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In this paper, a new beamforming algorithm for phased array antennas is proposed, the plant growth gene algorithm. Te
algorithm consists of three steps. Firstly, according to the excitation relation of the array unit before and after the local fne-tuning
of the antenna radiation pattern, the model for solving the array unit excitation diference is established. Secondly, the Taylor
series expansion is used to solve the model, and the growth model is established based on this, and the beam tuning network is
designed to realize the growth model. Finally, based on the growth gene obtained by the neural network algorithm, the growth
model is calledmultiple times for high-precision beamforming.Tis algorithm converts the complex optimization process of array
antenna excitation by the classical optimization algorithm into a simple process of fne-tuning the gain at any angle on the beam to
make it grow and approach the target pattern.Te growth gene is used to weigh the target angle and gain to achieve beamforming,
which greatly reduces the complexity of the algorithm and improves its accuracy of the algorithm. Taking a 1× 16 linear array as an
example, a cosecant square beam pattern with a coverage range of −31° to 31° and a maximum gain direction of 17° is designed
using the algorithm proposed in this paper. Te experimental results show that the proposed algorithm can easily fne-tune the
gain of any angle to achieve precise beamforming. Importantly, the growth genes trained by the algorithm are universal to the
phased array antenna with the same topology.

1. Introduction

Beamforming is an important technology for array antennas
to realize long-distance high-quality communication and
high-resolution target detection. A lot of research work on
array antenna beamforming has been carried out at home and
abroad [1–8]. Among them, based on the target beam pattern,
there are many research studies on using algorithms to op-
timize the excitation amplitude and phase of each array unit
or optimizing the arrangement of array units to realize
beamforming, such as genetic algorithm [5], model order
reduction [6], weed algorithm [7], and particle swarm opti-
mization algorithm [8]. Te method of using the algorithm
for beamforming is to make the gains of all angles of the
original beam approach the target pattern, so as to minimize
the error between the original and target beam pattern. In

these algorithms, the errors of all angles are counted, and the
overall errors are aimed at minimizing. However, it is difcult
to optimize the errors of a single-angle to the minimum,
which leads to the failure of the antenna radiation pattern to
accurately ft with the target pattern at a single angle, and it is
difcult to achieve further improvement. In addition, for the
antenna whose topology is determined, or without changing
the antenna structure, when the target pattern needs to be
changed or improved according to engineering applications
or other reasons, even if only one angle gain needs to be
changed, the optimization algorithm needs to be rerun to
calculate the excitation corresponding to the new beam
pattern.Terefore, the beamforming by the current algorithm
has low efciency and accuracy, high cost, poor generality,
and no correction mechanism for local errors, so it is im-
possible to fne-tune the results of the beamforming.
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With the development of deep learning technology, the
neural network method is used to model the nonlinear
relationship between the antenna radiation pattern and the
excitation of the array units, and the coupling efect between
the array units is considered in the beamforming process
[9–11]. In [12], a convolutional neural network is used to
model the beamforming problem of a phased array. Te
processed two-dimensional pattern image is used as input of
the model and the output of the model is the phase of each
array unit. In [13], the antenna is placed in a space with
obstacles, the neural network is used to deal with the
beamforming problem, and the interaction between array
units and the existence of obstacles are considered, which is
more in line with the practical application scenarios. Besides
excitation, the position of each array unit also afects the
beam pattern. In [14], the coupling efects of diferent array
unit positions in beamforming are analyzed through the
neural network, and the array unit position distribution and
excitation are simultaneously optimized by combining op-
timization algorithms. Te transfer learning method is used
in [15] to reduce the amount of data required for training
and obtains better results than traditional DNN methods.

In this paper, we propose a beamforming algorithm that
imitates the plant growth gene (Growth Gene Algorithm
(GGA)) and train a set of growth gene parameters by a
neural network. Using the growth gene to weigh any target
angle and target gain can easily control the gain of any angle
on the known antenna radiation pattern and gradually in-
crease the gain of that angle by a certain step size, just as a
plant grows a new branch in a local area.Te specifc process
is as follows: frstly, by analyzing the parameter information
involved in the gain change of a certain angle of the phased
array antenna, a growth model for beam fne-tuning of the
single-angle gain of the antenna radiation pattern is pro-
posed. Secondly, the Beam Tuning Network (BTNet) is
designed based on the neural network and growth model
structure. Finally, the data obtained by an improved genetic
algorithm [16] and the growth gene of the phased array
antenna are obtained. Accurate beamforming is realized
based on the growth gene parameters. Experimental veri-
fcation shows that we can fne-tune the beam gain at any
angle based on the growth gene parameters and can be
applied to the phased array antenna of any antenna unit
structure. It has universality, greatly reduces the complexity
of pattern confguration, and improves the efciency and
precision of array antenna synthesis.

2. The Theory of Gain Fine-Tuning

A method of expressing beamforming with excitation dif-
ference is proposed, which converts the array antenna
beamforming into high-precision beamforming for any
target pattern by gradually fne-tuning the gain at any angle
in the antenna radiation pattern. Each of these fne-tuning of
the gain at an angle is achieved by adding an excitation
diference zW corresponding to the pattern diference to the
known excitation Wori.

Assuming that the excitation corresponding to the
original pattern of the n-unit array antenna is

Wori � wori(1), wori(2), . . . , wori(n), . . . , wori(N) 
T, and

the excitation corresponding to the pattern after fne-tuning
is W � [w(1), w(2), . . . , w(n), . . . , w(N)]T, then the rela-
tionship between the corresponding excitation before and
after pattern fne-tuning can be expressed as follows:

w(1)

w(2)

· · ·

w(n)
· · ·

w(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

w
ori

(1)

w
ori

(2)

· · ·

w
ori

(n)
· · ·

w
ori

(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

zw(1)

zw(2)

· · ·

zw(n)
· · ·

zw(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where zw(n) represents the diference of excitation before
and after beamforming of the nth array unit. Te above
expression is only related to the excitation of the antenna
unit and does not involve the antenna array unit. Terefore,
for an array antenna with any antenna unit structure, the
relationship between the excitations of the array units before
and after beamforming can be expressed by (1).

For any beamforming problem, there are corresponding
W and zW � [zw(1), zw(2), . . . , zw(n), . . . , zw(N)]T on
the basis of any original excitation Wori. Te key of tradi-
tional array antenna beamforming is to search for appro-
priate excitation W. Te growth gene algorithm proposed in
this paper is to solve zW instead of searching W and obtains
the excitation corresponding to the target pattern indirectly
by using the general model among W, Wori, and zW.

3. Materials and Methods

3.1. Growth Gene Algorithm (GGA). As shown in Figure 1,
the excitation diference zw(n) corresponding to the gain
change at a certain angle of the phased array antenna ra-
diation pattern is only related to the following three pa-
rameters: the angle to be adjusted, θ (in radians), the original
gain of the pattern at the angle θ, Gori(θ) (in dBi), and the
expected gain change, s (in dB). According to the three
parameters θ, Gori(θ), and s to solve zW, the mathematical
solution model of zW is assumed as follows:

zw(n) � f(s)g G
ori

(θ) h(θ, n), (2)

where zw(n) represents the excitation diference of the nth
array element before and after the pattern fne-tuning, f(s)

and g(Gori(θ)) are unknown functions about s and Gori(θ)

respectively, and h(θ, n) is the array factor of the target angle
of the nth array element

h(θ, n) � e
− j2πd(n− 1)cos(θ)

. (3)

When beamforming the phased array antenna, since the
fne-tuned pattern can be arbitrary compared to the original
pattern, the gain Gori(θ) + s of the fne-tuned pattern at
angle θ is also arbitrary compared to the gain Gori(θ) of the
original pattern. Tat is, the expected gain change s at the
angle θ is independent of the original gain Gori(θ). Tere-
fore, in (2), two unary functions f(s), g(Gori(θ)) instead of
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binary functions f(s, Gori(θ)) are used to represent zW

model.
Although f(s) and g(Gori(θ)) are unknown in the zW

model, according to the defnition of Taylor series, f(s) can
be expressed as follows:
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Let a0 � f(0), a1 � f′(0), a2 � (f″(0)/2!), . . . , am �

(f(m)(0)/m!), . . ., then f(s) can be expressed as follows:
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where n represents the nth array element. Similarly,
g(Gori(θ)) can be expressed as follows:
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Te higher the order of the Taylor series, the higher the
approximation of the function expression. Te experimental
simulation results show that the ffth-order Taylor series can
already meet the accuracy requirements of beamforming. So

in this paper, the functions f(s) and g(Gori(θ)) are ex-
panded into the ffth-order Taylor series. Te zW model can
be expressed as follows:

zw(n) � a0(n) + a1(n)s
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(7)

Since the even and odd powers of negative numbers are
opposite numbers, the same zW model cannot accurately
express the two cases of expected gain change s> 0 and s< 0.

However, the expansion of Taylor series shows that for both
cases, the zW model has diferent weights but has similar
forms. When s> 0, zW model can be expressed as follows:
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Figure 1: When there is only a local diference between the target pattern and the original pattern at the angle and the expected gain change
is small, it is difcult to use the optimization algorithm for accurate beamforming.
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When s< 0, zW model can be expressed as follows:
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It can be seen from (8) and (9) that for the problem of
fne-tuning the gain of the single-angle in beamforming, as
long as the weights (a+

0(n), ..., a+
5(n), b+

0(n), ..., b+
5(n);

a−
0(n), ..., a−

5(n), b−
0(n), ..., b−

5(n)) in the zW model are ap-
propriate, the excitation corresponding to each array ele-
ment after the gain fne-tuning can be calculated according
to s and Gori(θ). Since the positive fne-tuning of the gain at
an angle (s> 0) is similar to the plant gradually growing a
new branch in a certain part, the weights (a+

0(n), ...,

a+
5(n), b+

0(n), ..., b+
5(n)) that plays a key role in the process of

positive fne-tuning of gain are called positive growth gene,
and the weights (a−

0(n), ..., a−
5(n), b−

0(n), ..., b−
5(n)) that play a

role in the process of negative fne-tuning (s< 0) are called
negative growth gene, and the gain fne-tuning model zW is
named “Growth Model.”

In this paper, the method of using the growth model to
adjust the gain of any angle of the radiation pattern to realize
the precise beamforming of the phased array antenna is
named the Growth Gene Algorithm (GGA). Te beam-
forming of GGA only involves simple matrix multiplication
and addition operation, so the complexity is much lower
than other beamforming algorithms. Te solution of GGA is
zw(n) of a single array element after beamforming. Each
array element corresponds to a growthmodel and two sets of
gene parameters. Taking 1× 16 linear array antenna as an
example, a total of 2×12×16� 384 gene parameters need to
be determined. Since the growth model does not involve the
radiation pattern of the array element, for the 1× 16 linear
array antenna with the same topology, these 384 gene pa-
rameters are applicable to the antenna element of any
structure.

In the next section, Beam Tuning Network (BTNet) is
designed based on a growth gene algorithm and neural
network, and the growth genes of 1× 16 linear array antenna
are trained to verify the efectiveness of the algorithm
proposed in this paper for fne-tuning gain at any angle and
high-precision beamforming.

3.2. Beam Tuning Network (BTNet). Te neural network
model designed to train the growth model of each array
element is shown in Figure 2.

In BTNet, the weight training by the convolutional layer
of sub network 1 corresponds to the gene parameter
a1(n), a2(n), a3(n), a4(n), a5(n) related to f(s), and the
trained bias corresponds to the gene parameter a0(n). Te
activation function used by the convolutional layer is
“identity mapping,” that is, y � σ(x) � x. Te architecture
of subnetwork 2 is similar to that of subnetwork 1, in that the
weight and bias trained by the convolutional layer corre-
spond to the gene parameters related to g(Gori(θ)), and the
activation function is also “identity mapping.” In order to
make the output of the neural network consistent with the
growth model, sub network 3 uses the “multiplicator layer”
designed for the structure of the growth model. Its input is
f(s) and g(Gori(θ)) learned by the network, and the output
is f(s) × g(Gori(θ)). According to the form of array factor in
the growthmodel, the activation function in the sub network
3 is designed as y � σ(x) � h(θ, n)x, so that the output of
the activation function is the growth model zw(n) of the nth
array element.

To sum up, the process of beamforming by the GGA is
shown in Figure 3.Te gene parameters of the growth model
corresponding to each array element are trained through
BTNet, and the growth model obtained by training is used to
calculate the excitation of each array element corresponding
to the target pattern to complete the beamforming. Te
algorithm can fne-tune the gain at any angle on any ra-
diation pattern, achieve high-precision beamforming, de-
couple the main lobe and side lobe, and have the
characteristics of high computing efciency and real-time
data feedback.

4. Algorithms and Model Validation

4.1. Training Strategy. Taking the 1× 16 linear array antenna
as an example to verify the algorithm, BTNet is used to train
the gene parameters of the growth model of each array
element, and the Adam optimizer is used in the training [17].
In the experiment, the data pair (θ, s) composed of random
angles and gain change values is used as the optimization
target pattern, and the improved genetic algorithm [16] is
used to generate 20,000 sets of data in the format of
(θ, G(θ), s, zW), in which the ratio of s> 0 to s< 0 is 1 :1.
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BTNet is trained with 8000 sets of data, and 2000 sets of data
are used for validation. Set the number of training times
(epochs) to 400 and batch size to 100, and use the CPU
version of TensorFlow 1.8.0 for simulation. In order to
improve the efciency of training, the transfer learning [18]
strategy is adopted in training. Except that the initial weights
are randomly generated in the frst training, the weights
trained in the previous training are used as the initial weights
in the rest of the training. For the 1× 16 linear array antenna,
in order to obtain 2 sets of gene parameters of the growth
model of each array element, BTNet was used for 32 times of
training. Under the condition of Intel(R) Core(TM) I5-
7300HQ CPU @ 2.50GHz processor and 8Gb memory, the
frst training takes about 7minutes, and the rest training
takes about 1minute and 27 seconds on average due to the
strategy of transfer learning.

4.2. Experimental Results of Growth Genes. Under the con-
dition of 20000 sets of data, BTNet was used to train the
growth model of 1× 16 linear arrays, and the obtained 192
positive growth gene parameters and negative growth gene
parameters are shown in Tables 1 and 2, respectively.

Te gene parameters in this table are applicable to the
1× 16 linear array antenna of any antenna element structure.
By using the growth model to fne-tune the gain at any angle
on the radiation pattern, the corresponding excitation of
each array element can be calculated quickly.
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Figure 2: BTNet is a general model structure designed based on the neural network combined with the antenna gain fne-tuning problem.
Diferent from the traditional neural network, it has two input layers and its network structure can be divided into three subnetworks.
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Figure 3: Flow chart of beamforming using growth model; in the
process of beamforming, the gene parameters of the growth model
corresponding to each array element were frst trained by BTNet.
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each array element corresponding to the target pattern and
complete the beamforming.
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4.3. Experimental Verifcation of Beam Fine-Tuning. Te
antenna structure and unit structure of the 1× 16 linear
arrays used to verify the growth gene algorithm are shown in
Figure 4 and Figure 5. Te antenna unit adopts a patch
structure with a length of 37.26mm and a width of 28mm.
Te unit spacing is d, feeding from the coaxial line, and the
feeding point is located 7mm above the center of the patch
antenna. Te relative dielectric constant and thickness of
substrate FR4 are 4.4 and 1.6mm respectively. Te working
frequency of the antenna is 2.45GHz, and the working air
wavelength is λ� 122mm. Figure 6(a) shows a fat-topped
beam pattern of the 1× 16 array antenna under the condition
of array spacing d� 0.5λ. Te amplitude and phase of the
excitation corresponding to the fat-topped beam pattern are
shown in Table 3.

As shown in Figure 6(a), the gain of the fat-topped beam
pattern at θ � 18° is 8dBi. In the experiment, the growth
model trained by BTNet is used to fne-tune the gain at this
angle by decreasing 3 dB and increasing 3 dB, respectively.

Table 2: 1× 16 linear array negative growth gene parameters.

Gene a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5
n� 1 0 0.115199 −0.006574 0.000290 −0.000004 0.000078 1 0.007234 0.000471 0.000094 0.000010 0.000013
n� 2 0 0.115185 −0.006581 0.000339 0.000070 0.000073 1 0.007205 0.000417 0.000029 0.000080 0.000094
n� 3 0 0.115198 −0.006617 0.000322 0.000001 0.000012 1 0.007264 0.000443 0.000085 0.000075 0.000058
n� 4 0 0.115204 −0.006607 0.000323 0.000087 0.000087 1 0.007209 0.000447 0.000057 0.000069 0.000060
n� 5 0 0.115209 −0.006593 0.000271 −0.000001 0.000077 1 0.007221 0.000449 0.000075 0.000023 0.000064
n� 6 0 0.115178 −0.006615 0.000328 0.000000 0.000029 1 0.007224 0.000463 0.000029 0.000041 0.000010
n� 7 0 0.115141 −0.006552 0.000279 0.000050 0.000096 1 0.007243 0.000479 0.000096 0.000043 0.000066
n� 8 0 0.115141 −0.006537 0.000269 0.000017 0.000080 1 0.007249 0.000487 0.000060 0.000027 0.000004
n� 9 0 0.115197 −0.006587 0.000295 0.000051 0.000006 1 0.007232 0.000487 0.000090 0.000013 0.000013
n� 10 0 0.115139 −0.006629 0.000292 0.000056 0.000072 1 0.007253 0.000421 0.000083 0.000013 0.000013
n� 11 0 0.115140 −0.006616 0.000267 0.000010 0.000032 1 0.007232 0.000432 0.000045 0.000089 0.000070
n� 12 0 0.115186 −0.006612 0.000271 −0.000002 0.000091 1 0.007271 0.000466 0.000051 0.000017 0.000062
n� 13 0 0.115229 −0.006613 0.000276 0.000030 0.000007 1 0.007268 0.000450 0.000118 0.000040 0.000062
n� 14 0 0.115145 −0.006592 0.000266 0.000066 0.000087 1 0.007235 0.000479 0.000049 0.000053 0.000083
n� 15 0 0.115190 −0.006596 0.000280 0.000035 0.000042 1 0.007236 0.000466 0.000094 0.000042 0.000043
n� 16 0 0.115142 −0.006628 0.000279 0.000022 0.000065 1 0.007296 0.000504 0.000066 0.000024 0.000076

n=1 n=2 n=3 n=4 n=15 n=16
……

d

Figure 4: 1× 16 linear array antenna.

7 mm28 mm

37.26 mm

Feeding point Antenna patch

Figure 5: Patch antenna element.

Table 1: 1× 16 linear array positive growth gene parameters.

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5
n� 1 0 0.115134 0.006719 0.000341 0.000090 0.000010 1 0.007226 0.000444 0.000088 0.000014 0.000072
n� 2 0 0.115141 0.006695 0.000299 0.000088 0.000072 1 0.007290 0.000499 0.000053 0.000070 0.000020
n� 3 0 0.115133 0.006704 0.000300 0.000058 0.000090 1 0.007261 0.000472 0.000106 0.000081 0.000058
n� 4 0 0.115148 0.006654 0.000339 0.000013 0.000049 1 0.007217 0.000508 0.000091 0.000050 0.000047
n� 5 0 0.115136 0.006698 0.000254 0.000017 0.000052 1 0.007210 0.000492 0.000102 0.000072 0.000015
n� 6 0 0.115196 0.006682 0.000347 0.000075 0.000080 1 0.007245 0.000453 0.000103 0.000008 0.000013
n� 7 0 0.115147 0.006669 0.000333 0.000090 0.000006 1 0.007240 0.000463 0.000062 0.000066 0.000063
n� 8 0 0.115159 0.006673 0.000252 0.000108 0.000017 1 0.007211 0.000447 0.000040 0.000049 0.000034
n� 9 0 0.115225 0.006722 0.000255 0.000084 0.000027 1 0.007242 0.000465 0.000114 0.000042 0.000098
n� 10 0 0.115160 0.006700 0.000317 0.000064 0.000070 1 0.007267 0.000428 0.000033 0.000100 0.000017
n� 11 0 0.115133 0.006686 0.000338 0.000077 0.000019 1 0.007237 0.000456 0.000118 0.000016 0.000086
n� 12 0 0.115194 0.006668 0.000269 0.000053 0.000048 1 0.007212 0.000469 0.000043 0.000038 0.000058
n� 13 0 0.115155 0.006659 0.000312 0.000037 0.000082 1 0.007298 0.000483 0.000054 0.000058 0.000011
n� 14 0 0.115221 0.006718 0.000332 0.000036 0.000059 1 0.007202 0.000453 0.000051 0.000016 0.000018
n� 15 0 0.115172 0.006639 0.000310 0.000057 0.000070 1 0.007270 0.000474 0.000023 0.000007 0.000032
n� 16 0 0.115183 0.006695 0.000291 0.000092 0.000072 1 0.007297 0.000463 0.000053 0.000011 0.000061
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Te corresponding excitation of each array element calcu-
lated by the growth model is shown in Table 4. Te elec-
tromagnetic simulation software CST is used to simulate the
excitation in Table 4, and the simulation results are shown in
Figure 6(b) and Figure 6(c), respectively. It can be observed

that the gains of the fne-tuned beam pattern at θ� 18° are
5dBi and 11dBi, respectively, indicating that the growth
model is very accurate for the fne-tuning pattern at any
angle.
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Figure 6: (a)Te fat-topped beam pattern of the 1× 16 antenna array under the condition of array spacing d� 0.5λ and gain G(θ) � 8 dBi at
angle θ� 18°(b) the fne-tuned pattern has a gain of 5dBi at θ� 18°, which is 3 dB lower than the original fat-topped beam pattern; (c) the
fne-tuned pattern has a gain of 11dBi at θ� 18°, which is 3 dB higher than the original fat-topped beam pattern. Te random pattern of the
1× 16 array antenna with array spacing d� 0.5λwas taken as the initial pattern, and the growthmodel was used to carry out continuous fne-
tuning of the side lobe gain at θ� –33° with equal step size; (d) the general view of pattern tuning; (e) the detail view; (f ) the cosecant squared
pattern designed using the growth model, the coverage range of the formed pattern is -31°∼31°, and the maximum gain direction is θ� 17°.

Table 3: Te excitation corresponding to the fat-top beam.

Num Amplitude (V) Phase
1 0.80304 0deg
2 2.6395 0deg
3 3.6352 0deg
4 5.1516 −180deg
5 17.3215 180deg
6 6.1928 −180deg
7 28.7732 0deg
8 35.5739 0deg
9 19.9924 180deg
10 88.6058 −180deg
11 100 −180deg
12 57.2576 −180deg
13 14.716 180deg
14 0.68384 0deg
15 0.99359 0deg
16 0.14001 0deg

Table 4: Te excitation after gain fne-tuning.

Num
Gain decreased by 3 dB Gain increased by 3 dB

Amplitude Phase Amplitude Phase
1 4.672V 167.6122deg 8.4425V −9.5788deg
2 4.0511V −105.728deg 9.5885V 34.7518deg
3 7.2696V −48.0397deg 7.8159V 75.7985deg
4 2.2398V −100.0909deg 12.2195V 165.3479deg
5 13.9121V 167.903deg 22.9001V −169.7203deg
6 8.3639V 138.906deg 9.7894V −128.0798deg
7 26.1478V 7.2343deg 33.0671V −8.0232deg
8 32.3632V −3.1515deg 40.2185V 3.5551deg
9 23.1728V −166.7736deg 18.0008V 155.6163deg
10 90.0087V −177.3203deg 86.9729V 176.1113deg
11 100V 179.685deg 100V −179.5584deg
12 57.9555V 175.2204deg 56.9624V −173.1756deg
13 18.6731V 164.7761deg 12.2061V −145.7311deg
14 4.7879V 171.4933deg 8.3389V −6.8373deg
15 4.8673V −122.5324deg 8.3516V 43.5287deg
16 5.5395V −74.6664deg 7.6825V 102.9145deg
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Figure 6(d) and Figure 6(e) show the results of con-
tinuously fne-tuning the side lobe gain of the 1× 16 linear
array antenna at θ� -33° with 0.5 dB steps using the growth
model. It can be found that using the growth model to fne-
tune the side lobes of the antenna radiation pattern will not
afect the gain of the main lobe of the pattern and vice versa.
Tis conclusion is also verifed in Figure 6(b) and
Figure 6(c).

Te fne-tuning of the gain at any angle by the above
growth model takes an average of less than 10ms, which
verifes the high efciency of the growth gene algorithm for
fne-tuning patterns, which is convenient for real-time ap-
plication in engineering. Table 5 shows the comparison of
the computational times between the growth model and
some beamforming algorithms in the literature. Te growth
model uses G (θ) (in dBi, the original gain at the angle θ) and
s (in dB, the expected gain change at the angle θ) as inputs,
where s is the step size of beam fne-tuning.

5. Experimental Verification of Cosecant
Squared Beamforming

Te beamforming of the array antenna can be achieved by
fne-tuning the gain at multiple angles of the array ra-
diation pattern using the growth model. In the experi-
ment, the cosecant squared pattern with the pattern
coverage range of −30° to 30° and the maximum gain
direction of 16° to 18° is taken as the target, and the
growth model is used to synthesize the beam pattern. Te
corresponding excitation of each element calculated by
the growth model is shown in Table 6, and the radiation
pattern simulated by using this excitation is shown in
Figure 6(f ).

As can be seen from Figure 6(f), the coverage range of
the formed beam pattern is −31° to 31°, and the maximum
gain direction is 17°, which well meets the design require-
ments of the cosecant squared pattern. Moreover, compared
with the complex steps needed to be performed when using
the optimization algorithm to perform the beamforming, the
growth gene algorithm only needs to input the original gain
Gori(θ) and the expected gain change s at the corresponding
angle θ into the growth model to calculate the excitation
corresponding to the target pattern. It reduces the difculty
for antenna designers to implement high-precision
beamforming.

6. Conclusions

In this paper, a beamforming algorithm, called the growth
gene algorithm, which imitates plant growth genes, is
proposed. By establishing the growth model, the algorithm
can fne-tune the gain of the antenna radiation pattern at any
angle to achieve high efciency and accurate beamforming
of the target pattern. By fne-tuning multiple angles of the
radiation pattern of 1× 16 linear arrays, the cosecant square
beamforming with a coverage range of −31° to 31° and
maximum gain direction of 17° is realized. Te process of
fne-tuning the gain of the growth gene algorithm only
involves simple matrix multiplication and addition opera-
tions, so the complexity of achieving precise beamforming is
low. Te growth model is only related to the gain value
before and after the gain fne-tuning and the angle of the
gain fne-tuning, but not to the array spacing and the array
element radiation pattern. Terefore, these gene parameters
can be applied to other 1× 16 linear array antennae. More
importantly, the growth gene algorithm proposed in this
paper can be easily extended to the beamforming of area
array antennas.

Data Availability

Te data used to support the fndings of this study are in-
cluded in the article.

Table 5: Comparison of the growth model with diferent algorithms.

Year/Ref Algorithm Antenna array Optimization objectives Computational time
[2020]/[5] Generic algorithm 10-circular Beamforming 110 s
[2015]/[6] Model order reduction Rectangular Beamforming 644 s
[2020]/[7] Invasive weed optimization 10-circular Beamforming 114.5 s
[2019]/[8] Particle swarm optimization 8×1 Patch Beamforming 31.7 s
[2019]/[8] Firefy algorithm 8×1 Patch Beamforming 55.4 s
[2019]/[8] Taguchi’s method 8×1 Patch Beamforming 194.8 s
Proposed Growth model 1× 16-Linear Gain fne-tuning <10ms

Table 6: Te excitation corresponding to the cosecant squared.

Num Amplitude (V) Phase
1 5.7913 126.8469deg
2 10.8134 −166.273deg
3 14.2734 −102.7381deg
4 22.9186 −40.2313deg
5 26.7167 14.9124deg
6 37.0708 87.1692deg
7 54.3422 138.6947deg
8 5.7913 126.8469deg
9 58.1583 −168.3989deg
10 75.653 −107.6462deg
11 100 −69.8895deg
12 90.6976 −45.7976deg
13 48.0395 −23.0731deg
14 8.2269 47.2888deg
15 16.8154 166.8038deg
16 13.9234 −158.1047deg
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