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Time di�erence of arrival (TDOA) and frequency di�erence of arrival (FDOA) have been widely used for localizing temporally
continuous signals passively. Temporal sparsity of pulse signals makes their TDOA and FDOA estimation processes much
di�erent, and computational complexity is a major concern in this area. �is paper addresses the problem of fast TDOA and
FDOA estimation of pulse signals and focuses mainly on narrowband coherent pulses. By decoupling the e�ects of TDOA and
FDOA in the cost function of localization approximately, we propose a fast coarse TDOA and FDOA estimation method. �e
estimates are then re�ned with the cross-ambiguity function (CAF) algorithm within a small TDOA and FDOA neighborhood. In
the simulations, the proposed method is demonstrated to have satisfying TDOA and FDOA estimation precisions, and it exceeds
existing counterparts largely in computational e�ciency.

1. Introduction

In the �eld of signal processing, passive localization has been
the subject of extensive research for decades [1, 2]. Time
di�erence of arrival (TDOA) and frequency di�erence of
arrival (FDOA) are two of the major intermediate param-
eters used for source localization [3–8]. By formulating a
cost function of the observations with respect to all unknown
parameters, the maximum likelihood method can be used to
estimate the location-dependent parameters of TDOA and
FDOA. However, as some redundant parameters are also
included in the cost function (e.g., signal waveforms), and
they usually have extremely high dimensions, the maximum
likelihood algorithm can hardly be implemented via ex-
haustive searching. �erefore, the cross-ambiguity function
(CAF) algorithm is often used as an alternate to save
computational loads during TDOA and FDOA estimation
[9–12], which can be combined with discrete Fourier
transform (DFT) to further improve computational
e�ciencies [13].

Existing TDOA and FDOA estimation methods are
mostly proposed for continuous signals [6–12]. Continuous
signals typically have durations on the order of a few mil-
liseconds to tens of milliseconds in the �elds of

communications and acoustics. During such a short period
of time, only negligible position changes are introduced
between emitters and receivers. �erefore, it is reasonable to
treat the TDOA and FDOA as static parameters.

When a pulse-radiating emitter, like radar, is the one that
needs to be localized, the duration of each pulse signal is
often on the order of microseconds [14]. According to the
CRLBs given in [15], such short signals may result in very
low FDOA estimation precisions, which hardly meet the
requirement of high-precision emitter localization. �ere-
fore, multiple pulse signals of the same emitter should be
utilized jointly to improve TDOA and FDOA estimation
precisions. As the pulse repetition intervals (PRIs) of many
radars are usually on the order of submilliseconds [14], if the
number of pulses is not too many, the total time span of
observed signals will be on the order of a few milliseconds to
tens of milliseconds. Such a time span is comparative with
that of continuous communication and acoustic signals.
Vehicle-mounted, shipborne, or even airborne emitters and
receivers move very slightly during such a short time span;
thus the localization problem of pulse-radiating sources can
also be addressed approximately in a static scenario. �e
CAF-based TDOA and FDOA estimation method for
continuous signals can be extended to pulse signals with
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moderate modifications. However, continuous signals
generally have modulation-dependent nonstationary
waveforms, and no special temporal structures can be
exploited to facilitate the TDOA and FDOA estimation
process.

Pulse signals are temporally sparse; in the recent years,
some research has focused on their TDOA and FDOA es-
timation. In [16], the authors introduce the Chirp Z- trans-
form interpolation technique to improve estimation
efficiency. In [17], the fact that FDOA is the time derivative of
TDOA is exploited to eliminate FDOA ambiguity. In [18], a
Keystone transform-based method is proposed to estimate
TDOA and FDOA of broadband signals. More recently, Ma
et al. made deep insights into the TDOA and FDOA esti-
mation problem of interleaved pulse trains [19]. (ese works
effectively use the temporal sparsity of pulse signals to fa-
cilitate the TDOA and FDOA estimation process. Besides
temporal sparsity, pulse signals also have some other char-
acteristics that are potentially helpful for parameter estima-
tion )e.g., interpulse coherence). In many scenarios, radar
emits coherent pulse signals in the same direction [20, 21], so
that their echoes at the radar receiver will be phase coherent
and can be accumulated to improve signal detection and
parameter estimation performance. However, whether and
how the interpulse coherence of pulse signals can be utilized
in passive systems to improve TDOA and FDOA estimation
performance is still an unanswered question. (is paper takes
a step further along this direction; we make use of the
interpulse coherence to accelerate the process of TDOA and
FDOA estimation for pulse-radiating emitters.

In this paper, we mainly address the TDOA and FDOA
estimation problem of coherent pulse signals, based on the
assumption that the observation time is short and the target-
receiver geometry changes negligibly; thus the TDOA and
FDOA remain constant during the observation time. We
propose utilizing subspace decomposition to recover the
signal waveforms on the two receivers based on the co-
herence between different pulses, which helps to suppress
additive noises on data samplings. (e subspace decom-
position procedure also roughly decouples the TDOA and
FDOA in the observation model, so that they can be esti-
mated independently via two separated numerical proce-
dures. If the coupling between the TDOA and the FDOA
needs to be considered more rigorously, the coarse TDOA
and FDOA estimates can be further refined via CAF
searching in a small neighborhood. Different from the
majority of existing CAF-based TDOA and FDOA esti-
mation methods [8–12], the CAF of the proposed method is
calculated based on the recovered signal waveforms on the
two receivers, so it avoids repeated CAF calculations be-
tween multiple pulse pairs collected by the two receivers;
thus its computational burden is significantly reduced.

(e rest of the paper mainly consists of four parts. Section
2 formulates the problem of TDOA and FDOA estimation for
coherent pulse trains. In Section 3, a fast TDOA and FDOA
estimationmethod for coherent pulses is proposed. In Section
4, simulations are carried out to demonstrate the TDOA and
FDOA estimation performance of the proposed method.
Section 5 summarizes the whole paper.

2. Problem Formulation for TDOA and FDOA
Estimation of Pulse Signals

Pulse signals of emitters like radar usually do not contain
much complicated modulations [14]; they usually contain
consistent modulations, for example, linear frequency
modulated (LFM) signals with the same modulation pa-
rameters.(erefore, they can be modeled as coherent signals
[20, 21]. Further assume that the signal bandwidth is very
small when compared with the carrier frequency; then the
signals can be approximated as narrowband ones, and the
Doppler frequency shifts of the signals at different stations
remain unchanged during the observation time.

(e signals collected by the two receivers can be for-
mulated as

x1,k(t) � ake
jφk s(t) + u1,k(t),

x2,k(t) � bke
jφk e

jϕ0e
j2πfdt

s t − td( 􏼁 + u2,k(t),

t ∈ T
(1)
k , T

(2)
k􏽨 􏽩; k � 1, . . . , K,

(1)

where x1,k(t) and x2,k(t) are the observation data of the k th
pulse at time t on the two receivers, K is the number of
pulses, and s(t) is the waveform of the first pulse on the first
receiver. (e frequency offset of the pulse signals at the first
receiver is not explicitly indicated in (1); that is because only
the frequency difference between the two receivers is con-
sidered. ak, bk ∈ R denote the relative amplitudes of the k th
pulse signal received by the two receivers with respect to that
of the first pulse received by the first receiver, which satisfies
a1 � 1. td and fd are the constant TDOA and FDOA of the
pulses between the two receivers. (e Gaussian white noises
at the two receivers are denoted by u1,k(t) and u2,k(t), re-
spectively, which satisfy E |u1,k(t)|2􏽮 􏽯 � E |u2,k(t)|2􏽮 􏽯 � σ2
with the noise variance σ2 assumed to be known. When the
noise variance is unknown, similar conclusions can be
obtained as these for known σ2 following the guidelines of
analyses in [15]. T(1)

k and T
(2)
k denote the starting and ending

time instants of the k th pulse, respectively. ϕ0 stands for the
initial phase offset between the two receivers caused by the
asynchronization between different sampling clocks, and
φk ∈ [0, 2π) represents the additional phase shift of the k th
pulse signal relative to the first one satisfying φ1 � 0.

(e duty cycle of most pulse signals is very small and
interpulse gaps should be skipped over to suppress noises
and only observations within pulses should be retained for
TDOA and FDOA estimation. Denote the sampling interval
by T; then the discrete samples at the two receivers are given
by

x1,k(n) � ake
jφk s(n) + u1,k(n),

x2,k(n) � bke
jφk e

jϕ0e
jϕk(v)

e
jvn

s(n − τ) + u2,k(n),

n � 1, . . . , N0; k � 1, . . . , K,

(2)

where τ � (td/T) and v � 2πfdT are TDOA- and FDOA-
dependent parameters, respectively. For notational sim-
plicity, these two parameters are directly referred to as
TDOA and FDOA in the rest of this paper unless otherwise
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stated. (ese two parameters will be estimated intermedi-
ately before obtaining the desired TDOA and FDOA esti-
mates. ϕk(v) � 2πfdT

(1)
k ≜ v · nk represents the additional

phase shift caused by the Doppler frequency shift at the
beginning of the k th pulse, where nk � (T

(1)
k /T) and n1 � 0.

In the formulations, we assume that the sampling interval is
very small with respect to the pulse width, so that the
nonalignment between the pulse starting edges with the
nearest sampling instants does not significantly disturb the
coherence of different pulses.

(e samples of the k th pulse at the two receivers can be
written in a vector form as follows:

x1,k � ake
jφk s + u1,k,

x2,k � bke
jφk e

jϕ0e
jϕk(v)Dvs(−τ) + u2,k,

k � 1, . . . , K,

(3)

where xi,k � [xi,k(1), . . . , xi,k(N0)]
T and ui,k � [ui,k(1), . . . ,

ui,k(N0)]
T for i � 1, 2, s � [s(1), . . . , s(N0)]

T,
s(−τ) � [s(1 − τ), . . . , s(N0 − τ)]T, Dv � diag exp(jvl)􏼈 􏼉,
with l � [0, 1, . . . , N0 − 1]T, and N0 being the sample
number within each pulse. In practical applications, the
pulses of two receivers can be aligned first according to their
arriving time, and only the residual TDOA requires precise
estimation. (erefore, it is reasonable to assume that the
TDOA is smaller than the sampling instant and much
smaller than the pulse width; thus the edge effect that the
signals at the two receivers are not accurately aligned due to
time delay can be ignored without introducing significant
model errors, and the delayed signal s(−τ) can be ap-
proximated by a spectrally group-delayed form of the
original signal [15], which is given by

s(−τ) � F
H

DτFs, (4)

where F � (1/
���
N0

􏽰
)exp(−j(2π/N0)ll

T) and Dτ �

diag exp(−j(2πτ/N0)l)􏼈 􏼉. (e superscripts (g)T, (g)∗, and
(g)H denote transpose, conjugate, and conjugate transpose
operators, respectively. In (4), the time-delayed signal s(−τ)

is interpreted as a variant of s after a series of transfor-
mations, where s is first transformed to the spectral domain
by left-multiplying the Fourier matrix F; then each spectral
component is group-delayed by a TDOA τ and finally
transformed back to the temporal domain by left-multi-
plying the conjugate transposed Fourier matrix FH. One can
demonstrate (4) by left-multiplying both sides with F; then it
becomes more apparent that each spectral component of
s(−τ) is a phase-shifted replica of the corresponding
component of s, and the shifted phases are time-delay and
frequency dependent and they form Dτ .

Unknown parameters contained in the above observa-
tion model include amplitudes a � [a2, . . . , aK]T and b �

[b1, b2, . . . , bK]T and phases φ � [φ2, . . . ,φK]T for different
pulses, and η � [sT

r , sT
i ]T and θ � [ϕ0, τ, v]T shared by all

pulses, where subscripts (g)r and (g)i denote the real and
imaginary parts of a variable, respectively. (e whole pa-
rameter set in the observation model is

ξ � ηT
, a

T
, b

T
,φT

, θT
􏽨 􏽩

T
. (5)

Denote xk � [xT
1,k, xT

2,k]T, x � [xT
1 , . . . , xT

K]T; then x has a
complex Gaussian distribution in the case of white Gaussian
noise, which is given by

x ∼ CN μ, σ2I2KN0
􏼐 􏼑, (6)

where

μ � μT
1 , . . . , μT

K􏽨 􏽩
T
,

μk �
ake

jφk s

bke
jφk e

jϕ0e
jϕk(v)

DvF
H

DτFs
⎡⎢⎣ ⎤⎥⎦≜

μk,1

μk,2

⎡⎣ ⎤⎦.
(7)

(e task of TDOA and FDOA estimation is to estimate τ
and v based on the observations of the two sensors, that is,
x1,1, x1,2, . . . , x1,K and x2,1, x2,2, . . . , x2,K.

3. Fast TDOA and FDOA Estimation for
Coherent Pulse Trains

Based on the distribution function in (6), the maximum
likelihood algorithm can be applied to obtain optimal TDOA
and FDOA estimates via exhaustive searching in the un-
known parameter space. However, as the dimension of ξ,
that is, 2N0 + 3K + 1, is usually very high, the computational
complexity of this exhaustive searching procedure will be
prohibitive in most practical applications. (e CAF tech-
nique has been introduced to significantly improve the
computational efficiency of the maximum likelihood
method [9–12]; it only takes τ and v as unknown parameters.
Unfortunately, after the simplification, the computational
load of the TDOA and FDOA estimation process is still very
heavy when the required precisions of the estimates are high
[13]. In this section, we propose a fast method to realize
TDOA and FDOA estimation for coherent pulse trains. (e
method consists of a coarse parameter estimation procedure
and a refinement one. (e coarse-to-fine strategy has pre-
viously been used for radar target detection [22], and it can
also be combined with DFT techniques [14] to further
improve its computational efficiency.

3.1. Coarse TDOA and FDOA Estimation. In order to esti-
mate the TDOA and FDOA of coherent pulse trains, the
observation data at the two receivers within the K pulses are
rewritten in a matrix form as follows:

X1 � x1,1, . . . , x1,K􏽨 􏽩

� s × a1e
jφ1 , . . . , aKe

jφK􏽨 􏽩 + u1,1, . . . , u1,K􏽨 􏽩≜ sαH
1 + U1,

X2 � x2,1, . . . , x2,K􏽨 􏽩

� DvF
HDτFs × e

jϕ0 b1e
jφ1e

jϕ1(v)
, . . . , bKe

jφK e
jϕK(v)

􏽨 􏽩

+ u2,1, . . . , u2,K􏽨 􏽩≜ s′αH
2 + U2,

(8)
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where α1 � [a1e
jφ1 , . . . , aKejφK ]H, U1 � [u1,1, . . . , u1,K], s′ �

DvFHDτFs, α2 � e− jϕ0[b1e
jφ1ejϕ1(v), . . . , bKejφK ejϕK(v)]H,

U2 � [u2,1, . . . , u2,K].
(e likelihood function of the observed data matrix is

p X1,X2|ξ( 􏼁 � πσ2􏼐 􏼑
− 2N0K

exp −
1
σ2

X1 − sαH
1

����
����
2
2 + X2 − s′αH

2

����
����
2
2􏼒 􏼓􏼨 􏼩.

(9)

(emaximum of the likelihood function is equivalent to
the minimum of the following cost function when σ2 is
known:

W(ξ) � X1 − sαH
1

����
����
2
2 + X2 − s′αH

2

����
����
2
2.

(10)

If σ2 is unknown, its maximum likelihood estimate can
be calculated and substituted into (9), and the same cost
function as the one in (10) can also be obtained. Moreover, if
the noise variances at the two receivers are different, one can
introduce their diverse values to reformulate (9) and then
obtain a cost function accordingly similar to that in (10), and
then continue with the coarse parameter estimation
procedure.

In a noiseless case, the minima of W1(ξ) � ‖X1 − sαH
1 ‖

2
2

and W2(ξ) � ‖X2 − s′αH
2 ‖

2
2 have consistent locations cor-

responding to the true values of the unknown parameters. In
practical applications, as the observations are noise con-
taminated, each of the two separated subfunctions has a
Gaussian distribution centralized at the minimum. We
propose to treat X1 and X2 as independent observations at
first, and recover s, s′, α1, and α2 coarsely based on them, and
then exploit the τ- and v-dependent relations between them
to estimate TDOA and FDOA.

After ignoring the relations between X1 and X2, it be-
comes infeasible to obtain unique estimates of s, s′, α1, and
α2; that is because sαH

1 � (sejφ0)(α1ejφ0)H and
s′αH

2 � (s′ejφ0)(α2ejφ0)H for any φ0. (erefore, we substitute
them with r1, r2, w1, and w2 to distinguish the intermediate
estimates from the original τ- and v-dependent vectors.

In the two cost subfunctions, the minuends of sαH
1 and

s′αH
2 are both rank-1, so maximum likelihood estimates of

r1, r2, w1, and w2 can be obtained according to the principal
components of X1 and X2; that is,

X1⟶
λmax

􏽢r1, 􏽢w1􏼈 􏼉, (11)

X2⟶
λmax

􏽢r2, 􏽢w2􏼈 􏼉. (12)

In the above estimation formula, λmax represents the
largest eigenvalue of the corresponding matrix, and ⟶λmax

indicates that eigendecomposition is performed on the
matrix to obtain the left and right eigenvectors associated
with the largest eigenvalue. (e eigendecomposition process
can be realized with the svd function in MATLAB or via a
two-step numerical procedure, which first decomposes the
covariance matrices XH

1 X1 and XH
2 X2 to estimate 􏽢w1 and 􏽢w2,

and then estimate 􏽢r1 and 􏽢r2 via 􏽢r1 � X1 􏽢w1 and 􏽢r2 � X2 􏽢w2.
(e eigendecomposition process is scale and phase

invariant; that is, 􏽢r1 􏽢wH
1 � (ηejφ0􏽢r1)(η− 1ejφ0 􏽢w1)

H and
􏽢r2 􏽢wH

2 � (ηejφ0􏽢r2)(η− 1ejφ0 􏽢w2)
H for any η and φ0. In order to

guarantee the uniqueness of the estimates, we include some
additional constraints for the eigenvectors; that is, 􏽢w1(1) �

􏽢w2(1) � 1 and ‖􏽢r1‖2 � ‖􏽢r2‖2, with 􏽢w1(1) and 􏽢w2(1) repre-
senting the first element of 􏽢w1 and 􏽢w2, respectively.

During the eigendecomposition process of X1 and X2,
the element-wise phase and amplitude relations between s&
s′ and α1& α2 may have not been accurately retained in the
estimates of r1& r2 andw1&w2, but the phase relations along
the vectors are retained, which are τ- and v-dependent and
can be exploited for TDOA and FDOA estimation.
According to the phase relations between s and s′, and that
between α1 and α2, the FDOA and TDOA estimates can be
obtained based on 􏽢r1, 􏽢r2, 􏽢w1, and 􏽢w2 as follows:

􏽢v � argmin
v

h(v) − exp j × angle 􏽢w1 ⊙ 􏽢w
∗
2( 􏼁􏼈 􏼉

����
����
2
2, (13)

􏽢τ � argmin
τ,φ0

e
jφ0q(τ) − exp j × angle FD∗􏽢v 􏽢r2􏼐 􏼑⊙ F􏽢r1( 􏼁

∗
􏼐 􏼑􏽮 􏽯

�����

�����
2

2
,

(14)

where h(v) � [ejϕ1(v), . . . , ejϕK(v)]T, the definition of ϕk(v) is
the same as that in (2), q(τ) � exp(−j(2πτ/N0)l), and
⊙ represents element-wise multiplication between vectors;
angle(g) indicates the argument of a complex number. A
phase shift is added in both (13) and (14) to compensate for
the phase mismatching between the two items in each cost
function. A phase of e− jϕ1(v) should be added in (14) to shift
the phase of the first element of h(v) to 0 because
􏽢w1(1) � 􏽢w2(1) � 1, but as ϕ1(v) � 0, according to (2), this
item is left out from (13). (e initial phase of the subtrahend
in (14) is not predictable; thus an unknown phase of ejφ0 is
added in (14), and the phase is optimized jointly with τ. (e
estimation equations in (13) and (14) decouple originally
interconnected TDOA and FDOA variables, and they can be
realized fast via DFT. (erefore, coarse TDOA and FDOA
estimates can be obtained from (13) and (14) via compu-
tationally very efficient algorithms.

(e coarse TDOA/FDOA estimation algorithm and the
refinement procedure afterwards both work based on the
assumption of coherent pulse signals. If the signals are only
partially coherent or even incoherent, the result of the
eigendecomposition process in (11) and (12) will be un-
predictable, one will not be able to extract TDOA/FDOA-
dependent measurements easily by skipping over the large
amount of waveform-dependent redundant variables, and
the coarse TDOA/FDOA estimation procedure fails ac-
cordingly. Fortunately, the result of the eigendecomposition
process contains clues about the coherence of pulse signals.
Only one of the eigenvalues is significantly larger than zero
in the case of completely coherent signals, while more than
one eigenvalue is large if the assumption of coherence is
deviated. In the latter case, one may have to retrogress to the
original CAF-based method for TDOA/FDOA estimation,
or single out coherent pulse signals via an eigen-value-
checking criterion to implement coarse TDOA/FDOA es-
timation first, and then take all pulses into consideration to
refine the estimates.
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3.2. TDOA and FDOARefinement. As the relations between
X1 and X2 are artificially ignored when recovering s, s′, α1,
and α2, the estimates of τ and v are probably suboptimal and
we call them coarse estimates. (e estimates can be refined
by taking the τ– and v–dependent relations between r1 and
r2, together with those between w1 and w2, into consider-
ation. In order to improve parameter estimation accuracy,
an additional two-dimensional searching procedure in the
TDOA-FDOA domain is performed in a small neighbor-
hood of the coarse TDOA and FDOA estimates, and an
interpolation procedure is implemented around the peak of
the resulting CAF to refine the parameter estimates.

In order to save computational load, the recovered signal
waveforms of 􏽢r1 and 􏽢r2 are used to replace the original pulse
observations when calculating the CAF; that is,

CAF(τ, v) � 􏽢r
H
1 FHDH

τ FD
H
v 􏽢r2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

× h
H

(v) × exp j × angle 􏽢w1 ⊙ 􏽢w
∗
2( 􏼁􏼈 􏼉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(15)

(e cost function in (14) exploits jointly the observations
at the two receivers, which are used for independent pa-
rameter estimation in (12) and (13), and takes into account
the coupling between TDOA and FDOA, so it is expected to
obtain higher parameter estimation accuracies. From the
perspective of computational efficiency, the proposed
method needs to compute the CAF only within a small
neighborhood of the coarse estimates obtained by (12) and
(13), and the calculations at each CAF grid contain only a
correlation between 􏽢r1 and a time-delayed and frequency-
shifted replica of 􏽢r2. On the contrary, original CAF-based
TDOA and FDOA estimation methods have no coarse es-
timates, and they compute CAF between all the K pulse
signal pairs at the two receivers. (erefore, the computa-
tional load of the proposed method is expected to be largely
cheaper than existing CAF-based methods. (e cross-cor-
relation between 􏽢r1 and 􏽢r2 can be speeded by combining the
CAF calculations with the DFTtechnique to further improve
the overall computational efficiency [13].

Another major difference between the proposed sub-
space-based estimation method and the original CAF-based
one is that, when estimating FDOA using (12), unambiguous
estimates can be obtained only within a scope depending on
the pulse repetition intervals (PRIs). For example, when the
pulse train has a constant interval of 1ms, the equation can
only estimate unambiguous FDOA in a range of 1KHz. If
the candidate FDOA exceeds this range, all ambiguous
FDOA estimates in (12) should be retained for further
identification. (e local FDOA estimates are then
substituted into (14) to obtain multiple pairs of coarse
TDOA-FDOA estimates. (e ambiguity is finally eliminated
to yield a global optimal estimate according to (15). (is
process increases the computational load of the proposed
method by a multiple equaling the number of unambiguous
FDOA estimates. However, in despite of the existence of
local minima, as the pulse number is large in most practical
applications, the overall computational complexity of the
proposed method is still significantly lower than that of
the original CAF-based method. In practice, the value of the

FDOA is constrained by various factors, such as relative
target-receiver speed and observation geometry, making its
range much limited; thus the number of unambiguous
FDOA estimates and TDOA-FDOA pairs will be very small.
In addition, the ambiguity effect will be further reduced
significantly when the pulse intervals are not constant.

3.3. Computational Complexity Analysis. (e proposed
method mainly includes three steps. First, eigende-
composing X1 and X2 to estimate r1, r2, w1, and w2
according to (11) and (12), which requires O(K3) + 2KN0
complex multiplications. Second, estimating τ and v coarsely
according to (13) and (14), which requires only some nu-
merical calculations and the computational complexity is
negligible. (ird, refining the estimates of τ and v by cal-
culating the CAF according to (15), which requires 2N2

0
complex multiplications at each TDOA-FDOA grid and can
be accelerated via FFT. As the number of samplings in each
pulse is generally much larger than that of pulses, that is,
N0≫K, the computational complexity of the proposed
method majorly lies in the CAF calculation procedure.

4. Simulations and Analyses

In this part, we carry out simulations to demonstrate the
performance of the proposed TDOA and FDOA estimation
method with respect to various factors, such as pulse
number, SNR, pulse width, and PRI. (eoretical analyses on
how these factors affect the performance are provided in
another paper by the same authors [23], and the results are
included in this part for theoretical verification. Assume that
the pulse signals are linear frequency modulated (LFM) with
a bandwidth of 1MHz, and the signal carrier frequency is
1GHz. (erefore, the signals are approximately narrow-
band. (e received signals are downconverted to a low
intermediate frequency and then sampled with a frequency
of 10MHz. (e time delay of the signals at the two receivers
is 0, and the frequency shift is 1 kHz.

In the simulations, the original CAF-based TDOA and
FDOA estimation method [10] is carried out for perfor-
mance comparison. (e TDOA and FDOA searching steps
for calculating the CAF are set to be equal to their corre-
sponding CRLBs [23], and the search ranges are centered at
the true TDOA and FDOA values and extended by 10 steps
on both sides.(e CRLBs used for setting the searching grids
are calculated according to the signal waveforms for con-
venience, and they can be substituted with their estimates
obtained in the proposed method in practical applications.
Numerical interpolation [24] is then implemented near the
peak of the CAF to obtain final TDOA and FDOA estimates.
Two implementations of the proposed method are included
for performance evaluation, named Subspace method and
Subspace-CAF method. (e TDOA and FDOA estimates of
the Subspace method are directly obtained from (12) and
(13), while those of the Subspace-CAF method are obtained
from (14). In the Subspace-CAF method, as coarse TDOA
and FDOA estimates have been obtained in the first stage,
the search ranges of the subsequent CAF-based refinement
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procedure are reduced to the CRLB on both sides of the
coarse estimates, and the search step is reduced to 1/10 times
of the CRLB.(is parameter setting ensures that the number
of CAF search grids in the proposed method is equal to that
of the original CAF-based method. (e number of simu-
lations in each scenario is 10 000.

In the first group of simulations, we fix the pulse width at
30us, the SNR at 5 dB, and the PRI at 100us and increase the
pulse number from 5 to 80. (e TDOA and FDOA esti-
mation RMSE of the three methods are obtained and shown
in Figures 1(a) and 1(b). (e results show that the TDOA
and FDOA estimates obtained by the Subspace method are
close to their true values; they have high precisions but still
deviate from the theoretical lower bounds with significant
margins. By refining the TDOA and FDOA estimates via
local CAF searching, their precisions can be further im-
proved to approach the CRLB well. (e precision im-
provement of Subspace-CAF over Subspace is rooted in the
joint exploitation of the observations at the two receivers; the
coupling between TDOA and FDOA is taken into account in
this procedure and higher parameter estimation accuracies

are thus obtained. When compared with the original CAF-
based method, the Subspace-CAF method has a slightly
deteriorated TDOA estimation precision when the number
of pulses is small, but its FDOA estimation accuracy is higher
than that of the CAF-based method.

Figure 1(c) shows the average time of the three methods
in implementing a single TDOA and FDOA estimation
simulation. It can be seen that the computational loads of the
two proposed methods remain stable when pulse number
increases, and the CAF-based refinement procedure ag-
gravates the computational complexity of the method by
about 4 times. On the contrary, the computational com-
plexity of the traditional CAF-based method increases
superlinearly with the number of pulses. When the pulse
number increases to 80, its computational load is about 7
times that of the Subspace-CAF method, which has com-
parable parameter estimation precisions. (is is mainly
because the CAF computing process of the Subspace-CAF
method only calculates the cross-correlation between the
two recovered signal waveforms, while that of the original
CAF-based method calculates the cross-correlation between
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Figure 1: TDOA and FDOA estimation performance in cases of varying pulse numbers, (a) TDOA estimation RMSE, (b) FDOA estimation
RMSE, (c) average CPU time.
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all pulse pairs at the two receivers. (is result verifies the
significant advantages of the proposed method in compu-
tational efficiency.

Based on the above simulations, we then fix the number
of coherent pulses at 40, and vary the SNR of the pulse
signals from −5 dB to 35 dB. (e TDOA and FDOA esti-
mation RMSE of the three methods, together with the
corresponding CRLB, are obtained and shown in Figure 2.
Similar to the results in Figures 1(a) and 1(b), the Subspace
method is able to obtain high-precision TDOA and FDOA
estimates, but there is a certain gap between their precisions
and the CRLB. (e parameter estimation precisions of the
Subspace-CAF method and the traditional CAF-based
method approach the CRLB better. (e Subspace-CAF
method has a slightly lower TDOA estimation accuracy than
that of the CAF method when the SNR is lower than 5 dB,
and its FDOA estimation accuracy is slightly higher. (e
computational efficiencies of the three methods can be

deduced from the results in Figure 1(c) by fixing the pulse
number at 40, and they do not vary significantly with SNR,
which again demonstrates the advantage of the proposed
methods in computational efficiency. In this and the fol-
lowing simulations, the results on computational efficiencies
of different methods can be inferred from Figure 1(c), so
they are excluded to avoid redundancy.

(en we fix the number of coherent pulses at 40 and the
SNR on both receivers at 5 dB and then vary the pulse width
from 5 us to 30 us. (e TDOA and FDOA estimation ac-
curacies of the three methods are shown in Figures 3(a) and
3(b). (e comparisons of the TDOA and FDOA estimation
accuracies of the three methods are similar to those in
Figures 1 and 2.

Finally, we fix the number of coherent pulses at 40, the
SNR on both receivers at 5 dB, and the pulse width at 30us
and increase the PRI from 0.1ms to 10ms. (e TDOA and
FDOA estimation RMSE of the three methods are shown in
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Figure 2: TDOA and FDOA estimation performance in cases of varying SNR, (a) TDOA estimation RMSE, (b) FDOA estimation RMSE.
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Figures 4(a) and 4(b).(e comparisons of TDOA and FDOA
estimation accuracies of the three methods are similar to the
results in Figures 1–3.

5. Conclusions

In this paper, a fast TDOA and FDOA estimation method is
proposed for pulse signals. It decouples TDOA and FDOA in
the cost function approximately to speed up the parameter
estimation process and then put the coarse estimates into the
original cost function to realize refined TDOA and FDOA
estimation. Simulation results show that the proposed
method exceeds the traditional CAF-basedmethod largely in
computational efficiency, and the refined TDOA and FDOA
estimates have satisfying precisions that are comparable with
those of the traditional CAF-based method. Specifically,
when the overall SNR of the observed data is low in cases of
small pulse numbers and narrow pulse widths, the TDOA
estimation accuracy of the proposed method is slightly in-
ferior to that of the traditional CAF-based method, while its
FDOA estimation accuracy is slightly superior to that of the
latter method.

Data Availability

(e data used in the manuscript are generated via simu-
lations. Readers can get the data and repeat the simulations
following the illustrations in our manuscript.
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