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To enhance the efficiency of antenna optimization, surrogate model methods can usually be used to replace the full-wave
electromagnetic simulation software. Broad learning system (BLS), as an emerging network with strong extraction ability and
remarkable computational efficiency, has revolutionized the conventional artificial intelligence (AI) methods and overcome the
shortcoming of excessive time-consuming training process in deep learning (DL). However, it is difficult to model the regression
relationship between input and output variables in the electromagnetic field with the unsatisfactory fitting capability of the
original BLS. In order to further improve the performance of the model and speed up the design of microwave components to
achieve more accurate prediction of hard-to-measure quality variables through easy-to-measure parameter variables, the
conception of auto-context (AC) for the regression scenario is proposed in this paper, using the current BLS training results as the
prior knowledge, which are taken as the context information and combined with the original inputs as new inputs for further
training. Based on the previous prediction results, AC learns an iterated low-level and context model and then iterates to approach
the ground truth, which is very general and easy to implement.,ree antenna examples, including rectangular microstrip antenna
(RMSA), circular MSA (CMSA), and printed dipole antenna (PDA), and 10 UCI regression datasets are employed to verify the
effectiveness of the proposed model.

1. Introduction

As is known to all, electromagnetic simulation software
(EMSS) such as high-frequency structure simulator (HFSS)
and computer simulation technology (CST) is most com-
monly used in the optimization design of electromagnetic
devices, which can obtain high-precision results, however,
along with high computational and time cost. ,erefore, the
use of surrogate models instead of EMSS for evaluating the
fitness of electromagnetic components can save much op-
timization time, which is currently a hot topic in electro-
magnetic optimization design. Many popular modeling
methods have been widely used like Gaussian process (GP)
[1, 2], backpropagation (BP) [3], artificial neural network
(ANN) [4–6], support vector machine (SVM) [7, 8], extreme
learning machine (ELM) [9, 10], kernel ELM (KELM) [11],

and so on. Traditional deep neural networks are generally
composed of multilayer learning to mine complex knowl-
edge and abstract data characteristics from simple concepts,
which have achieved breakthrough success [12], such as deep
belief networks (DBN) [13] and convolutional neural net-
works (CNNs) [14]. Broad learning system (BLS) [15] is
proposed to solve the problem of plenty of time and
computing resources that the above-mentioned deep
structure suffers due to the need to adjust large numbers of
parameters and its complicated manual design structure.
Subsequently, BLS was proven to have universal approxi-
mation capabilities [16]. Specifically, thanks to the fast in-
cremental learning algorithm [17], which is applied to BLS,
when faced with newly added samples and hidden nodes, the
system can be updated incrementally without rebuilding the
entire network from scratch. ,e construction of BLS is
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based on the theory of random vector functional-link neural
network (RVFLNN) [18, 19]; however, instead of directly
bringing the original inputs into the network, BLS first maps
them into feature nodes and then imitates the practice of
RVFLNN, that is, nonlinearly transforming them into en-
hancement nodes, and these two parts together constitute
the hidden layer of BLS. More importantly, the powerful
mechanism for randomly generating hidden-layer node
weights based on any continuous probability distribution is
retained by BLS, so that only the output weights need to be
trained through the pseudoinverse algorithm [20]. In par-
ticular, the input weights are first random generated and
then fine-tuned by a sparse autoencoder. ,e fundamental
characteristic of BLS is that the limit formula of Moore-
inverse is utilized, and the pseudoinverse incremental for-
mula is adopted, which can guarantee its training accuracy
and fast incremental learning ability. Inspired by boosted
neural nets [21] and a method of model fusion, that is,
stacking, master-apprentice BLS (MABLS) [22] was pro-
posed and applied to the antenna optimization. In [23], the
probability that the current classification result belongs to
each category is used as the context and combined with the
original inputs as new inputs. Furthermore, Stacked BLS
[24], which not only uses the current BLS’s outputs, but also
utilizes the training algorithm along with residual charac-
teristic, was achieved by stacking several BLS blocks to
approach the residual outputs of each block. In addition, a
novel k-means clustering algorithm [25] based on a noise
algorithm is developed, which solves the problem of de-
termining the number of clusters and sensitively initializing
the center cluster in the traditional k-means clustering al-
gorithm. It is an iterative clustering analysis algorithm,
which starts the next iteration according to the current
clustering results. Still, coupled multistable stochastic res-
onance (CSMR) [26], adaptively optimizes and determines
the system parameters of SR by using the output signal-to-
noise ratio and seeker optimization algorithm and then feeds
the preprocessed signal into CMSR for further training.
Illuminated by these above approaches, we further propose
auto-context BLS (ACBLS) as another version of MABLS,
and the context is defined as the predicted values of the
current model in regression problem.

,e rest of the paper is organized as follows. Section 2
briefly reviews related works on BLS. In Section 3, the
original BLS will be presented, and then the specific structure
and algorithm of the proposed ACBLS are introduced in
detail. Experiments on RMSA, CMSA, PDA, and 10 UCI
regression data sets are conducted in Section 4 to demon-
strate the proposed method and report the results and
analysis. At last, Section 5 draws the conclusion.

2. Literature Review

,anks to its extraordinary efficiency, prominent gener-
alization performance, and easy extendibility, BLS has
been applied in different domains. Due to space con-
straints, we will only show a portion of the innovations
and applications on BLS. By incorporating TS fuzzy
systems into a BLS, fuzzy BLS [27] is proposed, the feature

nodes are replaced by each group of Takagi–Sugeno fuzzy
subsystems, and the input data are processed by each of
them, fuzzy BLS retains the fast computational nature of
BLS and can achieve great accuracies. A novel deep-broad
learning system [28] is proposed to jointly consider ef-
fectiveness and efficiency in 5G era; specifically, based on
typical BLS, it adopted long short-term memory to extract
the mapped features, which further improve the perfor-
mance of prediction. Xu et al. [29] propose a new re-
cursive BLS to capture the dynamic nature of time series
in order to make the network remember historical in-
formation, and the enhancement nodes are connected
recursively. To model uncertain data, especially those with
noise and outliers, Chen et al. [30] proposed robust BLS
based on regularization and achieved great generalization.
In order to fulfill the task of semisupervised classification,
Zhao et al. [31] extended BLS based on popular regula-
rization frameworks, forming a semisupervised BLS.
However, so far, there are few applications in the field of
electromagnetism. Until very recently, MABLS is applied
for antenna optimization, and this paper is a continuation
of this research.

3. The Proposed Algorithm Model

In this section, we will first briefly introduce the training
process of standard BLS and then propose the detailed
modeling strategy of ACBLS.

3.1. Standard Broad Learning System. BLS is a typical for-
ward neural network, whose structure draws on the concept
of RVFLNN and is divided into three layers: the input layer,
the hidden layer, and the output layer. Constructing a BLS
contains two essential procedures: (1) randomly generate the
weights of both mapping feature nodes and enhancement
nodes, and (2) calculate the weights between the hidden and
output layers. ,e architecture of BLS is shown in Figure 1.

First of all, the inputs are converted into n sets of random
feature nodes using mapping ηi, which is normally a linear
mapping. ,e output of the ith group of mapping feature
nodes can be denoted by the equation of the form

Fi � ηi XWei + βei( 􏼁, i � 1, 2, . . . , n, (1)

where weights Wei and bias terms βei are randomly gen-
erated with proper dimensions. In particular,Wei is a matrix,
which is then learned using a sparse autoencoder based on
lasso regression.

Next, combining all the feature nodes, we have
Fn ≡ [F1, F2, . . . ,Fn]. Similarly, the enhancement layer
Em ≡ [E1,E2, . . . ,Em] composed of m groups of enhance-
ment nodes is obtained by transforming the feature layer Fn
using a nonlinear function εj and the jth group of en-
hancement nodes can be represented as

Ej � εj FnWhj + βhj􏼐 􏼑, j � 1, 2, . . . , m. (2)

Once more, Whj and βhj are the randomly generated
matrix weights and bias terms.,e hidden layer is composed
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of the feature layer and the enhancement layer, which is
expressed as

H � Fn
|Em

􏼂 􏼃. (3)

Hence, we have the outputs of the model

Y � HW, (4)

whereW are the weights from the hidden layer to the output
layer and can be approximated rapidly by the ridge re-
gression learning algorithm, shown in (5), which is a L2
norm regularized least square problem, also referred to as
the ridge regression problem.

argmin
W

: ‖HW − Y‖
2
2 +

λ
2
‖W‖

2
2. (5)

A constraint term λ, also called the regularization co-
efficient, is added to the original least squares estimate to
make it possible to find the pseudoinverse when the original
generalized inverse is under the ill condition.,e solution of
the above problem can be approximated as

W � HTH + λI􏼐 􏼑
− 1
HTY, (6)

where HT is the transposed matrix of H, and I is the identity
matrix. ,e solution verges to 0 when λ⟶∞. Specially, if
λ� 0, the problem degenerates into the least square problem,
and it is easy to obtain the solution of the original
pseudoinverse.

3.2. Auto-Context Broad Learning System. Given a set of
samples, the model is first trained to get its corresponding
predictions, which are then used as the context information,
that is, the prior knowledge, to train a new model. ,is
procedure is somewhat similar to the part of the training
process of three common integrated learning frameworks,
which are Bagging, Boosting, and Stacking. For stacking
integration, the predictors of a specified layer are inde-
pendent of each other, so they can be trained in parallel on
multiple servers. However, the predictor of a certain layer
can only start training after all the predictors of the previous
layer have been trained. Regardless of whether it is AC or

MA [22], each predictor is based on its previous results, and
therefore, the training process must be orderly. It is
meaningless to distribute it on multiple servers, and this
feature is the same as boosting integration. ,e training
process of AC can be summarized as follows:

(1) When given a set of datasets together with their
labels, S� {X, Y}, X ∈ RN×M, Y ∈ RN×C, define Yu as
the corresponding outputs of model-u, where u is the
iteration index, u� 1, 2, 3, . . ., U.

(2) Combine the context as each iteration’s inputs
Xu � [X | Yu−1], Xu ∈ RN×(M+C). It is worth noting
that Y0 is the null matrix.

(3) Use the model to calculate new outputs Yu based on
new inputs Xu.

,e u-th AC iteration represents that the model-u will
teach its prediction results to the model u + 1; that is, we
have to first complete the training of the original BLS and
get the initial Y1, and then we can start the AC iteration.
Once a BLS has completed training, the algorithm repeats
the same procedure to better approximate the ground
truth. Without loss of generality, taking the kth teaching as
an example, the structure of the proposed ACBLS is shown
in Figure 2 and its training steps are presented in detail in
Algorithm 1.

For most traditional ANNs, their structure is fixed,
and the parameters need to be adjusted repeatedly in order
to optimize the performance of the model. On the con-
trary, the parameters of BLS are randomly selected and
fixed, and horizontal expansion is required to adjust the
optimal structure. ,e above-mentioned unique feature is
enabled no matter whether AC or MA is applied to the
BLS, it could result in a fantastic performance, and there is
no need to manually adjust any parameters after the
training starts.

4. Experiments

In the first place, define the structure of the hidden layer of
BLS as (Fn, Mg, En), which are the numbers of feature nodes
Fn, mapping groups Mg and enhancement nodes En, re-
spectively. For MABLS, the hidden layer extends column C
to the right, which contains the predictions of the previous
model, so the final structure becomes (Fn, Mg, En, C) and
the parameter C is conclusive and unchanging, which is the
dimension of the model’s output. So, whether the original
BLS or the improved version using AC or MA, we only need
to confirm (Fn, Mg, En). ,e regularization parameter δ in
ridge regression is set as 2−30. It is worth mentioning that,
except the output weights calculated by the ridge regression,
all other weights and biases involved are randomly gener-
ated, which are drawn from the standard uniform distri-
butions on the interval [−1, 1]. In particular, the input
weights are fine-tuned by the sparse encoder with lasso
regression of the input data to obtain better feature nodes,
while the enhancement nodes are activated by the nonlinear
activation function, which is the hyperbolic tangent func-
tion. All experiments are conducted on a computer equipped
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Figure 1: Structure of BLS
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with Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz
4.00GHz, and the RAM is 16GB.

4.1. Resonant Frequency of RMSA. Taking the antenna of
rectangular microstrip antenna (RMSA) [32, 33] as the first
example. Figure 3 shows its top view schematic (above) and
the side view (below). For this case, X ∈ R33×4 and
Y ∈ R33×1, 26 samples are selected for training, and the
remaining 7 groups are marked with asterisk ∗ as test
samples. All experimental data can be checked in [22] and
will not be repeated here. Average percentage error (APE)
given by (7) is utilized as the performance evaluation index
to estimate the prediction errors of different modeling
methods.

APE �
1
N

􏽘

N

i�1

Yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

× 100, (7)

where Yi and yi are the predicted value and the actual value,
respectively. Besides, N is the number of samples.

In order to demonstrate the performance of the proposed
ACBLS, 6 different modelingmethods are compared to do the
same experiment, including backpropagation (BP) [3], Par-
allel Tabu Search (PTS) [34], NN ensemble based on binary
particle swarm optimization (BiPSO-NNE) [35], GP with
ARDMatern 5/2 kernel function (GP52) [36], DKLwith ARD
Matern 5/2 kernel function (DKL52) [36], and MABLS [22].

For a fair comparison, just as the MABLS [22], we also
perform a grid search from [1,30]× [1,30]× [1,30] to de-
termine the best structure (Fn, Mg, En), the searching step is
set to 1, and 8 iterations are taken.,e optimal structure and
test results of MABLS and ACBLS for each iteration are
reported in Tables 1 and 2, respectively. It is worth noting
that the kth iteration generates model k+ 1, and the first row
of number 0 means that the current model is the original
BLS, which is actually the model 1. To see the effects of
iteration more clearly, the rows of Effect-1 and Effect-2 are
added to make clear the degree to which each iteration is
optimized over the previous result and the degree to which it
is improved over the original one, respectively.

As observed in Table 1, the iterative results of MA show a
decreasing trend, and it is a coincidence that AC in Table 2
shows the opposite phenomenon. However, after 8 itera-
tions, the effect of MA is an astonishing 76.934%, while the
effect of AC undergoing 8 iterations is only 48.997%, which
is not as good as the effect of AC after the first iteration. We
can preliminarily judge that the method of MA is more
suitable than AC for the resonant frequency modeling of
RMSA. In addition, the optimal test results of all the
methods compared are presented in Table 3. After calcu-
lation, the prediction ability of ACBLS is 92.656%, 91.437%,
85.365%, 77.75%, 72.563%, and 48.997% higher than that of
BP, PTS, BiPSO+NNE, GP52, DKL52, and BLS, respec-
tively. For this case, the method of MA is 54.775% better
than AC.

4.2. Resonant Frequency of CMSA. ,e second example is
circular microstrip antenna (CMSA) [37, 38]; here are the
relevant parameters: a is the radius of the circular patch, h is
the thickness of the substrate, and εr is the relative dielectric
constant. ,e above three parameters are used as inputs,
while the outputs are the corresponding resonant frequency
f. ,e top view schematic (above) and its side view (below)
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Figure 3: Schematic diagram of RMSA.
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are shown in Figure 4. For this case, X ∈ R20×3 and
Y ∈ R20×1. All experimental data are tabulated in Table 4,
among which 16 of them are selected as training samples,
and the remaining 4 groups are marked with asterisk ∗ as
testing samples.

Six different modeling methods with the same ex-
periment are compared to validate the prediction pre-
cision of the proposed ACBLS, including BiPSO-NNE,
delta-bar-delta (DBD) [3], BP, PTS, extended DBD
(EDBD) [3], and MABLS. For a fair comparison, for BLS,
MABLS, and ACBLS, we perform the same grid search

Input: Training samples X; Labels Y;
Output: Yk+ 1

(1) for u � 1; u≤ k + 1
(2) Combine the context as model u’s inputs Xu � [X|Yu−1], where Y0 is the null matrix.
(2) for i � 1; i≤ n do
(3) Random Wei, βei

(4) Calculate Fi � ηi(XuWei + βei), i � 1, 2, . . . , n

(5) end
(6) Set the feature group Fn ≡ [F1, F2, . . . ,Fn]

(7) for j � 1; j≤m do
(8) Random Whj, βhj

(9) Calculate Ej � εj(FnWhj + βhj), j � 1, 2, . . . , m

(10) end
(11) Set the enhancement group Em ≡ [E1,E2, . . . ,Em]

(12) Set original hidden layer of model u Hu � [Fn|Em]

(13) Calculate the output weights of model u Wu � (HT
uHu + λI)− 1HT

uY
(14) Calculate and save the outputs of model u Yu � HuWu

(15) end

ALGORITHM 1: ACBLS – Auto-context of k iterations.

Table 1: MA Iteration results on RMSA.

Iteration 0 1 2 3 4 5 6 7 8
Structure (7,8,15) (9,19,27) (7,10,9) (12,30,3) (15,23,2) (30,27,2) (15,22,1) (16,20,1) (26,16,1)
APE 0.2792 0.1113 0.0745 0.0683 0.0657 0.0651 0.0647 0.0645 0.0644
Effect-1 — 60.136% 33.064% 8.322% 3.807% 0.913% 0.614% 0.309% 0.155%
Effect-2 — 60.136% 73.317% 75.537% 76.468% 76.683% 76.827% 76.898% 76.934%

Table 2: AC iteration results on RMSA.

Iteration 0 1 2 3 4 5 6 7 8
Structure (7,8,15) (14,3,3) (25,18,4) (6,20,2) (29,15,1) (27,28,15) (18,16,5) (24,27,7) (20,13,3)
APE 0.2792 0.213 0.1994 0.1962 0.1953 0.1738 0.1531 0.1441 0.1424
Effect-1 — 23.711% 6.385% 1.605% 0.459% 11.009% 11.91% 5.879% 1.388%
Effect-2 — 23.711% 28.582% 29.728% 30.05% 37.751% 45.165% 48.388% 48.997%

h

a

Feed point

Patch

Coaxial feed
Ground plane

Figure 4: Schematic diagram of CMSA.

Table 3: Results of different models on RMSA.

f/Mhz BP PTS BiPSO+NNE GP52 DKL52 BLS ACBLS MABLS
3200 3178 3167 3196 3196.581 3196.579 3198.6 3200.1 3200
3580 3644.6 3685.2 3614 3582.141 3584.779 3589.2 3580.8 3580
4805 4703.3 4879 4796 4830.272 4823.193 4835.7 4818 4805.1
5100 5291.4 5191.4 5182 5145.394 5088.715 5084.1 5088.5 5099.7
5820 5924.5 5780.3 5853 5850.37 5835.184 5841.1 5847.3 5837.1
6200 6147.2 6205.7 6196 6198.311 6197.412 6204.4 6200.4 6208.8
8450 8233.1 8148.6 8169 8251.843 8239.441 8427.1 8450.2 8449.4
APE 1.939 1.663 0.973 0.640 0.519 0.2792 0.1424 0.0644
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from [1,30] × [1,30] × [1,15] to determine the best
structure (Fn, Mg, En), the searching step is set to 1, and 8
iterations are taken.

,e optimal structure and testing results of MABLS and
ACBLS for each iteration are listed in Tables 5 and 6, re-
spectively. It can be readily seen from Tables 5 and 6 that
both AC and MA have great performance in the prediction
of the resonance frequency of CMSA. Moreover, results of the
first 4 iterations ofMAare better than those ofAC; however, the
effect of subsequent iterations for AC is more obvious and has
always been at an advantage. Table 7 gives the best prediction
results of different methods, and after calculation, the perfor-
mance of ACBLS is 99.978%, 99.963%, 99.951%, 99.931%,
99.898%, and 99.843% higher than that of BiPSO+NNE, DBD,
BP, PTS, BLS, EDBD, and BLS, respectively. For this case, the
method of AC is 76.25% better than MA.

4.3. Printed Dipole Antenna. ,e top view of the printed
dipole antenna (PDA) is shown in Figure 5 and the corre-
sponding three-dimensional view in HFSS is presented in
Figure 6.,e design index of PDA is to operate at the working
frequency of 2.45GHz. ,e structure of the antenna can be
divided into five parts, which are the dielectric layer, the
dipole antenna arm, themicrostrip Barron line, themicrostrip
transmission line, and the feed surface. Five influential
geometrical variables each with five levels, i.e.,X� [L1, L2, L3,
L4, W3], are the inputs of the model, which are transmission
line length L1, dipole arm length L2, Barron triangle side right
angle side length L3, Barron triangle base right angle side
length L4, andmicrowave Barron rectangle section widthW3,
respectively. ,e value ranges of parameters and sampling
intervals are defined in Table 8. ,e unit is millimeter, and
other parameters are fixed values, including the thickness of
the dielectric layer H� 1.6mm, transmission line width
W1� 3mm, and dipole sheet width W2� 3mm. In addition,
the relative dielectric constant εr is 4.4.

Since return loss (S11) is one of the important indicators
for analyzing the performance of antenna, this paper verifies
the effectiveness of the proposed algorithm by fitting the
curve of S11. ,e frequency scanning range of PDA is set to
2GHz∼3GHz with a step size of 0.001GHz, which means
that each set of the inputs corresponds to 1001 outputs.,us,
for this case, X ∈ R31×5 and Y ∈ R31×1001.

By using the HFSS-MATLAB-API script [39], HFSS
software is called by the scripts programmed in MATLAB to
get the outputs, which is the S11. ,rough partial orthogonal
experiments, 31 samples are generated, 25 of which are
used as training sets, and the rest are used as test sets. APE
given by the above (7) is used as the performance evalu-
ation index. We perform a grid search for the original BLS
from [1,10]× [1,10]× [1,70] to determine the optimal
structure (Fn, Mg, En), and the searching step is set to 1.
,e modeling time of BLS is 111.87 s, however, considering
that AC needs iteration if, in order to further save the
training time, when executing AC on BLS, the scope of grid
search can be narrowed down to [1,10] × [1,10] × [1,10], and
the training time of each AC is only 26.33 s. Clearly, the
total training time of ACBLS is the sum of the training time
spent by the original BLS and the time required for K it-
erations of AC, and the optimization times of related
methods are listed in Table 9.

,e results of AC iteration are all recorded in Table 10
and after 8 iterations, the effect of the original BLS is op-
timized by 40.029%. For this case, the iteration is chosen as 8,
the training time here is 111.87s(BLS) +8∗ 26.33s(8 AC
iterations), which is only 322.51s, compared with the direct
EM simulation for optimization, and the proposed method
takes much less CPU time. One set of obtained optimal S11
solution satisfying the antenna criterion is plotted in Fig-
ure 7, and the corresponding geometric value is X� [22, 21,
10, 12, 3]mm. Meanwhile, the blue line of “HFSS” is the
simulation result, and the red line of “proposed” is the
prediction result. ,e S11 reaches −23.991 dB @2.45GHz,

Table 4: Resonant frequency of CMSA for TM11 mode.

No a/cm h/cm εr f/Mhz
1 6.8 0.08 2.32 835
2∗ 6.8 0.159 2.32 829
3 6.8 0.318 2.32 815
4 5 0.159 2.32 1128
5 3.8 0.1524 2.49 1443
6 4.85 0.318 2.52 1099
7∗ 3.493 0.1588 2.5 1570
8 1.27 0.0794 2.59 4070
9 3.493 0.3175 2.5 1510
10 4.95 0.235 4.55 825
11 3.975 0.235 4.55 1030
12 2.99 0.235 4.55 1360
13∗ 2 0.235 4.55 2003
14 1.04 0.235 4.55 3750
15 0.77 0.235 4.55 4945
16 1.15 0.15875 2.65 4425
17 1.07 0.15875 2.65 4723
18 0.96 0.15875 2.65 5524
19∗ 0.74 0.15875 2.65 6634
20 0.82 0.15875 2.65 6074
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Table 7: Results of different models on CMSA.

f/Mhz BiPSO+NNE DBD BP PTS EDBD BLS MABLS ACBLS
829 776.3 792.4 817.4 850.4 820.2 831.22 828.968 829.0002
1570 1509.9 1509.9 1623.9 1566.9 1565.5 1559.9 1570 1570
2003 1952 1952 1975.4 2030.8 1979.1 2007.9 2003 2003
6634 6576.4 6576.4 6636.8 6616.4 6662.5 6685.5 6634.5 6634
APE 3.3999 2.0508 1.5631 1.108 0.7427 0.483 0.0032 0.00076

Table 5: MA iteration results on CMSA.

Iteration 0 1 2 3 4 5 6 7 8
Structure (17,27,13) (27,21,12) (20,15,5) (17,19,5) (18,14,1) (28,23,1) (24,26,2) (23,5,1) (19,4,1)
APE 0.483 0.1344 0.0759 0.035 0.0109 0.0058 0.0044 0.0042 0.0032
Effect-1 — 72.174% 43.527% 53.887% 68.857% 46.789% 24.138% 4.545% 23.809%
Effect-2 — 72.174% 84.286% 92.754% 97.743% 98.799% 99.089% 99.130% 99.337%

Table 6: AC iteration results on CMSA.

Iteration 0 1 2 3 4 5 6 7 8
Structure (17,27,13) (8,22,4) (7,13,1) (19,18,12) (15,28,5) (25,7,6) (10,2,3) (6,4,4) (16,1,1)
APE 0.483 0.154 0.1147 0.1016 0.0138 0.0031 0.0016 0.00098 0.00076
Effect-1 — 68.116% 25.519% 11.421% 86.417% 77.536% 48.387% 38.75% 22.449%
Effect-2 — 68.116% 76.253% 78.965% 97.143% 99.358% 99.669% 99.797% 99.843%
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Figure 6: HFSS model of the PDA.
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which meets the design requirements. It can be easily seen
that the modeled and simulated results are highly consistent,
which proves the validity of the proposed model.

4.4. Regression Data Sets. Considering some compared
methods in the above experiment stage, which may not be
commonly used and state-of-the-art methods, typical
models such as SVM [8], LSSVM, ELM [40], and the latest
improved version of Greedy BLS (GBLS) [41] are involved in
the comparison of 10 real-world regression data sets from
the University of California, Irvine (UCI) database [42], to
further highlight the validity of the proposed algorithm, and
the details of different data sets are put up in Table 11. For

fair comparisons, the same grid search is performed from
[1,10]× [1,30]× [1,200] for BLS, GBLS, MABLS, and ACBLS,
and the searching step is set to 1.

As in the previous cases, 8 iterations are considered forMA
and AC. Rootmean square error (RMSE) [43] is selected as the
performance index, and the optimal testing results of different
models are tabulated in Table 12, of which the best RMSE result
corresponding to each data set is indicated in bold.

RMSE �

�����

1
N

􏽘

N

i�1

􏽶
􏽴

yi − Yi( 􏼁
2 , (8)

where N is the number of samples, Yi is the predicted value,
and yi is the actual value.

It can be readily seen from Table 12 that, under the same
condition, the method of AC outperforms any model
compared in all the experiments on 10 function approxi-
mation data sets except MABLS in the case of Pyrim. Ul-
timately, for Bodyfat, Housing, Strike, and Basketball, the
performance of AC is better than MA by 10%, 9.259%,
4.267%, and 3.933%, respectively, and the improvement

Table 8: Experimental samples of the PDA.

Variable Min Max Step
L1(mm) 21 23 0.5
L2(mm) 20 22 0.5
L3(mm) 9 10 0.25
L4(mm) 11 12 0.25
W3(mm) 2.7 3.3 0.15

Table 9: Optimization times of the relevant methods.

Method Time/s
HFSS 1476.34
BLS 111.87
ACBLS 322.51

Table 10: AC iteration results on the PDA.

Iteration 0 1 2 3 4 5 6 7 8
Structure (4,5,67) (1,2,9) (5,10,1) (5,9,4) (9,1,1) (5,9,2) (4,3,1) (3,10,1) (4,10,1)
APE 2.5786 2.2550 1.9040 1.7762 1.7586 1.6748 1.6545 1.6118 1.5464
Effect-1 — 12.549% 15.565% 6.712% 0.99% 4.765% 1.212% 2.581% 4.058%
Effect-2 — 12.549% 26.161% 31.118% 31.800% 35.050% 35.837% 37.493% 40.029%
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Figure 7: (S)11 fitting diagram of the PDA.

Table 11: Details of data sets.

Data Training number Testing number Input variables
Abalone 2784 1393 8
Basketball 64 32 4
Bodyfat 168 84 14
Cleveland 202 101 13
Housing 337 169 13
Mortgage 699 350 15
Pyrim 49 25 27
Quake 1452 726 3
Strike 416 209 6
Weather 974 487 9
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effect for the remaining data sets is less than 3%. When
ACBLS is compared with the original BLS, for Pyrim,
Bodyfat, Housing, and Basketball, the improvements are
47.924%, 40%, 28.229%, and 22.155%, respectively, and the
remaining six data sets show improvements of less than 20%.
It can be concluded that the predictive power of ACBLS is
slightly better than that of MABLS in most cases, and the
former performs much better than other above-mentioned
models compared, and up to now, the effectiveness of the
proposed model is further verified.

5. Conclusion

In this paper, we have developed and evaluated ACBLS,
which obtains context features in the previous regression
results. Our goal is to design an iterated framework to
rapidly and effectively propagate and use the context in-
formation. It is very general and easy to implement and does
not depend on any particular type of model, which can avoid
heavy algorithm design such as various energy terms and
procedures. ,ree antenna cases and 10 UCI regression
datasets are illustrated and comparative results triumphantly
demonstrate that the proposed method greatly improved the
unsatisfactory generalization ability of the original BLS, and its
modeling capability far exceeds that of some mainstream
methods. It can be concluded that the proposed model may
provide an efficient and powerful parametric modeling ability
in antenna optimization, replacing the time-consuming EMSS.
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