
Research Article
Fast Tensor-Based Joint Estimation for Time Delay and Angle of
Arrival in OFDM System

Jinzhi Du , Weijia Cui , Bin Ba, Chunxiao Jian, and Haiyun Xu

National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450001, Henan Province, China

Correspondence should be addressed to Jinzhi Du; dujinzhi0811@163.com

Received 11 April 2022; Revised 27 August 2022; Accepted 19 September 2022; Published 27 September 2022

Academic Editor: Hervé Aubert
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Nowadays, the joint estimation of time delay (TD) and angle of arrival (AOA) using conventional vector structure su�ers from the
considerable complexity of multidimensional spectrum search. �erefore, a fast estimation method using orthogonal frequency
division multiplexing (OFDM) technology and uniform planar array (UPA) is proposed in this paper, which adopts low-
complexity tensor-based operations and spatial-frequency features to recon�gure the channel frequency response. To begin with,
the array response is integrated with the OFDM signal characteristics to build an extended array in tensor form. Afterwards, we
process the covariance matrix of the tensor structure by CANDECOMP/PARAFAC decomposition (CPD) to separate the
respective signal subspaces of TD and AOA estimates. Finally, we conduct a one-dimensional (1-D) spectrum search to locate the
TD estimates and a two-dimensional (2-D) spectrum search to locate the AOA estimates. �e simulated performance dem-
onstrates that the proposed algorithm o�ers precise estimates at low signal-to-noise ratios in a multipath environment and
outperforms traditional vector-based algorithms with respect to computational complexity.

1. Introduction

Orthogonal frequency division multiplexing (OFDM), a
multicarrier digital modulation technique, uses multiple
parallel subcarriers to achieve serial high-rate data com-
munication. �e subcarriers are orthogonal to each other,
which can combat frequency-selective fading in an e�ective
way. Moreover, the OFDM system can o�er data tra�c and
positioning services to users, which are extensively applied
in 5G mobile communication [1], IEEE 802.11 protocol [2],
satellite communication [3], intelligence steer [4], and un-
derwater acoustic communication [5]. Time delay (TD) and
angle of arrival (AOA) are signi�cant factors for positioning
systems, as for indoor localization [6] and radar [7]. �e
frequency-domain AOA estimation algorithm [8] is studied
with the same multiple signal classi�cation (MUSIC) ap-
proach as the time-domain narrowband signal model.
However, its capability is limited due to the size of the array
aperture. �e algorithm in [9] proposes a TD estimation
method for OFDM signals, but this algorithm is not available
in multipath environments. As researchers choose super-

resolution approaches like MUSIC [10], estimating signal
parameters via the rotational invariance techniques (ES-
PRIT) [11], the propagator method (PM) [12], and com-
pressive sensing [13], it is di�cult for them to enhance the
estimation accuracy due to the restrictions of the signal
bandwidth.

�e joint estimation of TD and AOA with spatio-time
parameter coupling characteristics not only increase the
accuracy but also decrease the amount of receiving nodes,
thus reducing the system overhead and improving the ef-
�ciency of the positioning system. Hence, the joint esti-
mation methods employed are important. In addition, a
method presented in [14] solves TD under wideband signal
conditions and then estimates AOA according to the tri-
angular geometry with TD inequality, but its performance is
not signi�cantly improved. In further, a method for con-
structing an extended channel frequency response to obtain
highly accurate joint estimation using an OFDM system is
proposed in [15]. Nevertheless, the complexity of the
method is extremely high due to the need for full-�eld-of-
view search.
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Tensor as an efficient way to process multidimensional
data have achieved extensive research and applications in
fields such as machine learning [16], image processing [17],
MIMO radar [18], and vehicle-to-everything communica-
tion [19]. Unlike traditional vector bases, tensor processing,
with the help of data Kronecker structural properties, breaks
up large-scale matrix operations into multiple small-scale
matrix operations, avoiding additional overhead due to
repeated calculations.

Most of the above algorithms use uniform linear arrays
(ULA) [20] for parameter estimation. Due to the one-di-
mensional (1-D) structure, only azimuthal angles can be
estimated, and two-dimensional (2-D) angle search cannot
be achieved. ,is paper studies the joint estimation for TD
and AOA of OFDM techniques under uniform planar arrays
(UPA) [21], which are commonly used in practical engi-
neering to obtain stable 2-D angle estimates.

Furthermore, we propose a joint estimation algorithm for
multipath environments that functions to keep the estimation
precision highly while reducing the considerable complexity
associated with spectrum peak search methods. ,e channel
frequency response of multiple subcarriers of the OFDM
signal combined with the array response of the receiving
antenna can be applied to construct an extended virtual array
response with accurate estimation. We reconfigure the ex-
tended virtual array response by taking advantage of the
structure of the tensor structure, which reduces the spectrum
peak search dimension while maintaining the original esti-
mation accuracy. Moreover, we can estimate TD and AOA
separately, which greatly reduces the complexity.

,e rest of the paper is summarized as follows. At first, we
introduce the signal model and the corresponding joint es-
timation algorithm applied to the vector-based algorithm in
Section 2. In Section 3, we describe the transformation of the
signal model under a tensor structure and the corresponding
joint estimation algorithm and further outline the algorithm
procedure. We perform the complexity analyses in Section 4.
For Section 5, we analyze the simulation performance. In the
end, we summarize our efforts in Section 6. ,e notations
used in this paper are described in Table 1.

2. Vector-Based Algorism

2.1. Signal Model. ,e array sensors used in this paper
consist of M × M array sensors as illustrated in Figure 1.,e
function of this model is to estimate TD and AOA without
needing to set the signal source position. Scholars typically
model multipath wireless propagation channels typically as
complex low-pass equivalent impulse responses. Following
channel estimation, the channel impact response of the array
sensor at location (x, y) in the sth snapshot is denoted as
follows:where K indicates the quantity of multipaths,
α(s)

k ejβ(S)

k is the complex attenuation in the kth path, α(s)
k is its

amplitude, β(s)
k is its phase, which matches the uniform

distribution with density function U(0, 2π).

h
(s)
x,y(t) � 􏽘

K

k�1
α(s)

k e
jβ(s)

k δ t − τk − ξk,x,y􏼐 􏼑, (1)

We assume that the reference array sensor is the array
sensor at the origin of the coordinate axis. In the multipath
environment, the propagation delay of the signal source
reaching the reference array sensor via the kth path is τk.
And, the relative delay of the array sensor at (x, y) is ξk,x,y,
denoted as follows:

ξk,x,y �
λ sin θk x cos φk + y sin φk( 􏼁

2c
, (2)

In which λ is the impinging signal wavelength; (φk, θk) is the
direction of the incident signal.

We assume that the quantity of OFDM subcarriers is L.
After the Fourier transform of (1), the channel frequency
domain response for the lth subcarrier at the (x, y) array
sensor can be obtained as follows:

H
(s)
l,x,y � 􏽘

K

k�1
α(s)

k e
jβ(s)

k e
− j2π fc+Δfl( ) τk+ξk,x,y( 􏼁

+ n
(s)
l,x,y, (3)

where Δf is the subcarrier spacing, fc is the carrier fre-
quency, and n

(s)
l,x,y is additive white Gaussian noise at power

σ2. From (3), the channel frequency response for lth sub-
carrier is obtained as follows:

Table 1: Notations.

Identity matrix I
Transpose (•)T

Conjugate (•)∗

Hermitian transpose (•)H

Kronecker product ⊗
Khatri-rao product ⊙
Tensor outer product °
Orthogonalization orth[•]

Statistical expectation E •{ }

Tensor contraction along the qth dimension 〈•, •〉 q{ }

Z

y

x

θk

φk

Figure 1: Signal arrives in UPA.
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� Al(τ, ξ)ρ(s)
+ n(s)

l , (4)

where

τ � τ1 τ2 · · · τK􏼂 􏼃
T
,

ξ � ξ1 ξ2 · · · ξK􏼂 􏼃,

ξk � ξk,0,0 ξk,0,1 · · · ξk,M− 1,M− 1􏼂 􏼃
T
,

ρ(s)
k � α(s)

k e
jβ(s)

k ,

ρ(s)
� α(s)

1 ejβ(s)
1 α(s)

2 ejβ(s)
2 · · · α(s)

k ejβ(s)

k􏽨 􏽩
T
,

Al(τ, ξ) � al τ1, ξ1( 􏼁 · · · al τK, ξK( 􏼁􏼂 􏼃,

al τk, ξk( 􏼁 � al τk, ξk,0,0􏼐 􏼑 · · · al τk, ξk,M− 1,M− 1􏼐 􏼑􏽨 􏽩
T
.

(5)

In which al(τk, ξk,x,y) � e− j2π(fc+Δfl)(τk+ξk,x,y), and

n
(s)
l � n

(s)
l,0,0 n

(s)
l,1,0 · · · n

(s)
l,M−1,M−1􏽨 􏽩

T
. (6)

In case there are a total of S snapshots, (4) is denoted by
the following equation:

Hl � Al(τ, ξ)ρ + nl, (7)

where

ρ � ρ(1) ρ(2)
· · · ρ(S)􏽨 􏽩,

nl � n(1)
l n(2)

l · · · n(S)
l

􏽨 􏽩.
(8)

According to the space-time equivalence, OFDM signal
subcarriers can be analogous to the array sensors. Based on
the space signal processing algorithm, an extended channel
frequency response (EX-Response) matrix H ∈ CM2L×S with
coupled spatial-frequency information can be constructed
whose expression is

H �

H0

H1

⋮

HL−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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�

A0(τ, ξ)

A1(τ, ξ)

⋮

AL−1(τ, ξ)
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ρ + N � A(τ, ξ)ρ + N,

(9)

where

N � nT
0 nT

1 · · · nT
L−1( 􏼁

T
. (10)

,e model converts the time domain information to the
frequency domain for processing and has the same structure
as the traditional time domain narrowband model. In ad-
dition, building an EX-Response has two obvious merits. On
the one hand, the virtual bandwidth is enlarged to M2

multiples of the actual bandwidth. On the other hand, the
virtual aperture is enlarged to L multiples of the actual

aperture. From the perspective of parameter estimation, the
bandwidth and aperture expansion will improve the per-
formance of estimating TD and AOA.

2.2. 3e Joint TD and AOA Estimation. Combining (9), the
covariance matrix can be defined for;

RH �
1
S
HHH

� A(τ, ξ)RρA(τ, ξ)H
+ σ2IM2L, (11)

where Rρ is a complex attenuation covariance matrix. When
the complex attenuations are independent, rank(Rρ) � K.
Due to rank(A(τ, ξ)) � K and rank(A(τ, ξ)Rρ
A(τ, ξ)H) � K, the situation satisfies the requirements for
using the MUSIC method. Furthermore, the eigenvalue
decomposition of RH can be expressed as follows:

RH � USΣSU
H
S + UNΣNU

H
N, (12)

where ΣN � σ2IM2−K is a diagonal matrix of M2 − K ei-
genvalues, and UN is the noise subspace. ,erefore, the joint
estimated spatial spatial expression is expressed as follows:

P(τ, θ, φ) � UH
NA(τ, ξ)

����
����

−2
2 . (13)

Although (􏽢τ, 􏽢θ, 􏽢φ) is obtained by the three-dimensional
(3-D) MUSIC approach with excellent estimation accuracy,
the 3-D spectral peak search complexity is unacceptably
high.

3. Tensor-Based Algorism

3.1. SignalModel. In the joint direction matrix A(τ, ξ) of the
vector basis, the propagation delay phase and the relative
delay phase are stacked on the matrix columns by the
Kronecker product, which are M2L × K dimensional ma-
trices. ,e covariance matrix RH generated by A(τ, ξ)

contains a large number of redundant terms, which imposes
a serious computational burden on the 3-D spectrum peak
search. In tensor operations, the large-scale matrix com-
putation is decomposed into small-scale matrix computa-
tion, thus considerably reducing the computational load. In
order to preserve the spatial-frequency characteristics of the
EX-Response, the S snapshots are connected along the time
dimension to form a 3-D tensor. ,us the tensor equivalent
H ∈ CM2×L×S of (9) is

H � A(τ, ξ)°ρT + N

� V°T°ρT + N,
(14)

where.

Tk �

e
− j2πfcτk

e
− j2π fc+Δf( )τk

⋮

​ e− j2π fc+Δf(l− 1)τk( ​

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

​ ⊙ ​

e
− j2πΔf(0)ξk,0,0

e
− j2πΔf(1)ξk,0,1

⋮

​ e− j2πΔf(l− 1)ξk,M−1,M−1 ​

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

T � T1 T2 · · · TK􏼂 􏼃.

(15)
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Considering the practical situation, the relative time is
considerably less compared to the propagation delay, and
the subcarrier relative delay is even smaller, which means
that it can be neglected. ,us, the equation can be estab-
lished as follows:

Tk � e− j2πfcτk e− j2π fc+Δf( )τk · · · e− j2π fc+Δf(l− 1)( )τk􏽨 􏽩
T

≈ Tk,

T � T1 T2 · · · TK􏼂 􏼃 ≈ T.

(16)

,erefore, in order to separate the propagation time delay
phase from the relative time delay phase, (3) can be ap-
proximated as follows:

H ≈V°T°ρT + N, (17)

where

Vk � e− j2πfcξk,0,0 e− j2πfcξk,0,1 · · · e− j2πfcξk,M−1,M−1􏽨 􏽩
T
,

V � V1 V2 · · · VK􏼂 􏼃,
(18)

In which N is additive white Gaussian noise in the same
dimension as H with power of σ2.

3.2. 3e Joint TD and AOA Estimation. In (17), the tensor
covariance matrix RH ∈ CM2×L×M2×L can be obtained as
follows:

RH � E 〈H,H
∗〉 3{ }􏽨 􏽩

� 􏽘

K

k�1
β2kVk°Tk°V

∗
k °T
∗
k + NR,

(19)

where β2k � E[ρT
k (ρT

k )∗] is the complex decay of the kth path
and ρk � ρ(1)

k ρ(2)
k · · · ρ(S)

k
􏽨 􏽩; NR � E[〈N,N∗〉 3{ }] is the

noise term. In practice, the tensor covariancematrixRH can
be estimated as follows:

􏽢RH �
1
S
〈H,H

∗〉 3{ }. (20)

,e CANDECOMP/PARAFAC decomposition (CPD)
[22] is a common method for splitting a high-dimensional
tensor. We perform CPD on the four-dimensional tensor
􏽢RH to obtain a sum RCP ∈ CM2×K,L×K,M2×K,L×K of com-
ponent rank-one tensors as follows:

RCP � VCP􏼂 􏼃, TCP􏼂 􏼃, V
∗
CP􏼂 􏼃, T

∗
CP􏼂 􏼃. (21)

While the complex attenuations are independent, then
there is

rank VCP( 􏼁 + rank TCP( 􏼁 + rank V
∗
CP( 􏼁

+ rank T
∗
CP( 􏼁≥ 2K + N − 1.

(22)

Furthermore, the uniqueness of the CPD is satisfied [22],
where N is the number of matrices obtained by the CPD or
the dimension of the decomposed matrix. We extract the
signal subspace TCP from RCP for TD estimation and the
signal subspace VCP for AOA estimation.

3.2.1. TD Estimation. We obtain the noise subspace UntUH
nt

for TD estimation from the orthogonal complementary
subspace of the signal subspace TCP as follows:

UntU
H
nt � I − orth TCP( 􏼁orth TCP( 􏼁

H
. (23)

,en, the spatial spectrum expression of the TD estimate can
be obtained as follows:

P(τ) �
1

T(τ)
H UntU

H
nt􏼐 􏼑T(τ)

. (24)

When K<L, we adopt the 1-DMUSICmethod to obtain
the 􏽢τ value, which has a higher estimation accuracy and
greatly reduces the computational complexity compared to
the 3-D algorithm.

3.2.2. AOA Estimation. We obtain the noise subspace
UnaUH

na for AOA estimation from the orthogonal comple-
mentary subspace of the signal subspace VCP as follows:

UnaU
H
na � I − orth VCP( 􏼁orth VCP( 􏼁

H
. (25)

,en, the spatial spectrum expression of the AOA estimate
can be obtained as follows:

P(θ, φ) �
1

V(θ, φ)
H UnaU

H
na􏼐 􏼑V(θ, φ)

. (26)

When K<M, we use the 2-D MUSIC method to obtain
the (􏽢θ, 􏽢φ) value, which has a higher estimation accuracy and
greatly reduces the computational complexity compared to
the 3-D algorithm.

3.2.3. Algorithm Steps. Table 2 lists the main processes of the
proposed algorithm.

4. Algorithm Complexity Analysis

,is section analyzes the complexity of the proposed tensor-
based algorithm (EX-Proposed) under the EX-Response
model and compares it with the corresponding vector-based
algorithm (EX-Vector-Based). For the simulation compar-
ison in V, the complexity of the tensor-based algorithm
(Proposed) and the corresponding vector-based algorithm
(Vector-Based) employing a single-frequency model [8] is
also compared.

,e complexity of the algorithms can be split into vector-
based covariance matrix computation, tensor-based co-
variance matrix computation, eigenvalue decomposition,
CPD, and 1-D spectrum peak search, which are O(SM4L2),
O(SM4L), O(M6L3), O(2NKM4L2 + NK3), and O(M2L

(M2L − K)G), separately, in which G represents the number
of spectrum points in the 1-D search. ,erefore, the com-
plexity of the EX-Proposed is O(M4L(S + 2NKL) + NK3 +

M 2L(M2L − K)(GφGθ + Gτ)). ,e cost of the EX-Vector-
Based is O((S + M2L)M4L2 + M2L(M2L − K)GφGθGτ), in
which Gφ, Gθ and Gτ indicate the quantity of searches for
azimuth, elevation, and propagation delay, separately.
Furthermore, the complexity of the single-frequency model
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algorithms, i.e., Proposed and Vector-Based are O(M4(SL +

2NK) + NK3 + M2(M2 − K)(GφGθ + Gτ)) and O((SL+

M2)M4 + M2(M2 − K)GφGθGτ), separately. In order to
compare clearly, Table 3 summarizes the complexity of all
methods. Furthermore, the complexity of the algorithms are
compared in terms of snapshots (S), the number of sensors
(M) , and the searching step (Δτ and Δφ � Δθ, where
Gφ � 360/Δφ, Gθ � 90/Δθ) in Figure 2(a)–2(d), respectively.
For correspondence with subsequent simulations, we set
L � 64, K � 3, and N � 4. ,e other parameters are de-
scribed in Figure 2.

From Figure 2, the complexity of EX-Vector-based and
Vector-based are extremely high due to the huge number of
spectrum points, particularly in the condition of small
spectrum steps. In contrast, tensor-based Proposed and EX-
Proposed use CPD to handle the covariance matrix for
reducing the dimensionality of the spectrum peak search.
,us, both methods significantly decrease the complexity. In
contrast to the Proposed method, EX-Proposed adopts an
EX-Response model, which has higher complexity and
better estimation accuracy.

5. Simulation Results

,is section performs a simulation experiment analysis in
which the proposed tensor-based algorithm is compared
with the vector-based algorithm. Furthermore, the improved
algorithm using the EX-Response model is also compared
with the corresponding vector-based algorithm. ,e Cra-
mer–Rao bound (CRB) [23] is a threshold for the unbiased
estimation variance of the proposed model and can be used
as a performance reference benchmark.

Firstly, we assume that the parameter estimates are all
performed individually with S snapshots, so the joint
probability density function is expressed as follows:

f(H(1), . . . ,H(S)) �
1

(2π)
M2LS σ2/2􏼐 􏼑

M2LS

e
​ − 1/σ2( )􏽐

S

s�1
(H(s)−Aρ(s)H(H(s)−Aρ(s))

.

(27)

,en, taking the log-likelihood function of (25), we obtain
the following equation:

Lo(H(1), . . . ,H(S)) � −M
2
LSln(2π) − M

2
LSln σ2/2􏼐 􏼑

−
1
σ2

􏽘

S

s�1
(H(s) − Aρ(s)

H
(H(s) − Aρ(s)).

(28)

Define η � [τT, θT,φT]T. In addition, 􏽥ρ(s) and ρ(s) are the
imaginary part and real part of ρ(s), respectively, which are
indicated as ρ(s) � Re[ρ(s)] and 􏽥ρ(s) � Im[ρ(s)]. ,e
Fisher information matrix is Ω � [E(ψψT)], where

ψT ​ �
zL o

z
σ2 ​ ​ ρT

(1)​ ​ 􏽥ρT
(1)​ ​ · · · ​ ​ ρT

(S)​ ​ 􏽥ρT
(S)​ ​ ηT􏽨 􏽩.

(29)

For the Fisher information matrix, the CRB of η conforms,

CRB(η) �
σ2

2
􏽘

S

s�1
Re FH

(s)BHP⊥ABF(s)􏽨 􏽩
⎧⎨

⎩

⎫⎬

⎭

− 1

, (30)

where

B � Bθ Bφ Bτ􏽨 􏽩,

Bθ � bθ1 bθ2 · · · bθK
􏽨 􏽩,

Bφ � bφ1 bφ2
· · · bφK

􏽨 􏽩,

Bτ � bτ1 bτ2 · · · bτK
􏽨 􏽩,

bθk
�

zAT
k

zθk

􏼢 􏼣

T

, bφk
�

zAT
k

zφk

􏼢 􏼣

T

, bτk
�

zAT
k

zτk

􏼢 􏼣

T

,

A � A1 A2 · · · AK􏼂 􏼃,

P⊥A � I − PA � I − A AHA􏼐 􏼑
−1
AH

,

F(s) � I⊗ diag(ρ(s)).

(31)

We perform simulations using OFDM signals with L �

64 subcarriers, fast Fourier transform period TFFT � 32us,
carrier frequency fc � 2.4GHz , and bandwidth B � 20MHz.
Used UPA contains 4 × 4 array sensors. We set the spectrum
steps of Δτ � 0.001ns and Δθ � 0.05°. For evaluating the
precision of the methods, we calculate the root mean square
error (RMSE) by the following equation:

RMSE �

�������������

1
QL

􏽘

Q

q�1
λ − 􏽢λi

����
����
2

􏽶
􏽴

, (32)

where Q, 􏽢λi, and λi are the amount of Monte Carlo simu-
lations, the estimated values, and the ith true values,
separately.

Table 2: Algorithm steps.

step1: ,e tensor EX-Response matrix H is constructed according to (26).
step2: ,e tensor covariance matrix RH

⌢

is constructed based on (30).

step3: Perform a CPD of 􏽢RH, which solves the signal subspaces TCP and VCP, and then the corresponding noise
subspaces and are obtained by (33) and (35), respectively. UntUH

nt and UnaUH
na.

step4: Proceeded to conduct a 1-D spectrum peak search for UntUH
nt to solve the 􏽢τ by (34), and a 2-D spectrum peak search

for UnaUH
na to solve the (􏽢θ, 􏽢φ) by (36).
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5.1. Performance at Low Signal-to-Noise Ratio (SNR).
Assume that the quantity of multipath is three, the asso-
ciated delays are 3.5ns, 13.5ns, and 23.5ns, related azimuth
angles are −20°, 0° and 30°, and related elevation angle are
20°, 30°, and 45°, separately. Furthermore, Q � 200 is chosen
and the distribution of TD and AOA under S � 500 and
SNR � −5dB is determined, as illustrated in Figure 3.

Figure 3 indicates that the proposed algorithm (EX-
Proposed) is successful in solving the parameters and the
estimated values are concentrated surrounding the true
values. Furthermore, the proposed algorithm performs ef-
fectively in low SNR.

5.2. Performance versus SNR. ,is part analyzes the capa-
bilities of EX-Proposed, EX-Vector-Based, Proposed, Vec-
tor-Based, and CRB undermultipath component conditions.
Suppose the multipath components are three with the same

parameters as those simulated in A. We choose Q � 200, S �

500 and the spectrum steps of Δτ � 0.001ns and
Δφ � Δθ � 0.05°. In addition, the RMSE performance versus
SNR, with ranges of −15dB to 20dB in 5dB intervals, as
illustrated in Figure 4.

Besides, Figure 4 indicates that the RMSEs of both EX-
Proposed and EX-Vector-Based are much higher than those
of Proposed and Vector-Based using the single-frequency
model. ,e reason is that both algorithms extend the
channel frequency response by combining space-time
characteristics from the vector basis and tensor basis, sep-
arately. ,erefore, the algorithms based on the EX-Response
model have higher estimation accuracy and are closer to the
CRB than the corresponding single-frequency algorithms.

However, the RMSEs of the tensor-based algorithms
(EX-Proposed and Proposed) are both slightly higher than
those of the corresponding vector-based algorithms (EX-
Vector-Based and Vector-Based). ,is is due to the CPD

Table 3: Computational complexity comparison.

Algorithm Complexity
Proposed O(M4(SL + 2NK) + NK3 + M2(M2 − K)(GφGθ + Gτ))

Vector-based O((SL + M2)M4 + M2(M2 − K)GφGθGτ)

EX-proposed O(M4L(S + 2NKL) + NK3 + M2L(M2L − K)(GφGθ + Gτ))

EX-vector-based O((S + M2L)M4L2 + M2L(M2L − K)GφGθGτ)
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Figure 2: Complexity comparison(a) versus S where M � 4, Δθ � 0.05°, and Δτ � 0.001ns(b)versus M where S � 500, Δθ � 0.05°, and
Δτ � 0.001ns(c)versus Δθ where M � 4, S � 500, and Δτ � 0.001ns(d)versus Δτ where M � 4, S � 500, and Δθ � 0.05°.
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Figure 4: Performance comparison versus SNR: (a) azimuth; (b) elevation; (c) TD.
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process (31) of the tensor algorithm is an approximate
operation and the decomposition process has a partial loss of
virtual aperture and virtual bandwidth, but its estimation is
still accurate. When comparing the complexities, the
complexities of EX-Proposed and EX-Vector-Based are
about O(1.39 × 1013) and O(3.39 × 1017), respectively.
,erefore, the proposed algorithm (EX-Proposed) not only
obtains a value estimated with high accuracy but also de-
creases the complexity considerably.

5.3. Performance versus Snapshots. To highlight the impact
of snapshots on RMSE, we set SNR � 15dB, the quantity of
snapshots varies within the range of
S � 20, 50, 100, 200, 500, 1000, 2000, 5000{ }, and the rest of
the simulation parameters are identical to those simulated in

B. As illustrated in Figure 5, the RMSE also decreases along
with the increases in the number of snapshots, but the
declines are gradually plateauing. ,e rest of the results are
the identical to corresponding simulated in B. ,e RMSE of
the proposed tensor-based algorithm (EX-Proposed) is
higher than that of the single-frequency model algorithms
(Proposed and Vector-Based), close to that of the vector-
based algorithm using the EX-Response model (EX-Vector-
Based), while the complexity is much lower.

6. Conclusions

For joint estimation of TD and AOA at UPA and solving the
problem of high computational complexity, we propose a
fast joint estimation algorithm using tensor structures and
OFDM techniques. Furthermore, we combine the receive
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Figure 5: Performance comparison versus snapshots: (a) azimuth; (b) elevation; (c) TD.
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antenna array response and the channel frequency response
of OFDM subcarriers through a tensor structure to obtain
more useable information with less complexity. In summary,
the signal model and the algorithmic process under vector
and tensor structures are first explained, from which we
interpret the correspondence between the two structures.
,e related algorithms are then analyzed for their com-
plexity, which demonstrates the relative advantage of the
proposed method. Lastly, the simulation results illustrate
that the proposed algorithm is considerably less complex
than the conventional vector-based algorithm while main-
taining a higher estimation accuracy.

In the future, we will further exploit the dimensionality
reduction advantage of the proposed algorithm to explore
more algorithms that can match the model, such as spatial
smoothing methods [24], which can increase the robustness
under coherent multipath conditions. Moreover, the ap-
plicability of the tensor structure on the proposed model
fully illustrates its structural advantages and greatly extends
the possibilities of the joint estimation algorithm.

Data Availability

,e authors claim that the data used in this paper are
provided by our simulations and that the material used to
support the findings of this study is available from the
corresponding author on request.

Conflicts of Interest

,e authors declare that they have no conflict of interest.

References

[1] A. Sahin, R. Yang, M. Ghosh, and R. L. Olesen, “An Improved
Unique Word Dft-Spread Ofdm Scheme for 5g Systems,” in
Proceedings of the 2015 IEEE Globecom Workshops (GC
Wkshps), pp. 1–6, IEEE, San Diego, CA, USA, December 2015.

[2] C. Ball, E. Humburg, K. Ivanov, and F. Treml, “Performance
analysis of ieee802. 16 based cellular man with ofdm-256 in
mobile scenarios,”vol. 3, pp. 2061–2066, in Proceedings of the
2005 IEEE 61st Vehicular Technology Conference, vol. 3, IEEE,
Stockholm, Sweden, May 2005.

[3] L. Wang and B. Jezek, “Ofdm modulation schemes for mil-
itary satellite communications,” in Proceedings of the MIL-
COM 2008-2008 IEEE Military Communications Conference,
pp. 1–7, IEEE, San Diego, CA, USA, November 2008.

[4] B. Turan, O. Narmanlioglu, S. C. Ergen, andM. Uysal, “On the
performance of mimo ofdm-based intra-vehicular vlc net-
works,” in Proceedings of the 2016 IEEE 84th Vehicular
Technology Conference (VTC-Fall), pp. 1–5, IEEE, Montreal,
QC, Canada, September 2016.

[5] Y.-X. Guo, X.-A. Song, R.-Q. Zhang, and H. Li, “Research on
underwater acoustic communication system based on ofdm-
oam,” Automatic Control and Computer Sciences, vol. 54,
no. 6, pp. 541–548, 2020.

[6] Y. Zheng, M. Sheng, J. Liu, and J. Li, “Exploiting aoa esti-
mation accuracy for indoor localization: a weighted aoa-based
approach,” IEEE Wireless Communications Letters, vol. 8,
no. 1, pp. 65–68, 2019.

[7] S. Kim, B. Kim, and J. Lee, “Low-complexity-based rd-music
with extrapolation for joint toa and doa at automotive fmcw

radar systems,” Journal of Sensors, vol. 2020, Article ID
7342385, 13 pages, 2020.

[8] F. Cao and M. Li, “Frequency domain doa estimation and
tracking of uwb signals,” in Proceedings of the 2010 6th In-
ternational Conference on Wireless Communications Net-
working and Mobile Computing (WiCOM), September 2010.

[9] H. Ni, G. Ren, and Y. Chang, “Novel toa estimation algorithm
for ofdm wireless networks,” Journal of Xidian University,
vol. 36, no. 1, pp. 17–21, 2009.

[10] J. Wang and Z. Shen, “An improved music toa estimator for
rfid positioning,” in Proceedings of the 2002 International
Radar Conference, pp. 478–482, Edinburgh, UK, October
2002.

[11] S. Kim, D. Oh, and J. Lee, “Joint dft-esprit estimation for toa
and doa in vehicle fmcw radars,” IEEE Antennas and Wireless
Propagation Letters, vol. 14, pp. 1710–1713, 2015.

[12] H. Jiang, F. Cao, and R. Ding, “Propagator method-based toa
estimation for uwb indoor environment in the presence of
correlated fading amplitudes,” in Proceedings of the 2008 4th
IEEE International Conference on Circuits and Systems for
Communications, pp. 535–538, IEEE, Shanghai, China, May
2008.

[13] Q. Shen, W. Liu, W. Cui, and S. Wu, “Low-complexity
compressive sensing based doa estimation for co-prime ar-
rays,” in Proceedings of the 2014 19th International Conference
on Digital Signal Processing, pp. 754–758, IEEE, Hong Kong,
China, August 2014.

[14] R. Ding, Z. H. Qian, and X. Wang, “Uwb positioning system
based on joint toa and doa estimation,” Journal of Electronics
and Information Technology, vol. 32, no. 2, pp. 313–317, 2010.

[15] H. Xu, Y. Zhang, B. Ba, D. Wang, and X. Li, “Fast joint es-
timation of time of arrival and angle of arrival in complex
multipath environment using ofdm,” Institute of Electrical
and Electronics Engineers Access, vol. 6, pp. 60613–60621,
2018.

[16] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decomposition
for signal processing and machine learning,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[17] R. Zhao, Q. Wang, J. Fu, and L. Ren, “Exploiting block-
sparsity for hyperspectral kronecker compressive sensing: a
tensor-based bayesian method,” IEEE Transactions on Image
Processing, vol. 29, pp. 1654–1668, 2020.

[18] H. Chen, F. Ahmad, S. Vorobyov, and F. Porikli, “Tensor
decompositions in wireless communications and mimo ra-
dar,” IEEE Journal of Selected Topics in Signal Processing,
vol. 15, no. 3, pp. 438–453, 2021.

[19] K. Luo, X. Zhou, B. Wang, J. Huang, and H. Liu, “Sparse bayes
tensor and doa tracking inspired channel estimation for v2x
millimeter wave massive mimo system,” Sensors, vol. 21,
no. 12, p. 4021, 2021.

[20] W. Jhang, S.-W. Chen, and A.-C. Chang, “Computationally
efficient doa estimation for massive uniform linear array,”
IEICE - Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. E103.A, no. 1,
pp. 361–365, 2020.

[21] H. Zheng, C. Zhou, Y. Gu, and Z. Shi, “Two-dimensional doa
estimation for coprime planar array: a coarray tensor-based
solution,” in Proceedings of the ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 4562–4566, IEEE, Barcelona, Spain, May
2020.

International Journal of Antennas and Propagation 9



[22] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” Society for industrial and applied mathematics
Review, vol. 51, no. 3, pp. 455–500, 2009.

[23] P. Stoica and A. Nehorai, “Music, maximum likelihood, and
cramer-rao bound,” IEEE Transactions on Acoustics, Speech, &
Signal Processing, vol. 37, no. 5, pp. 720–741, 1989.

[24] M. Xiao, Z. Duan, and Z. Yang, “A weighted forward-
backward spatial smoothing doa estimation algorithm based
on tls-esprit,” IEICE - Transactions on Info and Systems,
vol. E104.D, no. 6, pp. 881–884, 2021.

10 International Journal of Antennas and Propagation


