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In collectively perceiving an electromagnetic environment, the discrete or statistical method is used to characterize its char-
acteristics.�e information received by the sensor is not correlated with each other; therefore, there is no way to obtain the integral
dynamic characteristics of an electromagnetic environment. Based on the statistical manifold and the information geometry
theory, this paper takes group perception sensors in an electromagnetic space as an associated whole to measure an electro-
magnetic �eld in its space. �e probability density function of the �eld distribution measured at any moment is mapped on to a
statistical manifold. �e “information distance” between the probability density functions of measurement samples at di�erent
moments of the statistical manifold is solved to reveal the changes in the whole electromagnetic environment. Simulations are
carried out in assumed electromagnetic environments. �e simulation results show that when a target enters the electromagnetic
space and as its electromagnetic characteristics and positions change, the distribution of “KLD information distances” of its
electromagnetic environment changes as well. �e method can perceive the RCS of target with −26 dBsm and connect the target
with its position information, indicating that the use of the “KLD information distance” distribution can characterize the integral
dynamic characteristics of an electromagnetic environment.

1. Introduction

Carrying various sensors and working collectively in a co-
ordinated way with ground monitoring stations, aerial
platforms, and so on can ideally solve target detection
problems in large key areas, thus burgeoning rapidly in
recent years. In utilizing the group perception information
of various sensors, the study of integral dynamic charac-
teristics of the electromagnetic environment perceived by
the sensors paves the way for solving the target detection
problems in a complicated electromagnetic environment
and provides a new way of thinking for the deep under-
standing, control, and utilization of electromagnetic envi-
ronment characteristics.

Researchers have carried out massive analytical inves-
tigations of dynamic characteristics of the electromagnetic
environment in terms of time, space, frequency, and energy
[1–3]. However, in most cases, the discrete or statistical

method is used to characterize the electromagnetic envi-
ronment characteristics; the information received by various
sensors is not correlated.�erefore, there is no way to obtain
the integral dynamic characteristics of an electromagnetic
environment. For example, Boksiner et al. studied the fre-
quency spectral distribution of a battle�eld electromagnetic
environment [4]. Hippenstiel et al. used the nonlinear time-
series statistical analysis to classify and characterize elec-
tromagnetic signals [5]. Jaekel used the phenomenon of
electromagnetic environment to carry out its statistical
description and classi�cation [6]. Trigubovich described the
statistical characteristics of an electromagnetic environment
in its time domain, frequency domain, and energy domain
[7]. Calin et al. used the experimental statistical method to
study electromagnetic environments and analyzed the
variations of the parameters of an electromagnetic �eld with
time and space [8]. Nyah used the statistical model of
certainty to analyze the electromagnetic environmental
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parameters and their influence factors [9]. (e studies that
characterize the statistical fractal characteristics of the
electromagnetic environment [10, 11] mainly used the
discrete or statistical method to analyze its characteristics
but did not reflect the connection between group perception
and electromagnetic environmental information.

(e existing solution is generally to analyze the field
information of electromagnetic signal in discrete energy
domain which is difficult to characterize the dynamic
characteristics of the electromagnetic environment. Based
on the sensor group perception characteristics and the in-
formation geometry theory, this paper takes the sensor
group in an electromagnetic space as an associated whole to
measure the distribution of an electromagnetic field in its
space. (e probability density function of the field distri-
butionmeasured at any moment is mapped on to a statistical
manifold. (e “information distance” between the proba-
bility density functions of measurement samples at different
moments of the statistical manifold is solved to reveal the
changes in the whole electromagnetic environment. (is
paper provides a new solution to characterize the overall
dynamic characteristics of electromagnetic environment.

2. Electromagnetic Environment
Characteristics Group Perception Principles

(e electromagnetic environment group perception dia-
gram is shown in Figure 1.

(e typical electromagnetic environment is made up of
different types of electromagnetic radiation sources such as
radio and television, wireless communications, and navi-
gation signals. It carries out the group perception of its
spatial characteristics through laying the sensor networks on
the ground or in three-dimensional space, as shown in
Figure 1. We assume that there are P number of electro-
magnetic radiation sources in a given region that the signal
launched by a single radiation source is Sp(t) and that the
number of perception sensor network nodes is M. If the
multipath signals of targets or surface features existing in an
electromagnetic space are modeled as the contributions of a

series of point scatterers, then the signals received by any
node of the sensor network in the electromagnetic envi-
ronment can be expressed as follows [12]:

R(t) � 􏽘
P

p�1
ApSp t − τp􏼐 􏼑 + 􏽘

P

p�1
􏽘

Nc

n�1
Cp,nSp t − Γcp,n􏼐 􏼑

+ 􏽘
P

p�1
􏽘

Nt

m�1
αp,mSp t − Γp,m􏼐 􏼑exp j2πf

D
p,mt􏼐 􏼑 + w(t).

(1)

In expression (1), the first item denotes the direct wave of
each radiation source, the second item characterizes the
surface feature multipath clutter signal, the third item is a
target’s echo-wave component, and the final item is noise. Ap

and τp are direct wave attenuation and time-lag; Cp,n and Γcp,n

are clutter attenuation and time-lag; αp,m and Γp,m are the
attenuation and time-lag of a target’s echo-wave components;
and fD

p,m is the Doppler frequency shift of the target’s echo-
wave. (erefore, in the group perception of the electromag-
netic environmental shown in Figure 1, the electromagnetic
environment signals collectively perceived by M number of
sensor network nodes can be expressed as a set formed with
signals received by M number of nodes as follows:

R � R1, R2, . . . , RM􏼈 􏼉. (2)

If the state distribution of the set R is Xk at the kmoment
and its state distribution is Xk+1 at the k + 1 moment, then
the distribution of the “distance” between the state distri-
butions Xk+ 1 and Xk may characterize the dynamic char-
acteristics of the electromagnetic environment measured by
group perception sensor.

3. The Electromagnetic Environment Dynamic
Characteristics Characterization Method
Based on Information Geometry

3.1. Basic Principles of Information Geometry.
Information geometry transforms into geometry the basic
problems in probability theory and information theory
studies as a whole a set of probability distribution function
clusters and deeply mines the geometric structural infor-
mation contained in them. Taking a typical normal distri-
bution as an example, the normal distribution function
cluster whose mean value is μ and whose co-variance is σ2 as
given in the following:

p(x; μ, σ) �
1
���
2π

√
σ
exp −

(x − μ)
2

2σ2
􏼢 􏼣. (3)

Figure 2 shows two groups of four normal distribution
functions A, B, C, and D with different mean and standard
deviation.

Figure 2 presents two groups of four normal distribution
functions A, B, C, and D with different mean and standard
deviation. Let μ1 < μ2 and σ1 < σ2 and consider the “differ-
ence” or distance between two probability distribution
functions. Because the variance of A and B in Figure 2 is
smaller than that of C and D, A and B are easier to separate
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Figure 1: (e electromagnetic environment characteristics group
perception diagram.
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than C and D; in other words, the distance between A and B
is relatively farther. For fat man and thin man in Figure 2(c),
the distance between thin man is relatively farther. If we use
S to denote the above normal distribution function cluster,
then its distribution parameters μ and σ can be expressed as
four points in the parametric space P, as shown in
Figure 2(b). Because d(A, B)>d(C, D) (d denotes the dis-
tance between the two), the space corresponding to the
normal distribution cluster S is a curved space and the
curvature nearA and B is larger than that near C andD. Such
an abstract curved space is called the Riemannmanifold [13].

(e Riemann manifold formed with a probability distri-
bution function cluster is also called statistical manifold, as
shown in Figure 2(d). Every point on the statistical manifold
corresponds to a probability distribution function.

(e different type or different parameter probability
distribution function cluster in Figure 2 corresponds to a
statistical manifold that has a certain geometric structure. In
the statistical manifold, the form of the probability distri-
bution function decides the relationship between every
probability distribution function and its adjacent ones,
which decides the spatial structure formed by the
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Figure 2: (e transformation of probability space into geometry.

parametric space

sensor

sensor

sensor

target scattered signaltransmission environment

probability density function

Ω

p (x|θk-1)

θk-1

s (θk-1)
s (θk)

S

p (x|θk)

θk

xk-1

xk

radiation source
radiation source

radiation source

statistical manifold

transmission environment

(a) (b)
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relationship. (erefore, the geometric structure of a statis-
tical manifold reveals the intrinsic essential attributes of the
probability distribution function cluster. (e prominent
advantage of information geometry is that it studies the
probability distribution function cluster as a set and uses a
series of principles and methods to study the intrinsic
structural information contained in the probability
distribution.

3.2. 8e Electromagnetic Environment Dynamic Character-
istics Characterization Based on Statistical Manifold.
Based on the above analysis, with the help of the information
geometry theory, the group perceived electromagnetic en-
vironment dynamic characteristics is characterized as
follows.

3.2.1. Mapping the Sensor Network Measurement Model to a
Statistical Manifold. In a given electromagnetic space, based
on the information geometry principles, the collectively
perceived sensor network is equalized to an entity and the
probability density function cluster of its statistical model is
mapped to a statistical manifold. Every random variable Ri in
the set R sample set R � R1, R2, . . . , Rm􏼈 􏼉 formed with the

sensor network measurement is mapped as a point in the
statistical manifold, as shown in Figure 3. (erefore, the use
of states of points on the statistical manifold at any moment,
namely, the distribution of probability density function
clusters, can characterize the electromagnetic environment
state distribution measured by the sensor network perceived
collectively at this moment. At a certain moment when there
are new targets, electromagnetic threats, or factors that may
influence the change in their states, the electromagnetic
environment state distribution, thus measured will have
“perturbation,” namely, the state distribution will change
relative to the previous moment. (is perturbation may be
mapped as the changes in information distance between two
groups of probability density function clusters on the sta-
tistical manifold.

In Figure 3(b), Ω is the group perception sensors
measurement sample space, whose probability density
function is p(x|θ); θ is the parameter vector of p(x|θ); Θ is
the vector space of the parameter θ; S is the statistical
manifold that uses the parameter θ as its coordinates and can
be expressed as follows:

S � p
x

θ
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌θ ∈ Θ⊆R
n

􏼚 􏼛, (4)

where x is any measurement sample in an electromagnetic
space. x ∈ Ω⊆Rm, x is the sample of the random variable R
that has M number of dimensions. Figure 3(b) reveals the
relationship among the parameter θ, the measurement
sample x, and the statistical manifold. In this way, the
probability density function distribution of the sample x

measured at any moment can be used to characterize the
electromagnetic environment state perceived collectively at
the moment.

Furthermore, in order to solve the changes in charac-
teristics among different electromagnetic environment
states, the integral distance between any two points p(x|θ1)
and p(x|θ1) curve on the statistical manifold in Figure 3(b)
is as follows [14]:

D θ1, θ2( 􏼁≜ 􏽚
t2

t1

���������������

dθ
dt

􏼠 􏼡

T

G(θ)
dθ
dt

􏼠 􏼡

􏽶
􏽴

dt. (5)

(e integral distance in equation (5) depends on the
selection of the curve p(x|θ1) that connects the two points;
its minimum length is the Fisher information distance and
can be expressed as follows [15]:

DF θ1, θ2( 􏼁≜ min
θ(t)

􏽚
t2

t1

���������������

dθ
dt

􏼠 􏼡

T

G(θ)
dθ
dt

􏼠 􏼡

􏽶
􏽴

dt. (6)

Except for some special manifolds, generally it is rather
difficult to directly calculate the Fisher information distance
in equation (6). (erefore, the information distance between
the two probability distributions p(x|θ1) and p(x|θ2) can be
approximated with other measurement methods. (e most
widely used method is the Kullback–Leibler divergence
degree, which can be expressed as follows:
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Figure 4: Algorithm procedural steps for electromagnetic envi-
ronment dynamic characteristics.
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KL D p x|θ1( 􏼁‖p x|θ2( 􏼁􏼂 􏼃 � 􏽚 p x|θ1( 􏼁ln
p x|θ1( 􏼁

p x|θ2( 􏼁
dx. (7)

(us, each probability density function distribution on
the statistical manifold, namely, the information distance
distribution, can be used to characterize the dynamic
characteristics of the collectively perceived electromagnetic
environment.

3.2.2. Solving Dynamic Characteristics of a Collectively
Perceived Electromagnetic Environment. Based on the above
analysis, the following algorithm procedural steps can be
used to solve the electromagnetic environment dynamic
characteristics, as shown in Figure 4:

In Figure 4, for a particular electromagnetic environ-
ment scene, we use the space-time synchronous group
perception sensor to sample and measure massive data. A
certain amount of measurement data is accumulated and
then preprocessed. Based on the measurement sample, we
use the Gaussian hybrid model as the probability density
function model to be solved and then map the probability
density function distribution of the measurement sample to
a statistical manifold to characterize the electromagnetic
environment state during the acquisition. Finally, we solve
the KLD information distance among the probability density
function distributions of different electromagnetic envi-
ronment states to characterize their dynamic characteristics.
(e key to the algorithm procedural steps lies in the
probability density function solution and the KLD infor-
mation distance calculation.

To solve the probability density function of a mea-
surement sample, we use the limited Gaussian hybrid al-
gorithm to fit and solve the Gaussian hybrid model. Hershey
and Olsen have proved that the finite Gaussian hybrid al-
gorithm can approximate arbitrary probability distribution
with any precision. Given that the random variable x obeys
the Gaussian hybrid distribution, its distribution function
can be defined as follows [16]:

f(x) � 􏽘
k

i�1
λiNi x; μi, σ

2
i􏼐 􏼑, (8)

where k is the number of the Gaussian component;
Ni(x; μi, σ2i ) is the ith Gaussian component; λi is the hybrid
weighted coefficient of the ith Gaussian component; and the
parameter set of the model is θ � λi, μi, σ2i􏼈 􏼉. We fit the
parameters in a parameter set with measurement samples,
thus approximating different probability distributions. In
actual applications, the use of the finite Gaussian hybrid
model for fitting complicated probability distributions re-
quires an equilibrium point between the model’s number of
orders and fitting accuracy.

To solve the KLD information distance, we assume that
two given Gaussian hybrid distribution functions are as
follows:

f(x) � 􏽘
Ns

i�1
αifi(x),

g(x) � 􏽘
Nm

j�1
βjgj(x),

(9)

where fi(x) and gi(x) are the Gaussian distributions,
whose mean values are, respectively, μi and ]i, and whose
co-variances are, respectively, σ2 and c2; Ns and Nm are,
respectively, numbers of components of the two models;
and αi and βi are the hybrid weighted values of the number
of components. According to equation (7), the information
distance between f(x) and g(x) can be expressed as
follows:

KL D[f(x)‖g(x)]
def

� 􏽚 f(x)log
f(x)

g(x)
dx. (10)

Definition:

Lf(f) � Ef(x)[log f(x)],

Lf(g) � Ef(x)[log g(x)].
(11)

(erefore, the KLD information distance can be further
expressed as follows:

KL D[f(x)‖g(x)] � Ef(x)[log f(x)] − Ef((x))[log g(x)]

� Lf(f) − Lf(g).

(12)

(e use of the Jensen in equation produces:

Lf(g) � Ef(x)[log g(x)] � 􏽘
i

αiEfi(x) log 􏽘
j

βjgj(x)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 􏽘
i

αilog 􏽘
j

βjEfi(x) gj(x)􏽨 􏽩

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� 􏽘
i

αilog 􏽘
j

βj 􏽚 fi(x)gj(x)dx⎡⎢⎢⎣ ⎤⎥⎥⎦.

(13)

(en,

O

x

y

z

Height 0.2 km

Radiation source 2
(4 km, 3 km, 0.2 km)

Radiation source 1
(2 km, 7 km, 0.2 km)

Target entering
electromagnetic space

Group perception
sensor

Length 10 km

Width 10 km

f1
f2

Figure 5: (e simulation scene.

International Journal of Antennas and Propagation 5



0.1

0.05

0

-0.05

-0.1

KL
D

10
8

6
y (km) x (km)

4
2

0 0 2 4 6 8 10

(a)

4

2

0
0 2 4 6 8 10

6

8

10
KLD

y 
(k

m
)

x (km)

0.04

0.02

0

-0.02

-0.04

-0.06

(b)

Figure 6: (e simulation results when the target’s RCS is 0 dBsm. (a) (e 3D KLD information distance distribution. (b) (e 2D KLD
information distance distribution.

KL
D

0.02

0.01

0

-0.01

-0.02
10

8
6

4
y (km) x (km)0 0 2

64
8

10

2

(a)

KLD
10

8

6

4

2

0
0 2 4 6 8 10

0.01

0.005

0

-0.005

-0.01

y 
(k

m
)

x (km)

(b)

Figure 7: (e simulation results when the target’s RCS is −20 dBsm. (a) (e 3D KLD information distance distribution. (b) (e 2D KLD
information distance distribution.

KL
D

×10-3

5

0

-5

x (km)0 2
64

8 10
10

8 6
4

y (km) 02

(a)

KLD ×10-3

0 2 4

4

2

0

-2

-4
6 8 10

x (km)

y 
(k

m
)

10

8

6

4

0

2

(b)

Figure 8: (e simulation results when the target’s RCS is −26 dBsm. (a) (e 3D KLD information distance distribution. (b) (e 2D KLD
information distance distribution.

6 International Journal of Antennas and Propagation



4
×10-3

2

-2

-4

0

KL
D

10
8

6

y (km) x (km)

4
2

0 0 2
4 6 8 10

(a)

4

2

0
0 2 4 6 8 10

6

8

10 KLD

y 
(k

m
)

x (km)

2.5

×10-3

2
1.5
1
0.5

-1

0
-0.5

-1.5
-2

(b)

Figure 9: (e simulation results when the target’s RCS is −40 dBsm. (a) (e 3D KLD information distance distribution. (b) (e 2D KLD
information distance distribution.

1

0.95

0.9

0.85

C
or

re
lat

io
n 

co
ef

fic
ie

nt

0.8

0.75
-40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20

RCS/dBsm

Figure 10: (e correlation coefficient between the KLD information distance matrix of different RCS values and the reference matrix.

0.1

0.05

0

-0.05

-0.1
10

8
6

4 2
0 0 2 4 6 8 10

y (km) x (km)

KL
D

(a)

y 
(k

m
)

4

2

0
0 2 4 6 8 10

6

8

10

0.04

0.02

-0.02

-0.04

-0.06

0

KLD

x (km)

(b)

Figure 11: (e simulation results when a target appears at Position A. (a) (e 3D KLD information distance distribution. (b) (e 2D KLD
information distance distribution.

International Journal of Antennas and Propagation 7



Lf(g)≤ 􏽘
i

αilog 􏽘
j

βj 􏽚 fi(x)gj(x)dx⎡⎢⎢⎣ ⎤⎥⎥⎦

� 􏽘
i

αilog 􏽘
j

βizij
⎛⎝ ⎞⎠, (14)

where zij ≜ 􏽒 fi(x)gj(x)dx. (e approximate analytic
values of the KLD information distance between f(x) and
g(x) can be expressed as follows:

KL D(f(x)‖g(x)) � 􏽘
i

αilog 􏽘

i′

αizii′ /􏽘
j

βjzij
⎛⎝ ⎞⎠, (15)

where zii′ ≜ 􏽒 fi(x)fi′(x)dx. With the above derivations,
the approximate analytic values of the KLD information
distance we can be calculated.

4. The Simulation Results

4.1. Simulation Conditions. For simulation, we assume that
the electromagnetic environment measurement range is

10 km long, 10 km wide, and 0.2 km high. (e environment
has two radiation sources whose modulation mode are BPSK
and FSK, respectively.(e transmission power is set as 5 kW,
and the central frequency points are f1 � 900MHz and
f2 � 90MHz, respectively. (e model of signal propagation is
free space propagation model. Given that the group per-
ception sensor for measurement is laid out and has the
interval of 200m, the simulation scene is shown in Figure 5.

When a new target appears in the above simulation scene
and has different electromagnetic characteristics or different
positions, we simulate and analyze the changes in dynamic
characteristics of the group perception electromagnetic
environment.

4.2. Simulating Different Electromagnetic Characteristics of
the Target. Assuming that the new target is a point target
and that its coordinate space is (5 km, 4 km, and 0.02 km),
when its Radar Cross Section (RCS) scattering character-
istics are 0 dBsm, −20 dBsm, −26 dBsm, and −40 dBsm, the
simulation results on the dynamic characteristics of the
collectively perceived electromagnetic environment are
shown in Figures 6–9.
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Figures 6–9 show that when the RCS of the electro-
magnetic target is 0 dBsm, the KLD information distance
between the electromagnetic environment states when a
target is present or absent is from −0.06 to 0.04. When the
RCS is −20 dBsm, the distribution of KLD information
distance is from −0.01 to 0.01. When the RCS is −26 dBsm,
the distribution of KLD information distance is from −0.004
to 0.004. When the RCS is −40 dBsm, the distribution of KLD
information distance is from −0.002 to 0.0025. In this sim-
ulation scene, when the RCS of the target that enters an
electromagnetic environment dwindles, the KLD information
distance distribution magnitude also dwindles. In the above
set electromagnetic environment scene, when the target’s RCS
is 0 dBsm, −20 dBsm, or −26 dBsm, its KLD information
distance distribution has an obvious connection with its
position. When the target’s RCS is −40 dBsm, its KLD in-
formation distance distribution has no connection with its
position information. Taking the KLD information distance
matrix with the target RCS of 0dBsm as the reference matrix,
when the target RCS is −20 dBsm, −22 dBsm, −26 dBsm,
−30 dBsm, −33 dBsm, and −40 dBsm, respectively, the cor-
relation coefficient between the KLD information distance
matrix of different RCS values and the reference matrix is
solved, and the results are shown in Figure 10.

According to Figure 10, when the correlation coefficient
is greater than 0.9 (0.9 is a threshold for detection), the KLD
information distance distribution can perceive the target
whose smallest RCS is −26 dBsm.

4.3. 8e Simulation and Analysis of a Target in Different
Positions. Supposing that a target enters simulation scene,
that the RCS of the electromagnetic target is 0dBsm, and that
it appears, respectively, at positions A (5 km, 2 km, and
0.01 km), B (2 km, 8 km, and 0.01 km), and C (7 km, 5 km,
and 0.01 km), the simulation results on the dynamic char-
acteristics of the collectively perceived electromagnetic en-
vironment are given in Figures 11–13.

Figures 11–13 show that when an electromagnetic target
appears at different positions, the KLD information distance
distribution of electromagnetic environment states between
the presence and absence of the target is obviously different.
(e KLD information distance distribution is closely related
to the position of the target and ranges from −0.06 to 0.04.

(e above simulation results show that in the set elec-
tromagnetic environment scene, when a new target enters it,
the situation of the electromagnetic environment will change,
and the change is related to the scattering characteristics and
position of the target entering the electromagnetic space.
Hence, based on group perception sensor measurement in-
formation, the KLD information distance distribution can be
used to characterize the integral dynamic characteristics of the
electromagnetic environment on the statistical manifold.

5. Conclusions

(e study of the integral dynamic characteristics of an
electromagnetic environment is the basis for its under-
standing, control, and utilization. With the help of the

information geometry theory, this paper equalizes the group
perception sensor network as an entity. (e information
distance distribution is used to describe the integral dynamic
characteristics of the electromagnetic environment. Fur-
thermore, because the dynamic characteristics of electro-
magnetic environment characterized with the information
distance distribution are closely related to the characteristics
and position of a target entering the electromagnetic space.
(e electromagnetic environment integral characteristics
information can be further used to carry out target detection.
In the future, the influence on the dynamic characteristics of
the electromagnetic environment with different target RCS
will be measured and verified in the anechoic chamber.

(e proposed method may be applied to actual appli-
cations of physical platforms in the future, such as artificial
lateral line detection system of underwater robot [17]. (e
artificial lateral line detection array is used to collect in-
formation of underwater environment, and the flow field
distribution of underwater environment can be measured,
then the position of target in the environment can be de-
tected. On the other hand, it can also be used to optimize the
layout and quantity of artificial lateral line detection array
and improve the accuracy of target position detection.
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