the MOS network can estimate the
model order with high accuracy; (3) the proposed DOA
estimation model is effective and superior in accuracy and
computation speed.

*e problems that still need to be solved are as follows:
(1) to develop DOA estimation in low characteristic expo-
nent scenarios; (2) to extend the dimension of DOA
estimation.
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