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Convolutional neural networks, as a branch of deep neural networks, have been widely used in multidimensional signal processing,
especially in point cloud signal processing. Nevertheless, in point cloud signal processing, most point cloud classi�cation networks
currently do not consider local feature correlation. In addition, they only adopt ground-truth as positive information to guide the training
of networks while ignoring negative information.�erefore, this paper proposes a network model to classify point cloud signals based on
feature correlation and negative constraint, DANC-Net (dual-attention and negative constraint on point cloud classi�cation). In the
DANC-Net, the dual-attention mechanism is utilized to strengthen the interaction between local features of point cloud signal from both
channel and space, thereby improving the expression ability of extracted features. Moreover, during the training of the DANC-Net, the
negative constraint loss function ensures that the features in the same categories are close and those in the di�erent categories are far away
from each other in the representation space, so as to improve the feature extraction capability of the network. Experiments demonstrate
that the DANC-Net achieves better classi�cation performance than the existing point cloud classi�cation algorithms on synthetic datasets
ModelNet10 andModelNet40 and real-scene dataset ScanObjectNN.�e code is released at https://github.com/sunhang1986/DANC-Net.

1. Introduction

Signal processing is usually understood as the processing of
electronic signals [1–5]. Point cloud processing can be de-
scribed as the processing of point cloud, a kind of multi-
dimensional signal. However, the classi�cation task of point
cloud is still facing enormous challenges due to its unor-
dered and sparse characteristics.

3D objects can be represented in two ways according to
the spatial distribution of the 3D point cloud. (1) regular
structure representation, which is represented by multi-view
and voxel representation, and (2) irregular and unstructured
representation, which is represented by point cloud and grid
representation. Point cloud processing methods based on
regular structured representations include 3D volumetric
convolutional neural networks (CNNs) [6–8] and the multi-

view CNN [9, 10]. �ese methods transform irregular/un-
structured point clouds to regular/structured images (or
volume grids), and use two-dimensional (2D) CNNs to
extract local features and global features of the point cloud.
Although these methods solve the unordered distribution
issues of point clouds, they bring a lot of challenges in
calculation and issues in memory consumption. Octree-
based method [11] alleviates these problems to a certain
extent and can apply 3D CNN to higher resolution grid. Le
and Duan [12] and Hua et al. [13] studied di�erent 3D
convolution operators based on grid cells, which can better
learn local features. On the contrary, methods based on
irregular unstructured representation do not need to
transform the representation of point cloud. �ey can learn
point cloud features using special CNNs designed for raw
point cloud data [14–16]. Because of low memory
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consumption and simple structure of this type of repre-
sentation, point cloud classification methods based on ir-
regular unstructured representation have attractedmore and
more attention from researchers.

In the study of point cloud classification based on irregular
and unstructured representations, Qi et al. [14] designed a
PointNet network capable of point-by-point coding in order to
use deep learning to process point cloud data. However, the
details are lost because the whole PointNet network does not
divide the point cloud regions and extract the region features.
PointNet++ [15], which is based on PointNet, adopts a hier-
archical structure that allows repeated capture of local infor-
mation.*erefore, the overall accuracy (OA) of PointNet++ in
ModelNet40 dataset is greatly improved compared with the
OA of PointNet, which effectively demonstrates the impor-
tance of local information. However, because the processes of
extracting local features aremutually independent, information
is not exchanged between subclouds, resulting in a loss of
structural information. Since then, in order to simplify the
training process and save computing resources, a large number
of researchers have proposedmethods based on CNNs, such as
PointCNN [16], tangent convolutions [17], and point cloud
classification networks [18], which strengthen the geometric
structure acquisition of point cloud data. However, these
methods do not consider the effects of local structure rela-
tionship that are essential in 3D object recognition.

In summary, how to efficiently learn in-depth local features
and their relationship from point cloud has become a pressing
problem. In addition, most of the existing point cloud clas-
sification networks only use positive information to guide the
training of network, lacking of effective use of negative in-
formation, which limits the network capability to extract more
distinguishing features for point cloud classification.

In order to efficiently learn the correlation between local
features of point cloud signals and utilize the negative infor-
mation which is crucial to the classification results, we propose
an effective point cloud classification network. Our point cloud
classification network, based on a dual-attention mechanism
and contrastive learning constraints, is namedDANC-Net.*e
main components of the network are the channel attention and
self-attention (CASA) module and the negative constraint loss
function (NC-loss).*eCASAmodule is used before the global
features are aggregated. Channel attention and self-attention
are used to capture the relationship between local features. In
NC-loss, the output point cloud features with local feature
relationships are divided into the output feature, positive
sample features, and negative sample features. *e output
feature is constrained by negative information, in order to be
approach-positive sample features and stay away from negative
sample features. Positive information and negative information
are used effectively at the same time, which improves the
classification ability of our DANC-Net.

To sum up, our contributions are three-folds as follows:

(1) We propose a dual-attention module, CASA. It can
strengthen the extraction of local feature correlation
from channel and spatial, thereby helping the net-
work to further develop the geometric structure
between points.

(2) We propose a negative constraint loss function, NC-
loss. Besides the positive information constraints, the
effective constraint of negative information has also
been strengthened; thus, the ability of the network to
extract more distinctive features is improved.

(3) We propose a dual-attention negative constraint
network, DANC-Net, which achieves superior per-
formance compared with the recently proposed
point cloud classification methods on open datasets
ModelNet10 [8] and ModelNet40 [8] and the real-
scene dataset ScanObjectNN [19].

2. Related Work

In recent years, deep learning continues to make break-
throughs in computer vision [20–23]. *e early point cloud
classification methods based on deep learning transform
point cloud to regular volume grids and then extract features
from the point cloud by using 3D CNNs [6, 8]. However, 3D
CNN takes up more computing resources than 2D CNN. To
make computation affordable, the volume grids are usually
in low resolution, resulting in the loss of geometric infor-
mation of 3D mesh shape, especially when dealing with
large-scale point cloud. *erefore, the 3D point cloud is
mapped to the 2D space, and then, the 2D image CNNs are
used to classify [7, 10]. With well-engineered image CNNs,
these methods have achieved the expected performance.
Nevertheless, the selection of projection angle and projec-
tion plane has a significant impact on the classification
accuracy, so the generalization ability of these models is
poor.

PointNet [14], a kind of end-to-end network, is the first
method to deal with point cloud directly based on deep
learning.*emethod takesN points as input and uses a 3× 3
affine transformation matrix (T-Net) to realize input
alignment and feature alignment. *e aligned point cloud
learns global feature vectors through multiple three-layer
perceptrons (MLPs) and max pooling, and finally realizes
end-to-end point cloud classification. However, vital local
information is ignored in the PointNet. PointNet++ [15]
proposed by Qi et al. is a point cloud classification network
based on PointNet. It refers to the feature extraction method
of PointNet to process each group of point clouds inde-
pendently. *en, the global features are aggregated using
max pooling. *e hierarchical structure of PointNet++
exploits local information to a certain extent. In PointNet++,
multi-scale algorithm is used to group point clouds. In the
process of grouping, it is inevitable that there will be re-
peated grouping points, which will result in local infor-
mation redundancy and reduce the classification ability of
the network. For the purpose of reducing the redundancy of
local information, the authors of A-CNN [24] proposed the
constraint-based k-nearest neighbor (k-NN) algorithm and
annularly convolution on the basis of hierarchical structure.
As shown in Figure 1, the input point cloud is sampled and
the constraint-based k-NN algorithm is used to construct
groups in each layer of the network. *en, the features
within each group are extracted by combining annular
convolution with max pooling. Compared with multi-scale
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grouping, rings of annularly convolution do not contain
duplicate points, which allows the network to learn more
discriminant features. *erefore, A-CNN achieved a higher
classification performance than PointNet++ on the Mod-
elNet dataset. *e progress of the above end-to-end point
cloud classification methods is undeniable, However, their
approach of extracting local features independently leads to
inadequate identification of correlations between points or
local neighborhoods.

Recently, attention mechanism [25] has achieved re-
markable achievements in natural language processing,
image recognition [26], and other fields. In point cloud
classification, Bhattacharyya et al. [27] proposed an altitude
attention model, which can achieve superior classification
performance of airborne laser scanning (ALS) by consid-
ering the altitude information of points. Lee et al. [28]
proposed a simple and efficient network based on self-at-
tention, called set transformer, which can process set data,
such as a point cloud. Shajaha et al. [29] proposed a multi-
view CNN with self-attention. Multiple views of a roof point
cloud were taken as the input, an adaptive weight learning
algorithm was used to assign weights corresponding to each
view, and the category of the roof was the output. However,
the generalization ability of the model [29] is poor and is
limited to special field. On the contrary, the DANC-Net we
proposed can be applied to any point cloud classification
tasks.

Currently, most of the point cloud classification net-
works only use ground-truth as positive information to
guide the training of the network while negative information
is ignored, which leads to the limitation of network dis-
crimination capabilities. *erefore, in order to further ex-
plore the correlation of local features of point cloud and the
constraints of negative information on features, this paper
proposes the DANC-Net based on dual-attention mecha-
nism and negative information constraints.

3. Method

*is section details the proposed DANC-Net in this paper.
First, the architecture of DANC-Net point cloud classifi-
cation method is introduced in Section 3.1.*en, Section 3.2
performs detailed analysis of dual-attention CASA module
for capturing correlations between local features. Next,
Section 3.3 presents the loss function NC-loss under the
negative information constraint. Finally, Section 3.4 sum-
marizes the total loss function of the DANC-Net.

3.1. DANC-Net Architecture. For a clear understanding of
our DANC-Net, we show the network architecture and the
output feature map size of each layer in the network in
Figure 2. Our DANC-Net consists of five layers.

(1) Input layer: for a given 3D shape point cloud, the
coordinates and normals of N points are used as
input.
Feature map size: each input consists of a 3D co-
ordinates (x, y, z) and a normal, i.e., two N× 3-di-
mensional tensors.

(2) A-CNN layer: local features are extracted from point
cloud. *is layer performs two feature extractions,
and each feature extraction includes two operations,
namely, the farthest point sampling (FPS) algorithm
[30] and the A-CNN abstraction layer.
Feature map size: after two feature extractions, the
previous-level output point cloud is divided into N1
and N2 local regions, and the number of channels for
each local region feature is 128 and 256, respectively.

(3) CASA layer: a new feature map fr with geometric
relationship and positional relationship among local
features of point cloud is obtained, and then, the
global feature vector fg is aggregated through the
PointNet [14] layer.
Feature map size: the point cloud global feature
vector fg with correlation between local feature
output by this layer has 1024 channels.

(4) Negative information constraint layer: the fr is used
to construct the NC-loss under the constraint of
negative information, so as to restrain the mutual
interference between similar categories (such as
nightstands and dressing tables with similar spatial
structure).
Feature map size: the feature map fr that is fed into
the loss function has 256 channels.

(5) Output layer: MLPs are used to obtain the proba-
bility score of the point cloud belonging to the c
category.
Feature map size: the final output vector size of our
DANC-Net is 1× c.

3.2. Dual-Attention (CASA) Unit. Most point cloud classi-
fication networks only enhance the expression ability of the
network from the perspective of enhancing local feature

Normals

N
i×

F

N
i×

K×
F

Constraint-
based k-NN

Projection
&

Ordering

max-pooling

Annular Convolutions

in
pu

t p
oi

nt
s

FPS Conv1×3 (F1, F2, …, Fn)

N
i×

K’
×F

n

N
i×

F n

Ni×3

N
i×

K’
×F

Figure 1: A-CNN abstract layer structure.

International Journal of Antennas and Propagation 3



extraction, while ignoring the exchange of information
between local features. CASA unit can adaptively learn
feature weights and capture the correlation between local
features. As shown in Figure 3, the CASAmodule consists of
two branches, each consisting of channel attention [31] and
self-attention [32]. Among them, the upper branch is used to
extract the geometric feature relationship and the lower
branch is used to extract the positional feature relationship.
*e CASA module considers that the features of different
channels contain completely a different weighting infor-
mation and point distribution is not uniform in different
spatial positions. CASA treats different features and points
unequally, providing extra flexibility in processing different
types of information and expanding CNN’s expressive
ability.

For a set of points containing n points P � Pi, i �

1, . . . , n}, A-CNN is used to extract the geometric feature
vector gri ∈ Rd and location feature vector lri ∈ R3 of the
local sub-cloud Gi; the two feature vectors are then input
into the CASA module. *e output is a high-level global
feature fg that incorporates context information. *e key to
this process is how to generate different weights for each
point feature. *e detailed implementation process of the
CASA module is analyzed as follows.

First, the input geometric information and location
information are weighted by channel attention. In this
process, we use global average pooling to transform the
global information of the channel to the channel descriptors;
that is, the channel dimension is kept unchanged, but the
other dimensions of the feature map are reduced to 1. In
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order to obtain the weights CA of the channels, channel
descriptors sequentially pass through convolution layer,
ReLU activation function, convolution layer, and sigmoid
function.

CA � S Conv L Conv gc Fc( ( ( ( ( , (1)

where Fc is the feature graph of the input, gc is the global
pooling function, and S and L represent the sigmoid function
and ReLU function, respectively. Finally, the input feature
map Fc and channel weight CA are multiplied and the
weighted feature map is obtained as shown in

F
∗
c � CA⊗Fc. (2)

Second, the feature map is spatially weighted.*ree 1× 1
traditional convolutions of the input feature map are per-
formed, and the three feature matrixes q, k, and v are ob-
tained. *e correlation matrix M is obtained by multiplying
matrixes q and k. *e softmax normalization operation is
performed on the correlation matrix M to obtain the at-
tention weight in the range [0, 1]. *e weight coefficient is
applied to the feature matrix v, and the residual connection
is made with the input feature map F∗c , so that each local
feature is weighted by all local features. *e weighted feature
map obtained is shown in

F
∗

� softmax q⊗ k
T

 ⊗ v + F
∗
c . (3)

Finally, the feature graph F∗, which has been weighted by
channel and space, is fused by the MLP, and local features fr
containing context correlation are obtained by matrix ad-
dition. All local regional features are then aggregated by
PointNet to obtain the global feature fg. To demonstrate the
correctness of the CASA module, we verify its point cloud
classification effect in the ablation study (Section 4.3).

3.3. Negative Constraint Loss Function (NC-Loss) Unit.
Inspired by [33, 34], in order to further improve the dis-
crimination ability of the point cloud classification network,
a loss function (NC-loss) with negative information con-
straints is proposed in this paper. *e point cloud with the
same label as the output feature is called positive infor-
mation, while the point cloud with different labels from the
output feature is called negative information. As shown in
Figure 2, the red dotted box represents the feature space of
the constructed NC-loss. In the feature space, NC-loss can
not only close the features of positive information and the
output features, but also push the features of negative in-
formation and the output features farther.

In the proposed NC-loss, an output feature is selected
from the local features fr containing context correlation. In
this paper, the features of all input point cloud samples are
traversed to ensure that the feature of each point cloud
sample has the opportunity to be selected as output features.
In the feature space, the distances between point clouds of
the same class are minimized and the distances between
point clouds of different classes are maximized. *erefore,
the regularization loss function of contrastive learning is
defined in

Lnc � 
B

i�1
D Fi, FP(  − D Fi, FN(  , (4)

where D (x, y) represents the L1 distance between x and y.
*e number of input point cloud samples is B, and
i ∈ I ≡ 1, . . . , B{ } represents the ith point cloud sample se-
lected as the output feature. P(i) is the set of positive point
cloud samples, which contains all the point clouds in the B
samples with the same label as the output feature. N(i) is the
set of negative point cloud sample, which contains all the
point clouds in the B samples with the same label as the
output feature. F � MLP(fr) ∈ RDM means that the local
features fr containing context correlation become the feature
matrixes F after MLP mapping; i.e., Fi, FP, and FN represent
the output feature matrixes, the positive sample feature
matrixes, and negative information sample feature matrixes,
respectively, where DM is a constant 256.

3.4. DANC-Net Totally Loss Function. For the task of point
cloud classification, we use the cross-entropy loss function to
measure the distance between the predicted values of 3D
point cloud samples and the ground-truth. *e calculation
method of cross-entropy loss is as follows:

L(P) � − 
c

k�1
yk ln yk( , (5)

where yk ∈ 0, 1{ } indicates the kth value in the label vector.
yk ∈ [0, 1] indicates the probability that the prediction
sample P belongs to the kth class.

*erefore, the finally loss function L of our DANC-Net
consists of a classification loss function and a negative
constraint loss function (NC-loss). *e final loss function L
can be expressed as follows:

L � L(p) + λLnc � L(p) + λ
B

i�1
D Fi, FP(  − D Fi, FN( .

(6)

In formula (6), λ is the penalty parameter used to balance
the classification loss and NC-loss. *e ablation experiment
results show that the classification accuracy of the DANC-
Net based on the dual-attention CASA module can be
further improved by using NC-loss.

4. Experiments and Result Analysis

We used three benchmark datasets, ModelNet10, Mod-
elNet40, and ScanObjectNN, to compare our DANC-Net
with the state-of-the-art point cloud classification algo-
rithms [6, 8, 14–16, 24, 35–40]. *e synthetic datasets
ModelNet10 and ModelNet40 are subsets of ModelNet (a
large 3D CAD model dataset). Each point cloud sampled
from the grid contains 10,000 points and normal vectors,
and the coordinates are normalized to unit spheres. Sca-
nObjectNN is a real-world dataset of point cloud objects,
constructed from indoor scene scanning. More details about
three benchmark datasets can be found in Table 1.
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In robustness test, 80% and 20% of the total models were
randomly selected as the training set and test set. In the
experiment using ModelNet10 and ModelNet40, 1024
points with normals were sampled, and the normals were
used in the ordering algorithm in A-CNN.

*e hardware environment of the experiments included
an RTX 2080 Ti graphics card, 12GB videomemory, Ubuntu
18.04 operating system, and CUDA 10.1 + cuDNN
7.6.5 + TensorFlow 1.3.0 + Python 3.6. In Tables 2–4, the
highest, second highest, and third highest classification
accuracies are indicated by bold, underline, and italic text,
respectively.

4.1. Parameters. For experiments on three benchmark
datasets, 1024 points from 3Dmeshes are sampled randomly
as the input of the DANC-Net. *e data augmentation
method was the same as that of A-CNN. *e loss included
classification loss and comparison loss, as defined in (6), and
the classification loss used the cross-entropy loss function.
Using the Adam optimizer, the initial learning rate was set to
0.001 and attenuated at a decay rate of 0.7 per 200,000 steps.
*e classification model was trained for 250 epochs with a
batch_size of 16. In the experiment, the penalty parameter
was set to 1.0.

4.2. Comparison Experiments andAnalysis. We demonstrate
the effectiveness of our DANC-Net on ModelNet40 and
ModelNet10 datasets though comparison experiments. As
shown in Tables 2 and 3, using the datasets ModelNet10 and
ModelNet40, our DANC-Net was compared with the state-
of-the-art point cloud classification methods based on deep
learning. *e quantitative evaluation of the classification
performance of models in experiments adopts the com-
monly used evaluation metrics for point cloud classification:
mean per-class accuracy (mA) and overall accuracy (OA).
mA and OA are defined by

mA � 
c

i�1

num(TP)i

numi

×
1
c
. (7)

OA �


c
i�1 num(TP)i

T
. (8)

where num(TP)i represents the number of 3D meshed
shapes correctly classified into category i; numi represents
the number of 3D meshed shapes that belong to category i;
and Trepresents the total number of 3Dmeshed shapes to be
predicted. In Tables 2 and 3, the top three mA and OA are
highlighted by bold, underline, and italic text, respectively.

Furthermore, the classification results of the methods used
for comparison are obtained from corresponding papers. If
the data and results are not given in the paper, we will
download the codes of the models. *e classification results
are obtained by training and testing the models in the
corresponding experimental environment. Moreover, “-”
means that the dataset cannot be used by the methods or the
codes are not provided in the paper.

4.2.1. Comparison Experiments on ModelNet10 Dataset.
*e DANC-Net achieves the best classification performance
with 95.5 OA and 95.4mA on ModelNet10 (Table 2).

(1) Comparison with the deep learning point cloud
classification methods based on voxel grid.
In Table 2, we compare DANC-Net with 3DSha-
peNets and VoxNet methods based on voxel grid on
ModelNet10. We observe that our DANC-Net
achieves 12.0 OA and 3.5 OA more than 3DSha-
peNets and VoxNet. For 3DShapeNets and VoxNet,
the classification performance is low because the
invariance of point cloud cannot be maintained
when point cloud is converted to 3D voxel grids. For
our DANC-Net, conversion of point cloud to other
forms is not required, and the invariance of point
cloud is retained, achieving high classification
accuracy.

(2) Comparison with the deep learning classification
methods based on point cloud.

As shown in Table 2, we can observe that (1) compared
with the classical PointNet and PointNet++, mA of our
DANC-Net is increased by 1.2 and 0.7, and OA is increased
by 1.1 and 0.6, respectively, on ModelNet10. (2) Compared
with Kd-Net [35] and DGCNN [36], mA is increased by 1.9
and 0.6, and OA is improved by 1.5 and 0.6, respectively. (3)
Compared with A-CNN, our DANC-Net has achieved an
improvement of 1.0mA and 0.9 OA on ModelNet10. Our
DANC-Net achieves high performance because the CASA
module can adjust both spatial weights of features and
channel weights of features. Furthermore, our DANC-Net
adds negative information constraint, so the classification
accuracy is higher than that of other methods.

4.2.2. Contrast Experiments on ModelNet40 Dataset. *e
DANC-Net achieved the highest classification accuracy with
92.9 OA and 90.5mA on ModelNet40 (Table 3).

(1) Comparison with the deep learning point cloud
classification methods based on voxel grid.

Table 1: Distribution of training and test sets.

Datasets Class
number Training models Testing models Total

models
ModelNet10 10 3991 908 4899
ModelNet40 40 9843 2468 12331

ScanObjectNN 15 80% of the total models were randomly
selected

20% of the total models were randomly
selected 2902
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As shown in Table 3, our DANC-Net achieves
13.2mA and 7.5mA more than 3DShapeNets and
VoxNet, respectively, on ModelNet40 dataset, and
OA is increased by 8.2 and 7.0. Our DANC-Net has
achieved the above improvement because it is more
effective in learning the features of point cloud than
3DShapeNets and VoxNet methods based on voxel.

(2) Comparison with the deep learning classification
methods based on point cloud.

As shown in Table 3, we can observe that (1) mA of our
DANC-Net is increased by 4.3 and 2.3, and OA is improved
by 3.7 and 2.3, respectively, compared with the classical
PointNet and PointNet ++. (2) Compared to Kd-Net based
on KD tree, mA of our DANC-Net is increased by 2.0, and
OA is improved by 1.1. (3) Compared to DGCNN,
PointCNN, and A-CNN based on convolution, mA of our
DANC-Net is increased by 1.1, 2.4, and 0.6, respectively,
and OA is increased by 1.1, 0.7, and 0.7, respectively. (4)
Compared with the recent point cloud classification net-
work PointHop [37] and MRFGAT [38], mA of our
DANC-Net is increased by 6.1 and 0.4, and OA is increased
by 3.8 and 0.4. Our DANC-Net demonstrates high clas-
sification performance because it extracts local features of

point clouds to obtain more information. In addition, in
order to obtain higher classification accuracy, CASA is
added to our DANC-Net, which can take advantage of local
feature correlations.

Meanwhile, mA of our DANC-Net is increased by 1.1,
and OA is increased by 0.6, respectively, compared with
DGANet [39]. *ere are two reasons for achieving high
performance: (1) our DANC-Net can dynamically weight
local features by CASA module. (2) Loss function with
negative constraint is used to eliminate the interference
between point cloud categories with similar structures. In
contrast, DGANet introduces offset attention into graph-
based methods. *e accuracy of constructing local graph
impacts the results of feature extraction. As a consequence,
the classification accuracy of DGANet is inferior to our
DANC-Net.

Besides, we compare our method with SRN-PointNet++
[40], which can extract geometrical relationship between
points. OA of our DANC-Net is 1.4 higher than that of SRN-
PointNet++. We think that (1) our DANC-Net uses CASA
to assign different weights to features, improving the
flexibility of network. SRN-PointNet++ uses MLPs to
obtain geometrical relationship between points, and the
weights are the same for each local feature. *erefore, the
classification accuracy of SRN-PointNet++ is not as good
as that of our DANC-Net. (2) ModelNet40 contains much
more categories of 3D point cloud shape than Mod-
elNet10. *erefore, the point clouds in ModelNet40 have
higher shape similarity and smaller distance between
categories than those in ModelNet10. Under the cir-
cumstances, the loss function with negative constraint
plays a prominent role, which further improves the
classification performance of DANC-Net. To sum up, our
proposed DANC-Net obtains the better performance in
the final results than other deep learning methods on the
task of point cloud classification.

*e OA changes of our DANC-Net, PointNet, and
A-CNN with epoch times are depicted in Figure 4. It can be
found that (1) the OA of our DANC-Net is consistently
higher than that of A-CNN when the OA reaches a sta-
tionary stage. (2)*e OA of our DANC-Net is always higher
than that of PointNet throughout the testing process.

4.3.AblationStudy. In order to verify the effectiveness of the
dual-attention CASA module and the loss function with
negative constraint (NC-loss) in our DANC-Net network,
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Figure 4: Variation of the overall accuracy (OA) in % on Mod-
elNet40 with 250 epochs.

Table 2: Classification performance on ModelNet10. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods Input Points (k) mA (%) OA (%)
VoxNet (IROS 2015) Points 1 — 92.0
3DShapeNets (CVPR 2016) Points 1 — 83.5
PointNet (CVPR 2017) Points 1 94.2 94.4
PointNet++ (CVPR 2017) Points + normal 5 94.7 94.9
Kd-Net (ICCV 2017) Points 32 93.5 94.0
DGCNN (TOG 2019) Points 1 94.8 94.9
A-CNN (CVPR 2019) Points + normal 1 94.4 94.6
Ours Points + normal 1 95.4 95.5
Input and points represent the input data type and the number of sampling points, respectively.
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this paper conducts ablation experiments onModelNet10 and
ModelNet40 datasets. Besides our DANC-Net, three addi-
tional models are designed in these experiments, including
A-CNN, A-CNN+CASA module, and A-CNN+NC-loss.

In Figure 5, we observe that (1) CASA module and NC-
loss contribute different degrees of improvement in classi-
fication performance from A-CNN to A-CNN+CASA and
from A-CNN to A-CNN+NC-loss. (2) When both CASA
module and NC-loss are added to the A-CNN, the classi-
fication accuracy will reach the maximum.

4.4. Robustness Test. We employ ScanObjectNN dataset to
test the robustness of our DANC-Net. *e objects in Sca-
nObjectNN, which are selected from SceneNN [41] and

ScanNet [42] scenes, are screened by the bounding boxes. In
Table 4, we summarize the OAs of our DANC-Net and the
state-of-the-art methods on ScanObjectNN dataset. In Ta-
ble 4, OBJ_BG, PB_T25, PB_T25_R, PB_T50_R, and
PB_T50_RS are five subsets of ScanObjectNN. OBJ_BG is
point cloud with background, and PB denotes point cloud
with random disturbance. T25 or T50 denotes point cloud
after translation of 25% or 50% is performed. R and S denote
rotation and scaling, respectively.

As presented in Table 4, we find that (1) our DANC-Net
achieves the highest OA of 86.4 in OBJ_BG (without per-
turbation), compared with other methods. (2) Our DANC-
Net also outperforms other methods on disturbed
PB_T25_R, PB_T50_R, and PB_T50_RS datasets. (3)
Overall, our DANC-Net has the highest average OA of 83.8
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Figure 5: Classification effects of ablation experiments.

Table 3: Classification performance on ModelNet40. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods Input Points (k) mA (%) OA (%)
VoxNet (IROS 2015) Points 1 83.0 85.9
3DShapeNets (CVPR 2016) Points 1 77.3 84.7
PointNet (CVPR 2017) Points 1 86.2 89.2
PointNet++ (CVPR 2017) Points + normal 5 87.9 91.9
Kd-Net (ICCV 2017) Points 32 88.5 91.8
PointCNN (NeurIPS 2018) Points + normal 1 88.1 92.2
DGCNN (TOG 2019) Points 1 90.2 92.3
A-CNN (CVPR 2019) Points + normal 1 89.9 92.2
SRN-PointNet++ (CVPR 2019) Points 1 — 91.5
PointHop (IEEE T MULTIMEDIA 2020) Points 1 84.4 89.1
DGANet (remote sensing 2021) Points 1 89.4 92.3
MRFGAT (INT J ANTENN PROPAG 2021) Points 1 90.1 92.5
Ours Points + normal 1 90.5 92.9
Input and points represent the input data type and the number of sampling points, respectively.

Table 4: Overall accuracy in % on ScanObjectNN. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods OBJ_BG PB_T25 PB_T25_R PB_T50_R PB_T50_RS Mean of OA
PointNet 79.0 74.5 73.2 69.3 67.8 72.7
PointNet++ 83.5 85.4 82.8 80.9 78.7 82.2
DGCNN 85.3 85.7 83.8 80.9 81.0 83.3
A-CNN 85.1 83.2 83.5 81.8 81.4 83.0
Ours 86.4 84.3 84.0 82.7 81.8 83.8
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on ScanObjectNN. In summary, our DAC-Net performs
better than other methods, which demonstrates its robust-
ness on real-world datasets.

Figure 6 shows the robustness of our DANC-Net when
ModelNet40 dataset is used for the test, in which 25%, 50%,
62.5%, 75%, and 87.5% of the input sampling points are
randomly selected and discarded. *e number of sampling
points for training and testing is the same.

As shown in Figure 6, (1) our DANC-Net also achieves
the highest classification accuracy, no matter whether the
input point cloud is dense or sparse. (2) Compared with
DANC-Net when 1024 sampling points are used, when 25%
of sampling points are randomly dropped, the OA of the
DANC-Net is only 0.6 lower. (3) Compared with PointNet
when 1024 sampling points are used, when 87.5% of sam-
pling points are randomly dropped, the OA of the DANC-
Net is higher. It is shown that our DANC-Net is robust to
point cloud sparsity.

5. Conclusions

At present, most point cloud classification models fail to
explore the correlation between local regional features, and
they use ground-truth as positive information to guide the
network training, ignoring negative information. In view of
this issue, we propose a new model of dual-attention and
negative constraint network (DANC-Net). Our DANC-Net
strengthens the interaction between local features of point
cloud signals from both channel and space. At the same time,
positive information and negative information are used
effectively to improve the classification ability of our DANC-
Net. Experimental results on synthetic datasets demonstrate
that our DANC-Net successfully achieves high classification
performance on point cloud classification tasks. Experi-
mental results on real-world datasets confirm that our
DANC-Net is robust. In the contrastive learning, the hard
negative example is beneficial to enhance the ability of the
network to distinguish between signal and noise. *erefore,
in the future, we will explore new strategies to increase the

number of the hard negative samples, so as to improve the
classification ability of the DANC-Net.
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