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In this article, we proposed a multiparameter joint estimation algorithm based on the dual-polarized cylindrical conformal array
(DCCA) in the presence of mutual coupling. Using the characteristic of the dual-polarized cylindrical conformal array, 2D
direction-of-arrival (DOA) estimation can be divided into 1D estimations of elevation and azimuth. Sensors on the boundary of
the DCCA are set as auxiliary sensors to eliminate the influence of mutual coupling. (en, elevation can be estimated by the
generalized eigenvalues utilizing signal subspace eigenvectors (GEESE). After that, polarization sensitivity can be eliminated by
projection transformation and the proposed dual-polarized forward-backward smoothing algorithm. Consequently, a dual-
polarized spatial spectrum can be developed to estimate the azimuth based on the estimated elevation. Furthermore, the angles of
the signals can be reestimated to improve the accuracy of DOA estimation. Simulation results confirm the effectiveness of the
proposed algorithm.

1. Introduction

Conformal arrays are widely used in aircraft, missiles, un-
manned aerial vehicles, and other fields for the advantages of
saving space, good aerodynamic characteristics, reducing
radar cross-section, and increasing angular coverage [1].
However, due to the limited layout space of the conformal
array, the electromagnetic coupling between the array ele-
ments becomes more serious [2]. And this effect will sig-
nificantly degrade the performance of most existing DOA
estimation methods. Common methods to eliminate the
influence of mutual coupling are the iterative autocorrection
method and auxiliary array element method [3]. In [4], the
array is firstly divided into several subarrays, and then the
MUSIC algorithm is used to realize the DOA estimation
algorithm of the conformal array. However, the mutual
coupling and polarization sensitivity of the array are not
considered. In [5, 6], an iterative self-correction algorithm is
proposed, which gradually obtains the optimal solution of
angle and mutual coupling through loop iteration. (is kind
of multidimensional nonlinear solution algorithm has a

large amount of calculation and is easy to fall into local
optimum. In [7], an effective DOA estimation algorithm for
the conformal array is proposed in the presence of mutual
coupling. (is algorithm reconstructs the steering vector of
the subarrays and constructs a segmented space spectrum
for DOA estimation. However, the influence of polarization
sensitivity is not considered. In [8], a method is proposed to
realize the joint estimation of mutual coupling and angle
using an auxiliary element. However, the auxiliary element
must be accurate and error-free, which is difficult to realize
in many occasions.

Each polarized signal can be decomposed into two or-
thogonal components, and they can be modeled as a pair of
coherent signals [9]. (us, elimination of polarization
sensitivity can also be seen as a process of decoherence.
Common decoherence methods include spatial smoothing
algorithm, signal feature vector method, and difference
method [10]. Most of these methods are based on a specific
array structure without universal applicability. In [11, 12], a
DOA and polarization estimation algorithm for arbitrary
array configurations is proposed. (e algorithm separates

Hindawi
International Journal of Antennas and Propagation
Volume 2022, Article ID 7321449, 12 pages
https://doi.org/10.1155/2022/7321449

mailto:disneyl@hfut.edu.cn
https://orcid.org/0000-0003-4030-6824
https://orcid.org/0000-0001-7383-7256
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7321449


the polarization sensitivity and angle information through
the decoherence method to achieve DOA estimation. But the
algorithm is not suitable for the scenario where mutual
coupling and polarization sensitivity coexist. In [13], a blind
DOA estimation algorithm is proposed for the conformal
array. (e algorithm uses a virtual transformation to avoid
the effect of the polarization and the inconsistency of ele-
ment pattern. (en, ESPRIT can be used to realize the DOA
estimation. However, this method is based on the fourth-
order cumulants of the array output, which brings a lot of
calculation.

In DOA estimation of the conformal array, mutual
coupling and polarization sensitivity still face great challenges.
Scholars have proposed some DOA estimation algorithms for
conformal array considering only polarization sensitivity or
mutual coupling.(ese algorithms can achieve effective DOA
estimation when only considering mutual coupling or po-
larization sensitivity, but they are no longer applicable with
both of them. However, in the DOA of conformal array,
mutual coupling and polarization sensitivity are inevitable
factors. In view of this, we propose a mutiparameter joint
estimation algorithm to solve this problem.

In this article, we use a method of stepped estimation to
estimate the angle and polarization parameters. (e 2D
DOA estimation can be divided into two 1D estimations of
elevation and azimuth according to the characteristic of
DCCA. (e influence of mutual coupling can be eliminated
by setting the sensors on the boundary of the DCCA as
auxiliary sensors. Elevation can be firstly estimated with the
GEESE algorithm. (en, polarization sensitivity can be
eliminated by projection transformation and dual-polarized
forward-backward smoothing algorithm. After eliminating
the influence of polarization sensitivity, we construct a
spatial spectrum to estimate the azimuth. Consequently,
polarization parameters can be estimated based on DOA
estimation results. Since the polarization parameters have
been obtained, the angles of the signals are reestimated to
improve the accuracy of DOA estimation. Cramer-Rao
bound (CRB) is also derived as a comparison standard of the
estimation performance. Finally, Monte Carlo simulations
are carried out to demonstrate the excellent performance of
the proposed method.

2. Signal Model

Suppose a narrowband far-field signal with arbitrary po-
larization impinges on the array from direction (θ, ϕ), where
θ and ϕ denote the elevation and azimuth, respectively.
Consider a dual-polarized cylindrical conformal array
(DCCA) with M × N elements. (e cylindrical array is
spatially composed of M layers, and each layer is a ring array
with N elements uniformly arranged. (e distance between
adjacent elements is dxy, and the distance between adjacent
layers is dz, as shown in Figure 1.

2.1. Dual-Polarized Cylindrical Conformal Array.
Considering the polarization inconsistency of the array el-
ements, the polarization signal need to be decomposed and

projected to the local coordinate system of each element to
calculate the array response. Without considering the noise,
the array output can be expressed as

x(t) � G(θ, ϕ)T(θ, ϕ) a(θ, ϕ)⊗ I2( 􏼁
sθ(t)

sϕ(t)
⎡⎣ ⎤⎦,

G(θ, ϕ) �

gθ1′ 0 0 . . . 0

0 gϕ1′ 0 . . . 0

0 0 ⋱ 0 0

⋮ ⋮ 0 gθMN
′ 0

0 0 . . . 0 gϕMN
′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T(θ, ϕ) �

T1(θ, ϕ) 0 . . . 0

0 T2(θ, ϕ) . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . TMN(θ, ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a(θ, ϕ) � a1(θ, ϕ), . . . , aMN(θ, ϕ)􏼂 􏼃
T
,

(1)

where gθn
′ and gϕn

′(n � 1, 2, . . . , MN) are patterns of θ po-
larization and ϕ polarization of the n th array element in the
local coordinate system, respectively. Tn(θ, ϕ) represents
transformation matrix from global coordinate system to
local coordinate system of the n th array element [14].
an(θ, ϕ) � ejkrnv, where k � 2π/λ is the wavenumber, λ is the
wavelength of the signal, rn � [xn, yn, zn] is the position
vector, andv � [sin θ cos ϕ, sin θ sin ϕ, cos θ]T is the unit
direction vector. “(·)T” indicates the transpose of the matrix.
I2 represents a 2 × 2 identity matrix. “⊗ ” represents the
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Figure 1: Conformal array coordinate diagram.
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Kronecker product. (us, the steering vector 􏽥a(θ, ϕ) of the
DCCA is shown as follows:

􏽥a(θ, ϕ) � G(θ, ϕ)T(θ, ϕ) a(θ, ϕ)⊗ I2( 􏼁 � 􏽥aθ(θ, ϕ), 􏽥aϕ(θ, ϕ)􏽨 􏽩.

(2)

Assume that there are K sources si(t), i � 1, 2, . . . , K in
the space. (ey impinge on the array at certain angles
(θ1,ϕ1), (θ2, ϕ2), . . . , (θK, ϕK), where θi and ϕi are elevation
and azimuth of the i th signal. (e equivalent array manifold
of the array can be expressed as

􏽥A � 􏽥aθ θ1, ϕ1( 􏼁, 􏽥aϕ θ1, ϕ1( 􏼁, . . . , 􏽥aθ θK, ϕK( 􏼁, 􏽥aϕ θK, ϕK( 􏼁􏽨 􏽩.

(3)

Each polarized signal can be decomposed into two or-
thogonal polarization signal components, which can be
regarded as two coherent components with the same di-
rection but different polarization.

siθ(t)

siϕ(t)
⎡⎣ ⎤⎦ �

sin cie
jηi

cos ci

⎡⎣ ⎤⎦si(t), (4)

where ci and ηi represent the auxiliary polarization angle
and polarization phase difference of the i th signal. Define
the matrix P containing all polarization parameter
information.

P �

p c1, η1( 􏼁 0 . . . 0

0 p c2, η2( 􏼁 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . p cK, ηK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where p(ci, ηi) � [sin cie
jηi , cos ci]

T.
(us, the array output can be rewritten as

x(t) � 􏽥APs(t) + n(t), (6)

where

s(t) � s1(t), . . . , sK(t)􏼂 􏼃
T

n(t) � n1θ(t), n1ϕ(t), . . . , nMNθ(t), nMNϕ(t)􏽨 􏽩
T
,

(7)

s(t) represents the K × 1 vectors of the incident signals. n(t)

represents the 2MN × 1 zero-mean white Gaussian noise
vector with variants σ2n.

2.2.Dual-PolarizedCylindrical ConformalArraywithMutual
Coupling. Considering the influence of mutual coupling on
the array, the array manifold should be corrected. Assume
that each element in the cylindrical array can only receive the
electromagnetic coupling interference generated by copo-
larization component of adjacent elements. cx, cz, and cxz

are the mutual coupling coefficients between elements, as
shown in Figure 2 [15].

According to the spatial structure of the cylindrical
array, the mutual coupling matrix of the array can be
expressed as follows:

C �

C1 C2 0 · · · 0

C2 C1 C2 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 · · · C2 C1 C2

0 · · · 0 C2 C1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2MN×2MN

C1 � Toeplitz 1, 0, cx, 0, . . . , 0, cx, 0􏼂 􏼃􏼈 􏼉

C2 � Toeplitz cz, 0, cxz, 0, . . . , 0, cxz, 0􏼂 􏼃􏼈 􏼉.

(8)

Considering the effect of mutual coupling, (9) can be
rewritten as

x(t) � C􏽥APs(t) + n(t). (9)

(us, the covariance matrix of the received signal can be
expressed as

Rx � E x(t)xH(t)􏽮 􏽯 � C􏽥A􏽥Rs
􏽥AHCH

+ σ2nIx, (10)

where 􏽥Rs � PRsPH. Rs is a K × K matrix, representing the
covariance matrix of the signal source. σ2n is the noise power
and Ix is the 2MN × 2MN identity matrix.

3. Multiparameter Joint Estimation Algorithm

Simultaneous estimation of multiple parameters in the array
brings a large amount of calculation, which is almost im-
possible to realize. In this section, a stepped multiparameter
joint estimation algorithm is proposed based on the dual-
polarized cylindrical conformal array in the presence of
mutual coupling. (e 2D DOA estimation can be divided
into two 1D DOA estimations. Elevation can firstly be es-
timated with the GEESE algorithm proposed in this section.
(en, using the estimated elevation result, azimuth and
polarization parameters can be estimated through the
constructed space spectrum. Finally, the angles of the signals
can be reestimated to improve the accuracy of DOA
estimation.

3.1. Elevation Estimation. (e cylindrical conformal array
can be regarded as a linear array composed of multiple
uniform circular arrays. (erefore, the dual-polarized cy-
lindrical conformal array has some properties of a uniform
linear array, which provides a theoretical basis for proposing
the GEESE algorithm. (en, sensors on the boundary of the
DCCA are set as auxiliary sensors to eliminate the influence

cz
cxzcxz

cx cx

cxz cxz
cz

Figure 2: Schematic diagram of mutual coupling of DCCA.
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of mutual coupling. Afterwards, elevation can be estimated
with the GEESE algorithm.

Considering the structural characteristics of the array,
the steering vector of the dual-polarized cylindrical con-
formal array is rewritten as follows:

􏽥a(θ, ϕ) � G(θ, ϕ)T(θ, ϕ) az(θ) ⊗ axy(θ, ϕ)􏽨 􏽩⊗ I2􏽮 􏽯, (11)

where az(θ) is the steering vector of the uniform linear
subarray.

az(θ) � 1, βz, β2z, . . . , βM− 1
z􏽨 􏽩

T

βz(θ) � exp j
2π
λ

dz cos θ􏼚 􏼛.

(12)

axy(θ, ϕ) is the steering vector of the uniform circular
subarray.

axy(θ, ϕ) � βxy1, . . . , βxyN􏽨 􏽩
T

βxyj(θ, ϕ) � exp − j
2π
λ

xj sin θ cos ϕ + yj sin θ sin ϕ􏼐 􏼑􏼚 􏼛,

(13)

where j � 1, 2, . . . , N. According to the characteristics of
Kronecker product, (17) is rewritten as

􏽥a(θ, ϕ) � G(θ, ϕ)T(θ, ϕ) az(θ) ⊗ axy(θ, ϕ)⊗ I2􏼐 􏼑􏽨 􏽩

� az(θ) ⊗ G(θ, ϕ)T(θ, ϕ) axy(θ, ϕ)⊗ I2􏼐 􏼑􏽨 􏽩

� az(θ) ⊗ 􏽥axy(θ, ϕ),

(14)

where 􏽥axy(θ, ϕ) � G(θ, ϕ)T(θ, ϕ)[axy(θ, ϕ)⊗ I2].
(erefore, the steering vector of the dual-polarized cy-

lindrical conformal array can be defined as the Kronecker
product of a uniform linear array and a dual-polarized
uniform circular conformal array. (en, considering the
existence of mutual coupling, the true steering vector is as
follows:

C􏽥a(θ, ϕ) � C az(θ)⊗ 􏽥axy(θ, ϕ)􏼐 􏼑. (15)

(e premise of the GEESE algorithm is that the two
subarrays divided by the array have similar displacement
vectors in space. In order to meet the above condition, it is
necessary to discard the top and bottom layer elements of the
dual-polarized cylindrical array. (en, divide two subarrays
with similar spatial structures from the remaining elements,

as shown in Figure 3. Define two 2(M − 3)N × 2MN se-
lection matrices P1 and P2 to extract the subarrays.where 0
represents 2N × 2N zero matrix. I represents the 2N × 2N

identity matrix. (e output vector of the two subarrays can
be expressed by the following equations.

x1(t) � P1x(t) � P1C􏽥APs(t) + P1n(t),

x2(t) � P2x(t) � P2C􏽥APs(t) + P2n(t).

⎧⎨

⎩ (17)

P1 �

0 I 0 · · · 0 0 0

0 0 I · · · 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 · · · I 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2 �

0 0 I 0 · · · 0 0

0 0 0 I · · · 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 0 I 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(16)

(us, the true steering vectors of the two subarrays can
be expressed as P1C􏽥a(θ, ϕ) and P2C􏽥a(θ, ϕ). (e steering
vectors in the θ polarization and ϕ polarization directions,
respectively (22), can be expressed as follows:

􏽥a(θ, ϕ) � az(θ) ⊗ 􏽥axyθ(θ, ϕ), 􏽥axyϕ(θ, ϕ)􏽨 􏽩

� 􏽥aθ(θ, ϕ), 􏽥aϕ(θ, ϕ)􏽨 􏽩,
(18)

where 􏽥axyθ(θ, ϕ) and 􏽥axyϕ(θ, ϕ) are 2N × 1 steering vectors
and 􏽥aθ(θ, ϕ) and 􏽥aϕ(θ, ϕ) are 2MN × 1 steering vector
matrices. Taking the θ polarization direction as an example,
the true steering vectors of the two subarrays P1C􏽥aθ and
P2C􏽥aθ are as follows:

�e first subarray
x1

�e second subarray
x2

Figure 3: Spatial structure of subarray.
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P1C􏽥aθ �

0 I 0 · · · 0 0 0

0 0 I · · · 0 0 0

⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮

0 0 0 · · · I 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C1 C2 0 · · · 0

C2 C1 C2 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 · · · C2 C1 C2

0 · · · 0 C2 C1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

􏽥axyθ

βz􏽥axyθ

⋮

βM− 1
z 􏽥axyθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

C2􏽥axyθ + C1βz􏽥axyθ + C2β
2
z􏽥axyθ

C2βz􏽥axyθ + C1β
2
z􏽥axyθ + C2β

3
z􏽥axyθ

⋮

C2β
M− 4
z 􏽥axyθ + C1β

M− 3
z 􏽥axyθ + C2β

M− 2
z 􏽥axyθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

P1C􏽥aθ �

0 I 0 · · · 0 0 0
0 0 I · · · 0 0 0
⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮
0 0 0 · · · I 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C1 C2 0 · · · 0
C2 C1 C2 · · · 0
⋮ ⋮ ⋱ ⋮ ⋮
0 · · · C2 C1 C2

0 · · · 0 C2 C1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

􏽥axyθ

βz􏽥axyθ

⋮
βM− 1

z 􏽥axyθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

C2􏽥axyθ + C1βz􏽥axyθ + C2β
2
z􏽥axyθ

C2βz􏽥axyθ + C1β
2
z􏽥axyθ + C2β

3
z􏽥axyθ

⋮
C2β

M− 4
z 􏽥axyθ + C1β

M− 3
z 􏽥axyθ + C2β

M− 2
z 􏽥axyθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)

From (28)–(29), the following equation can be obtained:

P2C􏽥aθ � P1C􏽥aθβz. (21)

(e ϕ polarization component has similar results, and
the following equation can be obtained:

P2C􏽥aϕ � P1C􏽥aϕβz (22)

when there are K sources in the space. Moreover, the
following equation can be obtained:

P2C
􏽥AP � P1C

􏽥A Φ⊗ I2( 􏼁P

� P1C
􏽥APΦ,

(23)

where Φ � diag βz1, βz2, . . . , βzK􏼈 􏼉 is a K × K matrix con-
taining the elevation information but not mixed with other
information. βzi is the simplified representation of βz(θi). 􏽥aθ
and 􏽥axyθ are simplified representations of 􏽥aθ(θ, ϕ) and
􏽥axyθ(θ, ϕ), respectively. (us, the following equation can be
obtained:

x1(t) � P1x(t) � P1C􏽥APs(t) + P1n(t),

x2(t) � P2x(t) � P1C􏽥APΦs(t) + P2n(t).

⎧⎨

⎩ (24)

(en, the GEESE algorithm can be used to estimate the
elevations. (e signal subspace Us can be obtained through
the eigenvalue decomposition of the covariance matrix Rx.
Define Us1 � P1Us, Us2 � P2Us. (e signal subspace span-
ned by the eigenvectors corresponding to the eigenvalues is
the same as the subspace spanned by the array manifold
matrix [16]. (us, there is a K × K full rank matrix T that
satisfied the following equation:

Us1

Us2
􏼢 􏼣 �

AT

AΦT
⎡⎣ ⎤⎦, (25)

where A � P1C􏽥AP. ]i � ]1, ]2, . . . , ]K􏼈 􏼉 is defined as the
generalized eigenvalue of the matrix pair UH

s1Us1,UH
s1Us2􏼈 􏼉.

UH
s1Us1 − νiU

H
s1Us2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � TH
A
HA IK − νiΦ( 􏼁T

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 0(i � 1, 2, . . . , K).
(26)

Since the matrix T and array manifold A have the same
rank K, it can be obtained from formula (26):

IK − νiΦ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (27)

(us, the eigenvalues of matrix Φ are equal to ]i. (e ele-
vation estimator can be estimated.

θi � cos− 1 λ
2πdz

arg ]i( 􏼁􏼠 􏼡, (28)

where “arg(x)” represents the phase of x.

3.2. Azimuth and Polarization Parameter Estimation.
Each polarized signal is regarded as two orthogonal po-
larized components.(e two components can be treated as a
pair of coherent signals that have the same direction but
different polarization. (e traditional decoherence methods
are only suitable for planar arrays but not suitable for
conformal arrays. (erefore, the dual-polarized cylindrical
conformal array must be projected into a rectangular array.
After using the projection transformation and spatial
smoothing algorithm, the dual-polarized cylindrical con-
formal array signal can make decoherence.

(e projection operator satisfies PA∣UC􏽥A � Av and
PA∣UUn � 0 [17]. Av is the array manifold of the virtualized
dual-polarized rectangular array, which will be used as the
signal subspace of the oblique projection. Un is the noise
subspace after eigendecomposition of the covariance matrix
of equation (16). (e orthogonal projection matrix P⊥U of the
noise subspace Un is shown as follows:

P⊥U � IU − PU,

PU � Un UH
n Un􏼐 􏼑

− 1
UH

n ,
(29)

where IU is a 2MN × 2MN identity matrix.
(en, the oblique projection matrix PA|U is expressed as

follows:
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PA∣U � Av (C􏽥A)
HP⊥U(C􏽥A)􏽨 􏽩

− 1
(C􏽥A)

HP⊥U. (30)

From (16), the projected covariance matrix is written as
follows:

R � PH
A ∣ URxPA∣U

� PH
A ∣ UC􏽥A􏽥Rs PH

A ∣ UC􏽥A􏼐 􏼑
H

+ σ2nP
H
A ∣ UPA∣U.

(31)

For the existence of the projection matrix, the noise will
no longer be white. In order to reconstruct white noise, the
new projection matrix is defined as follows:

􏽥PA∣U � PH
A ∣ UPA∣U􏼐 􏼑

− 1/2
PH
A ∣ U. (32)

(us, the projected covariance matrix is rewritten as
follows:

􏽥R � 􏽥PA∣URx
􏽥P
H
A∣U. (33)

Due to the particularity of a dual-polarized conformal
array, smoothing should be carried out between copolari-
zation components. (rough the following forward and
backward smoothing, a new covariance matrix can be
constructed as follows [18]:

Rfb
�

􏽥R + D􏽥R∗D
2

D �

JD 0 0 0 0

0 JD 0 0 0

0 0 ⋱ 0 0

0 0 0 JD 0

0 0 0 0 JD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34)

where D � IM ⊗ JD is the dual-polarized forward and
backward smoothing matrix. Matrix D ensures that the
copolarized components are smoothed, and the cross-po-
larized components do not affect each other. JD � JN ⊗ I2 is a
2N × 2N matrix. I2 is a 2 × 2 identity matrix, JN is a N × N

inverse identity diagonal matrix, and IM is a M × M identity
matrix. “(·)∗ ” represents complex conjugate of the matrix.
(e proof process is shown in Appendix A.

(rough the above smoothing, the rank of covariance
matrix is restored from K to 2K, and thenRfb is expressed as
follows:

Rfb
� Ufb

s ΛsU
fb
s + Ufb

n ΛnU
fb
n . (35)

Ufb
s is a 2MN × 2K matrix and Ufb

n is a
2MN × (2MN − 2K) matrix. Λs and Λn are the diagonal
matrices composed of corresponding eigenvalues.

According to the principle of subspace orthogonality, the
steering vector of the decoherent array signal is orthogonal
to the noise subspace. (e following equation is satisfied:

UfbH
n

􏽥PA|UC􏽥a θi, ϕi( 􏼁 � 0 (i � 1, 2, . . . , K) . (36)

Since we have already got the estimated values of ele-
vation in Subsection 3.1, we can define Qθ(

􏽢θi, ϕ) and
Qϕ(􏽢θi, ϕ) to construct the spatial estimation spectrum:

Qθ
􏽢θi, ϕ􏼐 􏼑 � UfbH

n
􏽥PA|UC􏽥aθ

􏽢θi, ϕ􏼐 􏼑
�����

�����
2
,

Qϕ
􏽢θi, ϕ􏼐 􏼑 � UfbH

n
􏽥PA|UC􏽥aϕ

􏽢θi,ϕ􏼐 􏼑
�����

�����
2
.

⎧⎪⎪⎨

⎪⎪⎩
(37)

When the scanning angle is equal to the actual arrival
angle of the signal, at least one of the above two functions is
zero. (erefore, the following spectrum can be constructed
to estimate the azimuth:

P 􏽢θi,ϕ􏼐 􏼑 �
1

min Qθ
􏽢θi, ϕ􏼐 􏼑, Qϕ

􏽢θi, ϕ􏼐 􏼑􏽨 􏽩
. (38)

(e azimuth can be estimated by searching the highest
peak of the spatial spectrum.

Consequently, the polarization parameters c and η can
be estimated using the obtained DOA estimation result
(􏽢θi,

􏽢ϕi). (e steering vector of the array considering the
polarization sensitivity is expressed as follows:

􏽥a 􏽢θi,
􏽢ϕi, c, η􏼐 􏼑 � 􏽥a 􏽢θi,

􏽢ϕi􏼐 􏼑p(c, η). (39)

(e polarization parameters can be estimated through
the following equation:

􏽢ci, 􏽢ηi( 􏼁 � argmax
(c,η)

1

UH
n C􏽥a 􏽢θi,

􏽢ϕi, c, η􏼐 􏼑
�����

�����
2, (40)

whereUn is the noise subspace ofRx. Each set of polarization
parameters corresponds to the angle estimation.

Using the estimated polarization parameters (􏽢ci, 􏽢ηi), the
angles of the signals can be reestimated to improve the
accuracy of DOA estimation.(e steering vector is rewritten
as follows:

􏽥a θ, ϕ, 􏽢ci, 􏽢ηi( 􏼁 � 􏽥a(θ, ϕ)p 􏽢ci, 􏽢ηi( 􏼁. (41)

(en, a spatial spectrum can be constructed according to
the orthogonality of the subspace to complete the DOA
reestimation:

P(θ, ϕ) � 􏽘

K

i�1

1

UH
n C􏽥a θ, ϕ, 􏽢ci, 􏽢ηi( 􏼁

����
����
2. (42)

From (42), the reestimation of DOA can be achieved.

4. Simulation Results

In the simulation experiment, a dual-polarized cylindrical
conformal array with 10 × 15 elements is considered. (e
array elements adopt the dual-polarized patch antennas.(e
spacing between the adjacent elements is half the wave-
length. (e patterns of the antenna elements are as follows
[19]:
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gθ θ′, ϕ′( 􏼁 � J2
π d sin θ

λ
′

􏼠 􏼡 − J0
π d sin θ′

λ
􏼠 􏼡􏼢 􏼣,

· cos ϕ′ − j sin ϕ′􏼂 􏼃,
0≤ θ′ ≤ π

2
,

gϕ θ′, ϕ′( 􏼁 � J2
π d sin θ

λ
′

􏼠 􏼡 + J0
π d sin θ′

λ
􏼠 􏼡􏼢 􏼣,

· cos θ′ sin ϕ′ − j cos ϕ′􏼂 􏼃,
0≤ θ′ ≤ π

2
,

gθ θ′, ϕ′( 􏼁 � gϕ θ′,ϕ′( 􏼁 � 0,
θ′ > π
2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)
where J0 and J2 are the zero-order and second-order Bessel
functions of the first kind, respectively.

In the first simulation, we assume there are three in-
dependent far-field sources from directions
(35°, − 30°) (45°, 15°) (65°, 40°) in the space impinging on the
array. (e polarization parameters of the three sources are
(20°, 60°) (30°, 45°) (60°, 30°), respectively. We set the scan
ranges of the elevation and azimuth to (0° , 140°) and
(− 70°, 70°), respectively. And the scan step size is set to 0.1°.

(e mutual coupling coefficients are set to cx � 0.5 + 0.2i,
cz � 0.4 + 0.1i, and cxz � 0.2 − 0.2i, respectively. (e signal-
to-noise (SNR) is fixed to 10 dB. And the number of the
snapshots is fixed to 200.

(e elevation initial estimation result is shown in
Figure 4(a). And the spectra of the three azimuth initial
estimation are shown in Figures 4(b)–4(d), respectively.
Figures 5–7 plot the spectral peaks corresponding to the
polarization parameter estimation results. (en, the spatial
spectrum obtained by (42) is shown in Figure 8. From the
figure, it can be seen that the spectrum peaks coincide with
the real signal DOAs. In order to reduce the amount of
calculation, we set the scan step size to 2° during the angle
refined estimation, so there will be an angle estimation
deviation of about 1° . Secondary refine scanning can be
carried out subsequently with a step of 0.1° to acquire higher
accuracy results. From the simulation results, we can see the
proposed multiparameter joint estimation algorithm can
realize the estimation of the elevation, azimuth, and po-
larization parameters, which demonstrate the effectiveness
of the proposed algorithm.

Furthermore, Monte Carlo experiments are carried to
verify the estimation accuracy of the proposed algorithm.
(e root mean square error (RMSE) of the parameter
estimation is calculated through 100 Monte Carlo exper-
iments (Mc � 100) and compared with the CRB lower
bound. (e derivation of CRB can refer to in Appendix B.
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Figure 4: (e DOA initial estimation.
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(e RMSE of DOA and polarization parameters can be
defined as follows:

RMSEθ �
1

�����
Mc K

􏽰 􏽘

Mc

m�1
􏽘

K

i�1
θi − 􏽢θi,m􏼐 􏼑

2
⎡⎣ ⎤⎦⎡⎣ ⎤⎦

1
2

RMSEϕ �
1

�����
McK

􏽰 􏽘

Mc

m�1
􏽘

K

i�1
ϕi − 􏽢ϕi,m􏼐 􏼑

2⎡⎣ ⎤⎦⎡⎣ ⎤⎦

1
2

RMSEc �
1

�����
McK

􏽰 􏽘

Mc

m�1
􏽘

K

i�1
ci − 􏽢ci,m􏼐 􏼑

2⎡⎣ ⎤⎦⎡⎣ ⎤⎦

1
2

RMSEη �
1

�����
McK

􏽰 􏽘

Mc

m�1
􏽘

K

i�1
ηi − 􏽢ηi,m􏼐 􏼑

2⎡⎣ ⎤⎦⎡⎣ ⎤⎦

1
2

.

(44)

In the second simulation, the SNR changes from 0 dB to
20 dB with the step of 2 dB. (e other conditions are con-
sistent with the first simulation. Figure 9 plots the RMSE
curves of initial and refined angle estimation with the SNR
increases. And the performance of refined angle estimation
is close to the CRB. Figure 10 plots the RMSE curves of
polarization parameters for SNR from 0dB to 20 dB with the
step of 2 dB.

In the third simulation, the snapshots change from 100
to 1000 with a step of 100. And the SNR is fixed to 5 dB. (e
other conditions are consistent with the first simulation.
Figure 11 plots the RMSE curves of initial and refined angle
estimation with the snapshots increases. Figure 12 plots the
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Figure 5: Polarization estimation with (θ,ϕ) � (30°, − 40°).
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Figure 6: Polarization estimation with (θ,ϕ) � (45°, 15°).
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Figure 7: Polarization estimation with (θ, ϕ) � (65°, 40°).
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RMSE curves of polarization parameters for snapshots from
100 to 1000 with the step of 100.

In Figures 9 and 11, the DOA estimation performance gets
better and better with the increase of SNR or snapshots. (en,
the RMSE curves have a downward trend.With the increase of
SNR and snapshots, the DOA estimation RMSE quickly de-
creases and approaches the Cramer-Rao lower bound.

In Figures 10 and 12, the RMSE values of the polarization
parameters estimation gradually decrease regardless of the
increase in the SNR or the snapshots. Compared with DOA
estimation, the accuracy of polarization parameter estima-
tion is relatively low because the polarization parameter
estimation only has two receiving data in the polarization
parameter estimation. But in the spatial domain, there are
10 × 15 elements for DOA estimation, so it is reasonable that
the performance of DOA estimation is higher than that of

polarization parameter estimation. (e RMSE curves of the
polarization parameters approach the CRB lower bound
curve with the increase of the number of snapshots or SNR,
which indicates that the polarization parameter estimation
also has good performance.

5. Conclusion

A multiparameter joint estimation algorithm has been
proposed based on the dual-polarized cylindrical conformal
array in the presence of mutual coupling. (e 2D DOA
estimation is firstly divided into the 1D estimation of ele-
vation and azimuth. By setting the elements on the boundary
of the DCCA as auxiliary sensors, the effect of mutual
coupling is proved to be eliminated, and elevation can firstly
be estimated by the GEESE algorithm. (en, polarization
sensitivity is eliminated by oblique projection transforma-
tion and the dual-polarized forward-backward smoothing
technique. After eliminating the influence of polarization
sensitivity, we construct a spatial spectrum to estimate the
azimuth. After that, a spectrum in the polarization domain
can be constructed based on the obtained DOA estimation.
Furthermore, the angles of the signals are reestimated to
improve the accuracy of DOA estimation by using all the
output of the array. Finally, Monte Carlo simulations are
carried out to demonstrate the excellent performance of the
algorithm.

Appendix

A. The Dual-Polarized Forward and Backward
Smoothing Algorithm

(e dual-polarized forward and backward smoothing al-
gorithm mentioned in this article is based on the traditional
forward and backward smoothing algorithm. According to
the previous analysis, the dual-polarized cylindrical
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Figure 10: RMSE of polarization parameters with different SNR.
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conformal array cannot be directly smoothed. It needs to be
projected into a dual-polarized rectangular planar array first
and then smoothed to achieve decoherence. (e steering
vector of the projected dual-polarized rectangular array can
be as follows:

􏽥av(θ, ϕ) � az(θ)⊗ 􏽥ap(θ, ϕ), (A.1)

where

az(θ) � 1, βzi, β
2
zi . . . , βN− 1

zi􏽨 􏽩
T
,

􏽥ap(θ, ϕ) � 1, βpi, βpi
2

. . . , βpi
N− 1

􏽨 􏽩
T
⊗ I2.

⎧⎪⎨

⎪⎩
(A.2)

(us, if there are K signals in the space, the output signal of
the dual-polarized rectangular planar array is shown as
follows:

xv(t) � 􏽥AvPs(t) + n(t). (A.3)

Since we have already obtained the estimation of ele-
vation, the purpose of smoothing is to estimate azimuth.
(us, matrix D is shown as follows:

D �

JD 0 · · · 0 0

0 JD · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · JD 0

0 0 · · · 0 JD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

In order to ensure that the smoothing is taken between
copolarized components, the cross-polarized components
do not interfere with each other. (e matrix JD is defined as
follows:

JD �

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

0 0 0 0 · · · 1 0 0 0

0 0 0 0 · · · 0 1 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 1 0 ⋱ 0 0 0 0

0 0 0 1 · · · 0 0 0 0

1 0 0 0 · · · 0 0 0 0

0 1 0 0 · · · 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (A.5)

Assuming that there is only one signal, the following
equation can be obtained:

D􏽥a∗v �

JD 0 · · · 0 0

0 JD · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · JD 0

0 0 · · · 0 JD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽥ap

βz􏽥ap

⋮

βN− 1
z 􏽥ap

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

�

JD􏽥a∗p
JDβz􏽥a∗p
⋮

JDβ
N− 1
z 􏽥a∗p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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JD􏽥a �

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

0 0 0 0 · · · 1 0 0 0

0 0 0 0 · · · 0 1 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 1 0 ⋱ 0 0 0 0

0 0 0 1 · · · 0 0 0 0

1 0 0 0 · · · 0 0 0 0

0 1 0 0 · · · 0 0 0 0
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1 0

0 1

β− 1
pi 0

0 β− 1
pi

⋮ ⋮

β− (N− 1)
pi 0

0 β− (N− 1)
pi
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

p

�

1 0

0 1

βpi 0

0 βpi

⋮ ⋮

βpi
N− 1 0

0 βN− 1
pi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β− (N− 1)
pi 0

0 β− (N− 1)
pi

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

� 􏽥apΨi.

(A.6)

After the above analysis, when there are K signals in the
space, the following equation can be obtained:

D􏽥A∗v � 􏽥AvΨ, (A.7)

Ψ � diag β− (N− 1)
p1 , β− (N− 1)

p1 , . . . , β− (N− 1)
pK , β− (N− 1)

pK􏽮 􏽯. (en, we
define two covariance matrices Rf and Rb to achieve
smoothing.

Rf
� Rb

E xv(t) xv(t)􏼂 􏼃
H

􏽮 􏽯

� 􏽥AvPRsP
H 􏽥AH

v + σ2I

� D Rf
􏼐 􏼑
∗
DH

� D 􏽥AvPRsP
H 􏽥AH

v􏼒 􏼓
∗
DH

+ σ2I

� 􏽥AvΨP∗R∗s PH
􏼐 􏼑
∗
ΨH 􏽥AH

v + σ2I.

(A.8)
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(e smoothed covariance matrix is shown as follows:

Rfb
�
1
2

Rf
+ Rb

􏼐 􏼑

� 􏽥AvR
fb
s

􏽥AH
v + σ2I,

(A.9)

where

Rfb
s �

1
2

PRsP
H

+ ΨP∗R∗s PH
􏼐 􏼑
∗
ΨH

􏼐 􏼑

�
1
2

P ΨP∗􏼂 􏼃

PH

PH
􏼐 􏼑
∗
ΨH

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

�
1
2
CfC

H
f .

(A.10)

For a matrix, its rank is equal to the rank of this matrix
multiplied by its own conjugate transpose matrix. (us, we
can see that the rank of Rfb

s and the rank of Cf are equal
from equation (A.10). From the expression of polarization
parameter matrix P in equation (8) andmatrixΨ in equation
(A.7), we can deduce that the ranks of the matrices P and Ψ
are both K, and their columns are irrelevant. (us, Cf is a
matrix of rank 2K. And Rfb

s is a matrix with a rank of 2K.
(e smoothing algorithm has completed the process of
restoring the rank from K to 2K.

B. The Derivation of CRB

(is section describes the derivation of the Cramer-Rao
bound (CRB).(e CRB offers a lower bound on the variance
of unbiased estimation. We derived the CRB using a dual-
polarized cylindrical conformal array to compare the per-
formance of the proposed algorithm [20]. (e probability
density function (PDF) of the output signal x can be used to
construct the CRB. (e PDF is defined by p(x|ζ). Define the
unknown parameter vector in covariance matrix R as
ζ � [θ, ϕ, c, η]T. Because there are K signal sources, the
number of elevation and azimuth and two polarization
parameters are both K. (e entries of the Fisher Information
Matrix (FIM) can be calculated by

Fij � − E
zln(p(x|ζ))

zζizζj

􏼨 􏼩, (A.11)

where i, j � 1, 2, . . . , 4K. Assume that there are L statistically
independent observations of x(t), PDF can be expressed as
follows:

p(x ∣ ζ) �
1

2πσ2n􏼐 􏼑
L/2·

exp −
1
σ2n

􏽘

L− 1

n�0
‖xn) − CA(θ, ϕ)Ps(t)‖

2⎧⎨

⎩

⎫⎬

⎭.

(A.12)

Combining (A.11) and (A.12), the FIM can be rewritten
as follows:

Fi,j � L · SNR ·
z(CAP)

H

zζi

zCAP
zζj

+
zCAP

zζi

z(CAP)
H

zζj

􏼠 􏼡,

(A.13)

where SNR � σ2s /σ
2
n and E[s2(n)] � σ2s . (e process of

obtaining the partial derivatives of the array manifold CAP
with respect to the vector ζ is actually the process of
obtaining the partial derivatives of the unknown parameters
θ, ϕ, c, η separately, as follows:

zCAP
zθi

� C
zA
zθi

P

zCAP
zϕi

� C
zA
zϕi

P

zCAP
zci

� CA
zP
zci

zCAP
zηi

� CA
zP
zηi

.

(A.14)

(erefore, the whole FIM is a 4K × 4K matrix, which can
be expressed as follows:

F �

Fθθ Fθϕ Fθc Fθη
Fϕθ Fϕϕ Fϕc Fϕη
Fcθ Fcϕ Fcc Fcη

Fηθ Fηϕ Fηc Fηη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.15)

Defining G � F− 1, the CRB can be expressed as follows:

CRBθ �

��������

1
2K

􏽘

K

i�1
Gii

􏽶
􏽴

CRBϕ �

����������

1
2K

􏽘

2K

i�K+1
Gii

􏽶
􏽴

CRBc �

�����������

1
2K

􏽘

3K

i�2K+1
Gii

􏽶
􏽴

CRBη �

�����������

1
2K

􏽘

4K

i�3K+1
Gii

􏽶
􏽴

.

(A.16)

CRBθ and CRBϕ are the Cramer-Rao bound for DOA.
CRBc and CRBη are the Cramer-Rao bound for polarization
sensitivity.
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