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Su�cient synthetic aperture radar (SAR) data is the key element in achieving excellent target recognition performance for most
deep learning algorithms. It is unrealistic to obtain su�cient SAR data from the actual measurements, so SAR simulation based on
electromagnetic scattering modeling has become an e�ective way to obtain su�cient samples. Simulated and measured SAR
images are nonhomologous data. Due to the fact that the target geometric model of SAR simulation is not inevitably consistent
with the real object, the SAR sensor model in SAR simulation may be di�erent from the actual sensor, the background en-
vironment of the object is also inevitably di�erent from that of SAR simulation, the error of electromagnetic modeling method
itself, and so on.  ere are inevitable di�erences between the simulated and measured SAR images, which will a�ect the rec-
ognition performance. To address this problem, an SAR simulationmethod based on a high-frequency asymptotic technique and a
discrete ray tracing technique is proposed in this paper to obtain SAR simulation images of ground vehicle targets. Next, various
convolutional neural networks (CNNs) and AugMix data augmentation methods are proposed to train only on simulated data,
and then target recognition on MSTAR measured data is performed.  e experiments show that all the CNNs can achieve
incredible recognition performance on the nonhomologous SAR data, and the RegNetX-3.2GF achieves state-of-the-art per-
formance, up to 84.81%.

1. Introduction

Synthetic aperture radar (SAR) is able to perform high-
resolution imaging of targets all day and in all weathers,
which can provide su�cient target information.  erefore,
SAR target recognition has increasingly attracted attention.
 e existing SAR target recognition algorithms, especially
for target recognition algorithms based on deep learning, are
mostly veri�ed on the ground vehicle targets data sets
collected by the moving and stationary target acquisition
and recognition (MSTAR) program of the United States,
which have achieved excellent recognition performance
[1–8]. In the above literature, the training and test samples
belong to the same homologous data.  e range of azimuth

coverage is 0–360°, and the pitch angle di�erence between
training and test samples is only 2°. In real target recognition
applications of target recognition, it is di�cult to obtain full-
angle data of targets, especially for noncooperative targets,
through actual measurement. Usually, it can only obtain
measured data from the individual pitch and azimuth angles.
 e method of SAR simulation based on electromagnetic
scattering modeling is an e�ective way to obtain su�cient
samples [9–15]. It can conveniently obtain a relatively
complete data set of targets under di�erent conditions.  e
ultimate goal of SAR simulation is to replace the actual data
as training samples in part or all so as to realize the target
recognition of the measured data. However, when SAR
simulation image data is directly applied to measured data
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target recognition, the problem is obvious. SAR simulation
data andmeasured data are nonhomologous data. Due to the
differences in geometric model, sensor model, background
environment type, modeling method, and other factors, the
SAR simulation image and the measured image are different.
It is mainly reflected in two aspects: one is the difference in
details of target scattering distribution, and the other is the
difference in the scattering of the background environment.
+ese differences are bound to affect recognition
performance.

In recent years, deep learning has achieved good results
in various fields of pattern recognition; particularly, the
convolutional neural networks (CNNs) havemade a series of
breakthroughs in the field of image classification.

In [16–18] and [19–27], the classification accuracy is far
higher than the best level in the past. +e application re-
search of CNNs in SAR images mainly focuses on the
verification of the target recognition algorithm based on the
MSTAR data set. MSTAR training and test data set belong
to homologous measured data, and the difference between
training and test samples is small. CNNs have achieved
excellent recognition performance on the MSTAR ho-
mologous data set [5–8]. Taking the advantages of CNNs in
the field of image classification and their successful ap-
plication in the MSTAR homologous data set, we employ
various CNNs for SAR target recognition of nonhomolo-
gous data in this paper to investigate the recognition
performance.

CNNs can achieve high accuracy when the training
distribution and test distribution are identically distributed,
but the distribution of nonhomologous SAR data has a lot of
differences. Currently, data augmentation is an effective
technique to eliminate the differences of nonhomologous
data and improve the recognition performance of the data
shifts encountered during deployment by randomly “aug-
menting” it [16, 28, 29], for instance, translating the image by
a few pixels or flipping the image horizontally. In this paper,
we introduce AugMix [30], a data processing method that is
simple to implement and helps the model improve the ro-
bustness of classification for nonhomologous data during
inference. AugMix utilizes stochasticity and diverse aug-
mentations, a formulation to mix multiple augmented im-
ages, and a Jensen–Shannon divergence consistency loss to
boost the performance of all CNNs employed in this paper. In
our experiments, AugMix achieves excellent improvements
compared with other common data augmentation methods.

+emain contributions of this paper are given as follows:

(1) +e performance limitation of the SAR simulation
method based on the high-frequency asymptotic
technique and discrete ray tracing technique is an-
alyzed in detail, which provides a theoretical basis for
the following nonhomologous SAR target
recognition.

(2) An effective data preprocessing procedure is pro-
posed to reduce the influence of noise inferences in
SAR images and to help CNNs extract the main
separable features of the target.

(3) Various CNN-based methods for nonhomologous
SAR target recognition are investigated. +e ex-
perimental results show that the introduced AugMix
can alleviate the gap between SAR simulated data
and measured data and enable the network to im-
prove the robustness and uncertainty estimates of
nonhomologous data classifiers. +is paper is an
exploration and attempt to apply SAR simulation
data to practical target recognition, which has a
significant practical application value.

+e paper is organized as follows: Section 2 discusses the
principle and analysis of electromagnetic scattering mod-
eling. Section 3 presents the theory and implementation
steps of nonhomologous target recognition. In Section 4, we
present the experiments and analysis. Conclusions are
summarized in Section 5.

2. Electromagnetic Scattering Modeling

2.1. Flowchart of Ground Vehicle Target Simulation. In order
to simulate the SAR template images of the ground vehicle
targets, the SAR echo signal level simulation based on the
high-frequency asymptotic method and discrete ray tracing
technology is used for SAR simulation [15], and its flowchart
is shown in Figure 1. +e complex scene and SAR platform
motion are firstly modeled, and then the SAR echo data is
simulated combined with the composite electromagnetic
calculation method of the target and environment. Finally,
the resulting image is obtained by the SAR imaging process.
Because the SAR echo signal level simulation method truly
simulates the electromagnetic scattering process of SAR to
target and environment, it can be used to obtain high
similarity SAR simulation images with measured images.

2.2. Simulation Test. +e geometric models of three vehicle
targets (including BMP2, BTR70, and T72) given in Figure 2
are simulated according to the spotlight SAR simulation
parameters set in Table 1. SAR simulation images on the
grass are obtained, as shown in Figure 3. +e parameters of
the simulation images are given as follows: X-band, HH
polarization, high-resolution spotlight SAR, depression
angle of 17°, azimuth angle changing from 0° to 359° with an
azimuth interval of 1°, and image size of 128×128 with the
resolutions of 0.3m× 0.3m. Figure 3 also shows the mea-
sured SAR image of the three vehicles collected by the
MSTAR program. +e acquisition conditions of the mea-
sured images are X-band, HH polarization, 0.3m× 0.3m
high-resolution spotlight SAR, depression angle of 17°,
azimuth angle changing from 0° to 360° with an azimuth
interval of 1°∼5°, and image size of 128×128.

2.3. Performance Analysis. By comparing the SAR simula-
tion and the measured images in Figure 3, it can be seen that
the two images under the same azimuth are generally
consistent in the target contour shape and strong scattering
distributions, but there are some details differences and
some background environment scattering differences. For
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the SAR simulation images, although model verification and
image evaluation have been carried out [14, 15, 20], there are

still differences between the SAR simulation and measured
images due to various reasons. +e main reasons are
summarized as follows:

(1) Model differences: there are inevitable differences
between the target geometric model of SAR simu-
lation and the real object.+e geometric model of the
target constructed during SAR simulation and the
real object inevitably have some simplification of the
detailed structure, the error of the shape structure,
the state of some structures on the target (such as the
rotating position of the gun barrel), and the state of
some extension conditions on the target (such as

SAR system
parameters

Scene geometric
models

Scene electromagnetic scattering
model

SAR scene echo signal

SAR raw data

Model of target electromagnetic
scattering

Model of environment
electromagnetic scattering

Model of target and environment
electromagnetic scattering

Figure 1: SAR simulation process-based electromagnetic scattering modeling.

(a) (b)

(c)

Figure 2: Geometric models of the three vehicles. (a) BMP2; (b) BTR70; (c) T72.

Table 1: Spotlight SAR simulation parameters of vehicle targets.

Parameter Value Parameter Value
Imaging mode Spotlight Pitch angle 17°
Center frequency 9.6GHz Signal bandwidth 591MHz
Azimuthal resolution 0.3m PRF 600Hz
Beam horizontal width 4.293° Beam pitch width 1.044°
Platform height 400m Flight speed 100m/s
Sample points 512 Sample points 512
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whether the T72 tank is equipped with auxiliary oil
tank). +ese differences lead to the differences be-
tween the SAR simulation image and the measured
image.

(2) Sensor difference: there are performance differences
between the sensormodel of the SAR simulation and the
actual sensor.+e sensormodel constructed during SAR
simulation is ideal. For example, the sensor motion
model is a steady and uniform linear motion, which is
difficult for the actual SAR sensor. +e performance of
the actual SAR sensor also is different from the theo-
retical values in terms of signal-to-noise ratio, actual
resolution, pitch angle, and azimuth angle due to the
limitations of the system hardware.

(3) Background environment difference: there are differ-
ences between the background environment of the SAR
simulation and the real object. +e ground scene
constructed by SAR simulation is a horizontal low grass
background without any topographic relief, and the
model parameters used are the low grass in the Uraby
model [15], which is inevitably different from the real
ground background in the measured MSTAR SAR data
set. So it results in the inconsistency of the background
scattering intensity in the SAR simulation image and the
measured SAR image.

(4) Error of the modeling method: in order to satisfy the
engineering needs and improve the calculation ef-
ficiency, the high-frequency method is used for
target electromagnetic modeling, which will cause
calculation errors for some special structures (such
as cavities) and targets with multiscale structures. It
results in target scattering distribution details dif-
ferences between the SAR simulation image and the
measured image.

+e difference between the SAR simulation image and
the measured image inevitably affects the target recognition
performance of the SAR simulation image directly applied to
the measured image and also brings great challenges to
nonhomologous SAR target recognition. For nonhomolo-
gous SAR target recognition, the influence of background
environment difference can be reduced by SAR image
preprocessing. So reducing the influence of target scattering
distribution difference between the SAR simulation image
and the measured image is the key and difficult point of
nonhomologous SAR target recognition.

3. Nonhomologous Target Recognition

3.1. SAR Image Preprocessing. Generally, speckle noise in the
original SAR image seriously affects the recognition per-
formance if the original SAR images are directly used for
feature extraction and recognition. +erefore, the original
SAR images need to be preprocessed as the inputs of CNN or
linear and nonlinear feature transformation.

Figure 4 shows the SAR image preprocessing process.
Firstly, the original image is transformed by logarithmic
transformation. Secondly, the constant false alarm rate
(CFAR) method is applied to roughly segment the target.
Finally, some filtering operations, masking, and normali-
zation are implemented in sequence.

Assuming that the background clutters obey a negative
exponential distribution, the threshold is given as follows:

T � −μ ln Pfa , (1)

where Pfa is the false alarm rate and μ is the mean value. For
each point (i, j) in one SAR image, if its pixel value is greater
than the threshold T, it is determined as the target point;
otherwise, it is the background point.
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Figure 3: SAR simulation images of vehicles on grassland and MSTAR measured SAR images. (a) BMP2; (b) BTR70; (c) T72.
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Morphological filtering: the purpose of the mor-
phological filtering for the segmented result is to remove
nontarget areas, reduce noises, smooth boundaries,
remove small holes, and so on.

Area-based filtering: for the image processed by
morphological filtering, first remove the isolated points
and then eliminate the image regions with an area less
than TA. +e parameter TA is roughly determined by the
size and the resolution of the interested target.

Distance-based filtering: for the resulting image of the
previous step, first find the largest area and its centroid, then
calculate the distance from each area to the largest area, and
finally eliminate the area with a distance greater than TD. +e
parameter TD is roughly determined by the size and the res-
olution of the interested target.

Masking: in order to obtain the intensity information of
the target, the filtered resulting image (binary image) and the
logarithmic image do dot multiplication to obtain the final
target intensity image as the input of CNN.

(a) (b) (c)

(d) (e) (f )

Figure 5: Preprocessed SAR images. (a) Original image; (b) logarithmic image; (c) threshold segmented image; (d) area-based filtered
image; (e) distance-based filtered image; (f ) image after dot multiplication of (e) and (b).

SAR target image slices

CFAR threshold
segmentation

Morphological filtering

Area based filtering

Distance based filtering

Mask processing

Normalization processing

Half of Fourier amplitude

Figure 4: Flowchart of the SAR preprocessing method.
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Finally, the target intensity image is normalized, and half
of the amplitude after the 2-dimensional Fourier transform is
taken as the input of linear and nonlinear feature transform.

As an example, Figure 5 shows the preprocessing result
images of T72.

3.2. Convolutional Neural Networks. CNNs have achieved
successful applications in the field of image classification and
have excellent recognition performances on MSTAR ho-
mologous SAR data sets [5–8]. In this paper, we attempt to
employ it to SAR target recognition on nonhomologous data
to investigate the target recognition performance in the case
of differences between SAR simulated data and actual
measured data.

AlexNet [16] is a classic deep convolutional neural
network with a simple structure. It utilizes rectified linear
unit (ReLU) activation function, dropout, max pooling, data
augmentation, and other technologies, enabling the network
to extract more discriminative features on samples, effec-
tively avoid model overfitting, and improve the network
robustness. +e structure of AlexNet is shown in Figure 6,
which includes five convolution layers, three max pooling
layers, two dropout layers, and three full connection layers.
Moreover, category classification is carried out by the
softmax function after the last full connection layer.

VGGNets [19] (proposed by the Visual Geometry Group)
inherit the convolutional network architecture of AlexNet and
steadily increase the depth of the network by adding more
convolutional layers with very small 3× 3 convolution filters.
+e main contribution is to demonstrate that the depth of
convolutional networks is conducive to the classification ac-
curacy of image recognition task.+e architectures of VGGNets

are outlined in Table 2, one per column, which are denoted as
VGG-11, VGG-16, and VGG-19. All configurations differ only
in the depth: from 11 layers in the network VGG-11 (8 con-
volutional and 3 Fully Connected (FC) layers) to 19 layers in the
network VGG-19 (16 convolutional and 3 FC layers).

Network depth is crucial for enhancing feature extraction
capabilities. However, with the network depth increasing, the
problem of vanishing gradients becomes more severe, and the
networks are more difficult to train. As a result, accuracy gets
saturated and then degrades rapidly. Residual Networks
(ResNets) [20] propose a deep residual learning framework to
address the degradation problem. Instead of simply stacking
convolutional layers by a one-way flow, ResNets explicitly let
these layers fit a residual mapping with residual blocks.
Figure 7 shows a residual block example. Formally, denoting
the desired underlying mapping as H(x), let the stacked
nonlinear layers fit another mapping of F(x) � H(x) − x.
+e original mapping is recast into F(x) + x. Table 3 shows
the detailed architectures of ResNets.

Dense Convolutional Networks (DenseNets) [21] em-
brace the “shortcut connections” of ResNets, which connect
each layer to every other layer in a feed-forward fashion. For
each layer in DenseNets, the feature maps of all preceding
layers are used as inputs, and their own feature maps are
used as inputs into all subsequent layers. DenseNets have
several compelling advantages: they alleviate the vanishing-
gradient problem, strengthen feature propagation, encour-
age feature reuse, and substantially reduce the number of
parameters. Table 4 shows the detailed architectures of
DenseNets. +e transition layers consist of a batch nor-
malization (BN) layer and a 1× 1 convolutional layer fol-
lowed by a 2× 2 average pooling layer.

Squeeze-and-Excitation Networks (SENets) [22] focus
on the channel relationship and propose a new “Squeeze-and-
Excitation” (SE) block, as shown in Figure 8. +e SE block
adaptively recalibrates channelwise feature responses by ex-
plicitly modeling interdependencies between channels. As a
result, the network can selectively emphasize informative
features and suppress less useful ones. +e SE block first
squeezes global spatial information into a channel descriptor,
followed by employing a simple self-gating mechanism to

Input Image

Category classification

Dropout

DropoutMax Pool 3×3s2

Conv@3×3s1 /ReLU

Conv@3×3s1 /ReLU

Conv@3×3s1 /ReLU

Max Pool 3×3s2

Conv@5×5s1 /ReLU

Max Pool 3×3s2

Conv@11×11s4 /ReLU

FC 4096 /ReLU

FC 4096 /ReLU

FC 3

Figure 6: CNN structure constructed.

weight layer

weight layer

ReLU

ReLU

x

x

F(x)

H(x)

F(x)+x

Figure 7: A residual block.
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produce weights for channel features. Finally, the feature maps
are reweighted to generate the output of the SE block, which
can then be fed directly into subsequent layers. SE blocks can be
used as a drop-in replacement for the original block at any
depth in any architected network. More importantly, SE blocks
are sufficiently flexible to be used in ResNets. In this paper, we
replace the original convolutional block in ResNets with the SE
block, which we term the SE-ResNets. Moreover, we compare

the various variants with the above-mentioned networks on
nonhomologous SAR data.

EfficientNets [23] empirically identify that balancing the
network depth, width, and resolution can lead to better
performance. Based on this observation, they first employ
neural architecture search (NAS) to develop a baseline
network and consider scaling it up for bigger models. To
achieve that, they propose a simple yet effective compound

Table 3: Architectures of ResNets. Downsampling is performed by the first conv layer in each stage, with a stride of 2.

Layer name ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152
Stage 0 7× 7, 64, stride 2

Stage 1

Max pool, 3× 3, stride 2

3 × 3, 64
3 × 3, 64  × 2 3 × 3, 64

3 × 3, 64  × 3
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Stage 2 3 × 3, 128
3 × 3, 128  × 2 3 × 3, 128

3 × 3, 128  × 4
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 8

Stage 3 3 × 3, 256
3 × 3, 256  × 2 3 × 3, 512

3 × 3, 512  × 6
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 23

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 36

Stage 4 3 × 3, 512
3 × 3, 512  × 2 3 × 3, 512

3 × 3, 512  × 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Classification Global average pool
3-d FC, softmax

Table 2: Architectures of VGGNets.+e added layers are shown in bold, and the ReLU is placed after each weight layer, which is not shown
for brevity.

VGG-11 VGG-13 VGG-16 VGG-16 VGG-19
Input image

Conv@3–64 Conv@3–64
Conv@3–64 Conv@3–64 Conv@3–64 Conv@3–64 Conv@3–64 Conv@3–64 Conv@3–64

Max pool, 2× 2, s2

Conv@3–128 Conv@3–128
Conv@3–128 Conv@3–128 Conv@3–128 Conv@3–128 Conv@3–128 Conv@3–128 Conv@3–128

Max pool, 2× 2, s2
Conv@3–256
Conv@3–256

Conv@3–256
Conv@3–256

Conv@3–256 Conv@3–256
Conv@1–256

Conv@3–256 Conv@3–256
Conv@3–256

Conv@3–256 Conv@3–256 Conv@
3–256 Conv@3–256

Max pool, 2× 2, s2
Conv@3–512
Conv@3–512

Conv@3–512
Conv@3–512

Conv@3–512 Conv@3–512
Conv@1–512

Conv@3–512 Conv@3–512
Conv@3–512

Conv@3–512 Conv@3–512 Conv@
3–512 Conv@3–512

Max pool, 2× 2, s2
Conv@3–512
Conv@3–512

Conv@3–512
Conv@3–512

Conv@3–512 Conv@3–512
Conv@1–512

Conv@3–512 Conv@3–512
Conv@3–512

Conv@3–512 Conv@3–512 Conv@
3–512 Conv@3–512

Max pool, 2× 2, s2
FC, 4096
FC, 4096
FC, 3

Softmax
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scalingmethod to uniformly scale network width, depth, and
resolution with a set of fixed scaling coefficients and finally
obtain a family of models, that is, EfficientNet-B0∼B7. Ta-
ble 5 describes the baseline EfficientNet-B0 designed by
NAS. Its main building block is mobile inverted bottleneck
MBConv 26,27, to which they also add SE block [22], as
shown in Figure 9(a). Starting from the EfficientNet-B0, the
compound scaling method uses a compound coefficient ϕ to
increase the network depth by αϕ, width by βϕ, and image
size by cϕ, where α, β, and c are constant coefficients de-
termined by a small grid search.

EfficientNetV2 [24] uses a combination of training-aware
NAS and scaling to improve both training speed and parameter
efficiency than EfficientNets [23]. +ey empirically identify that
depthwise convolutions in MBConv blocks are slow in early
layers. In view of this, they further design a search space
enriched with other ops such as Fused-MBConv to optimize
training speed, as shown in Figure 9(b). More importantly,
EfficientNetV2 introduces a progressive learning strategy to
change the image size to speed up training further: in the early
training iterations, EfficientNetV2 trains the network with a
small image size andweak regularization (e.g., dropout and data
augmentation); then, it gradually increases image size and adds
stronger regularization. Table 6 shows the searched baseline
EfficientNetV2-S. EfficientNetV2-M/L can also be obtained by
scaling up EfficientNetV2-S using similar compound scaling as
EfficientNet [23].

RegNets [25] propose a new network design paradigm that
combines the advantages of manual design and NAS. RegNets
focus on designing network design spaces that parametrize
populations of networks.+e core of the RegNet design space is

Table 4: Architectures of DenseNets. Note that each “conv” layer shown in the table corresponds to the sequence BN-ReLU-Conv.

Layer name DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-161
Stage 0 7× 7 conv, stride 2

Stage 1

Max pool, 3× 3, stride 2

1 × 1 conv
3 × 3 conv  × 6 1 × 1 conv

3 × 3 conv  × 6 1 × 1 conv
3 × 3 conv  × 6 1 × 1 conv

3 × 3 conv  × 6

Transition layer
1× 1 conv

1× 1 average pool, stride 2

Stage 2 1 × 1 conv
3 × 3 conv  × 12 1 × 1 conv

3 × 3 conv  × 12 1 × 1 conv
3 × 3 conv  × 12 1 × 1 conv

3 × 3 conv  × 12

Transition layer
1× 1 conv

1× 1 average pool, stride 2

Stage 3 1 × 1 conv
3 × 3 conv  × 24 1 × 1 conv

3 × 3 conv  × 32 1 × 1 conv
3 × 3 conv  × 48 1 × 1 conv

3 × 3 conv  × 36

Transition layer
1× 1 conv

1× 1 average pool, stride 2

Stage 4 1 × 1 conv
3 × 3 conv  × 16 1 × 1 conv

3 × 3 conv  × 32 1 × 1 conv
3 × 3 conv  × 32 1 × 1 conv

3 × 3 conv  × 24

Classification Global average pool
3-d FC, softmax

Global Average Pool

Fully Connected

ReLU

Fully Connected

Sigmoid

Residual

Re-weight

H×W×C

H×W×C

Input

Output

1×1×C

1×1×C

1×1×C

1×1×C/r

1×1×C/r

Figure 8: A Squeeze-and-Excitation block.
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simple: stage widths and depths are determined by a quantized
linear function, that is, (1) how to set stage widths; (2) how to set
the number of blocks in each stage. RegNets arrive at exciting
findings that the depth of the best models is stable across
compute regimes and that the best models do not use either a

bottleneck or inverted bottleneck. RegNets design two models,
that is, RegNetX and RegNetY (Y�X+SE), and also suffix the
models with the flop regime, for example, 800MF.

3.3. AugMix Data Augmentation. Intuitively, there are
significant differences in the distribution of simulated
and measured data. When the distributions of training
and test samples are nonhomologous and mismatched,
accuracy can plummet. In order to improve robustness to
nonhomologous data shifts encountered during test
time, we employ a simple data processing method, that is,
the AugMix [30], to produce high diversity of augmented
images, avoiding the CNN, which has a tendency to
memorize properties of the specific training samples.
AugMix utilizes stochasticity and diverse augmentation,
a formulation to mix multiple augmented images, and a
Jensen–Shannon divergence consistency loss to achieve
data augmentation.
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Figure 9: Structure of (a) MBConv and (b) Fused-MBConv.

Table 5: Architectures of EfficientNet-B0 baseline.

Stage Operator Resolution No. of channels No. of layers
1 Conv3× 3 224× 224 32 1
2 MBConv1, k3× 3 112×112 16 1
3 MBConv6, k3× 3 112×112 24 2
4 MBConv6, k5× 5 56× 56 40 2
5 MBConv6, k3× 3 28× 28 80 3
6 MBConv6, k5× 5 14×14 112 3
7 MBConv6, k5× 5 14×14 192 4
8 MBConv6, k3× 3 7× 7 320 1
9 Conv1× 1&Pooling&FC 7× 7 1280 1

Table 6: Architectures of EfficientNetV2-S.

Stage Operator Stride No. of
channels

No. of
layers

0 Conv3× 3 2 24 1
1 Fused-MBConv1, k3× 3 1 24 2
2 Fused-MBConv4, k3× 3 2 48 4
3 Fused-MBConv1, k3× 3 2 64 4
4 MBConv4, k3× 3, SE0.25 2 128 6
5 MBConv6, k3× 3, SE0.25 1 160 9
6 MBConv6, k3× 3, SE0.25 2 256 15
7 Conv1× 1&Pooling&FC — 1280 1
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3.3.1. Stochastic Augmentations. +e augmentation opera-
tions used in our paper follow the AutoAugment [29], including
the autocontrast, equalize, posterize, rotate, solarize, shear X(Y),
and translate X(Y) operations. We randomly sample k aug-
mentation chains, where k� 3 by default. Each augmentation
chain is constructed by composing from one to four randomly
selected augmentation operations. Randomly sampled opera-
tions and their compositions allow us to explore the semantically
equivalent input space around an image.

3.3.2. Mixing. +e resulting images from these augmenta-
tion chains are combined by mixing. For simplicity, we
weigh each chain for combination.+e k-dimensional vector
of weight coefficients is randomly sampled from a
Dirichlet(α, . . ., α) distribution. Once these images are
mixed, we combine the mixed image and the original image
through a random weight coefficient sampled from a Beta(α,
α) distribution. Finally, mixing these images together pro-
duces a new image without veering too far from the original.

3.3.3. Jensen–Shannon Divergence Consistency Loss. For
each original image x, we obtain two augmented images x1
and x2 through the augmentation and mixing process de-
scribed above. Since the semantic content of an image is
approximately preserved with AugMix, we hope the model
embeds x, x1, and x2 similarly. Toward this end, we min-
imize the Jensen–Shannon divergence among the posterior
distributions of the original image x and its augmented
images. +at is, for p � p(y | x), p1 � p(y | x1), and
p2 � p(y | x2), we define the model loss:

L � L(p, y) + λJS p; p1; p2( , (2)

where λ � 12 by default and y is the class label. +is loss can
be computed by first obtaining M � (p + p1 + p2)/3 and
then computing

JS p; p1; p2(  �
1
3

KL[p‖M] + KL p1‖M  + KL p2‖M ( ,

(3)

where KL means KL Divergence. +e Jensen–Shannon di-
vergence can be understood to measure the average infor-
mation that the sample reveals about the identity of the
distribution from which it was sampled. +e Jensen–
Shannon consistency loss impels to model to be stable,
consistent, and insensitive across a diverse range of inputs.

To sum up, the process of nonhomologous SAR target
recognition based on any CNN is shown in Figure 10. Crucially,
the training samples and test samples are preprocessed to reduce
the influence of speckle noise in SAR images.Moreover, in order
to prevent the overfitting problem in small samples of the CNN,
the translation interception of SAR images is used to expand the
training samples. AugMix is used in the process of loading
training data sets during training.

4. Experiments

4.1. Data Sets and Settings. In order to investigate the target
recognition performance of different methods on nonhomol-
ogous SAR data, this paper carries out target recognition ex-
perimental verification on nonhomologous SAR data with three
types of vehicle targets.+e number of training and test samples
is shown in Table 7. +e training samples are simulated SAR

�e training samples are
expanded by translation

interception

Input the expanded training
samples into CNN model

MSTAR measured SAR
images as test samples

Training process

�e CNN network model
a�er training

Preprocessing

Preprocessing

AugMix

Test process

SAR simulation images as
training samples

Recognition rate based on
test sample labels and

classified output

Input the preprocessed test
samples into the trained

CNN network model

Figure 10: Nonhomologous SAR target recognition process based
on CNN.

Table 7: Training and test samples used in nonhomologous target
recognition experiments.

Number of samples BMP2 BTR70 T72
Training samples (SAR simulation images) 360 360 360
Training samples (after expansion) 3240 3240 3240
Test samples (MSTAR measured images) 233 233 232
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Figure 11: Influence of preprocessing on recognition rates.

10 International Journal of Antennas and Propagation



images for three types of vehicle targets, and each type contains
360 images, with the size being 128×128. +e test samples are
the MSTAR measured SAR images for three types of vehicle
targets, and the size of each image is also 128×128. +e
translation interception of training samples is expanded by 9
times, and the size of the image is 88× 88 after center inter-
ception, ensuring that each image contains a target. +e test
samples are only intercepted into the size of 88× 88 pixels,
containing the target.

Our CNN model is trained with adaptive moment esti-
mation (Adam) for 25/40/100 epochs with a total of 16 images
per minibatch. +e CNN model uses an initial learning rate of
0.0001, which decays following a cosine learning rate.+e image
size is fixed to 224× 224 for training and testing. All input
images are only preprocessed with standard random horizontal
flipping prior to the AugMix augmentation. All the experiments
are implemented on the PyTorch 1.8 framework and performed
on a NVIDIA RTX 2080 Ti GPU.

4.2. Results

4.2.1. Preprocessing Evaluation. In order to analyze the in-
fluence of data preprocessing on recognition performance in
nonhomologous SAR target recognition, we compare methods

with and without data preprocessing based on AlexNet. +e
comparison recognition rates among training epochs are shown
in Figure 11. It can be seen that the data preprocessing method
obviously improves the performance of AlexNet by a large
margin. +is is because the preprocessing method reduces the
influence of background interference, enhancing the feature
representation of the target. As a result, useful semantic in-
formation can be extracted more effectively by the network. We
adopt this data preprocessing method in the subsequent CNN
methods.

4.2.2. AugMix Evaluation. We conduct a series of experi-
ments to demonstrate the effectiveness of the AugMix
method in nonhomologous SAR target recognition based on
AlexNet and ResNet-34. Specifically, we compare AugMix
with two data augmentation methods, including random
horizontal flip and Mixup. Mixup trains the neural network
on convex combinations of pairs of samples and their labels.
+e results are shown in Table 8. With a random horizontal
flip, AlexNet gains a 4% improvement, and ResNet-34 at-
tains a nearly 3% increase. It is believed that horizontal
flipping of images during training is an effective data aug-
mentation method due to the fact that SAR targets are
imaged from various angles and possess a certain symmetry.
Nevertheless, there is a slight drop when additional Mixup is
introduced compared to a purely random horizontal flip.
+is is because that Mixup is a kind of linear augmentation
among minibatch training samples, which may produce
images drifting far from the original image and lead to
unrealistic images, thus jeopardizing the model perfor-
mance. More importantly, it can be seen that both AlexNet
and ResNet-34 achieve more than 10% higher recognition
improvement over their corresponding baseline. +is shows
that mixing random augmentations and using the Jensen–
Shannon loss substantially improve robustness and uncer-
tainty estimates. For nonhomologous data, using the Aug-
Mix can ease the differences of their features, enhance the
correlation among feature domains, finally improve the
recognition performance, and effectively maintain robust-
ness even as the distribution shifts at test time.

4.2.3. Comparison with Different CNN-Based Methods.
We compare five CNN-based methods, including AlexNet,
VGGNets (with batch normalization (BN) after every
convolutional layer), ResNets, DenseNets, and SE-ResNets.
+e recognition results of these methods are listed in Table 9,

Table 8: Recognition rates of different data augmentation methods on AlexNet and ResNet-34.

Method Random horizontal flip Mixup AugMix Recognition rate (%)

AlexNet

71.20
✔ 75.35
✔ ✔ 74.50
✔ ✔ 81.80

ResNet-34

72.63
✔ 75.50
✔ ✔ 73.78
✔ ✔ 84.52

Table 9: Recognition results of different CNN methods.

Method Recognition rate (%) Params (M)
AlexNet 81.80 57.02
VGG-16 (with BN) 80.08 134.28
VGG-19 (with BN) 80.94 139.59
ResNet-18 78.51 11.18
ResNet-34 84.52 21.29
ResNet-50 80.66 23.51
DenseNet-121 82.81 6.96
DenseNet-161 84.53 26.48
SE-ResNet-18 78.79 11.27
SE-ResNet-34 82.66 21.44
SE-ResNet-50 80.66 26.03
EfficientNet-B0 77.79 4.01
EfficientNet-B1 73.35 6.52
EfficientNet-B3 70.20 10.70
EfficientNetV2-S 82.23 20.18
EfficientNetV2-M 81.52 52.86
RegNetX-800MF 81.80 6.59
RegNetX-3.2GF 84.81 14.29
RegNetY-800MF 81.66 5.65
RegNetY-3.2GF 81.38 17.93
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and the corresponding accuracy curves of each best CNN
method during training (excluding the EfficientNetV1 and
V2 series) are displayed in Figure 12(a). +e accuracy curves
of the EfficientNet series are shown in Figure 12(b). It can be
obtained that, in the early training epochs (10∼20 epochs),
the networks are divergent, and they need more training
epochs to converge to stable performance. One of the main
reasons for this degradation is the design of stacking many
depthwise convolutions in the network blocks, which is not
conducive to SAR target feature extraction, leading to slow
convergence. Table 9 shows that the overall performance of
the EfficientNetV2 series is better than the EfficientNetV1
series because they replace depthwise convolution with
general 3× 3 convolution in a block (see Figure 9). It is also
believed that conventional convolutions (e.g., 3× 3 convo-
lution) are beneficial in extracting more valuable semantic
information in the SAR recognition task where the target is
concentrated in the image center.

+e results in Table 9 indicate that the CNN-based
method is suitable for nonhomologous SAR target rec-
ognition. Almost all CNNs can achieve a recognition rate
of more than 80%. +is is because CNN methods can
automatically extract the main features with good target
separability and ignore the secondary features with poor
separability. With that, various CNNs can alleviate the
problem of the detailed difference in target scattering
distribution between SAR simulation and measured
images and achieve a certain recognition effect of non-
homologous SAR targets.

Moreover, Table 9 shows that the deeper 19-layer
VGGNet has better recognition performance than the
shallower 16-layer. +is phenomenon is also shown form
ResNet-18 (SE-ResNet-18; DenseNet-121) to ResNet-34
(SE-ResNet-34; DenseNet-161). In fact, deeper networks can
extract richer semantic information features and are more
likely to enjoy accuracy gains from increased depth.

RegNetX-3.2GF attains the highest recognition rate among
all CNN methods, up to 84.81%, which is 3% higher than
RegNetX-800MF, which confirms that the characteristic of
depth is indeed useful for nonhomologous target
classification.

However, simply increasing the depth does not achieve
the same high accuracy as always. Compared with other
ResNets, the performance of ResNet-34 is the best, not
ResNet-50, and the same is true of the 34-layer in SE-
ResNets. In addition, a series of EfficientNets shows that
performance drops dramatically even when the network is
deeper. For instance, the recognition rate drops by 7% from
EfficientNet-B3 to EfficientNet-B0 and by 0.7% from Effi-
cientNetV2-M to EfficientNetV2-S. +ese indicate that the very
deep networks are easily disturbed, resulting in redundant
feature extraction, which is not conducive to discriminating the
nonhomologous targets. In addition, although the general shape
and strong scattering distribution of the target are basically the
same, there are inevitable differences in detailed features. +ese
differences will induce poor recognition results in the deeper
networks.

+e confusion matrices of the direct recognition
method and each best CNN method are shown in Fig-
ure 13. For BMP2, the best recognition is performed by
SE-ResNet-34, up to 78.54%. For BTR70, DenseNet and
AlexNet both achieve a top-1 accuracy of 94.42%. For
T72, ResNet-34 attains the highest recognition rate of
90.95%. Moreover, it can be seen that BMP2 is easily
misclassified into T72 in all CNN methods, while BTR70
does not. +e main reason is that BMP2 and T72 are
tracked vehicles, BTR70 is the wheeled vehicle, and
BMP2 and T72 are more similar in structure and easier to
be confused.

To sum up, in order to improve the performance of
nonhomologous SAR target recognition, in addition to
taking measures to improve the simulation accuracy as
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Figure 12: (a) Recognition rates of each best CNN method during training. (b) Recognition rates of EfficientNetV1 and V2 series.
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much as possible in the SAR image simulation process based
on electromagnetic scattering modeling, extracting the main
recognition features of nonhomologous data by CNN-based
method is one of the main ways to solve the problem of
nonhomologous SAR target recognition.

5. Conclusions

Aiming at the problem of unsatisfactory practical target
recognition performance of SAR simulation image data, this
paper attempts to explore the advantages of different CNN-
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Figure 13: Confusion matrices for different CNN methods.
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based methods to compare the recognition results of non-
homologous targets with SAR simulated data as training
samples and MSTAR measured SAR data as test samples.
Experiments show that, for the nonhomologous SAR target
recognition, the incredible recognition performance for the
measured SAR data can be achieved by various CNNs.
Moreover, the recognition performance can be significantly
improved by using the AugMix method to process data. In a
word, the extensive experiments verify the feasibility of
nonhomologous target recognition based on SAR simulation
data. On the other hand, it also demonstrates the research
direction of how to improve the recognition performance
when SAR simulation data is used for actual target recog-
nition. As a long-term research work, more in-depth re-
searches on CNNs will be carried out in the future in order to
further improve the recognition performance of nonho-
mologous data and improve the application ability of SAR
simulation data in actual target recognition.
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