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Time difference of arrival (TDOA) and frequency difference of arrival (FDOA) are effective measurements for localizing emitters’
radiating pulse signals, such as radar. Temporal sparsity of pulse signals makes their TDOA and FDOA estimation precisions
much different from that of continuous communication and acoustic signals. (e way how the precisions are affected by various
parameters, e.g., temporal duration of signals, may also deviate significantly in scenarios of pulse signals from that of continuous
ones. In this paper, theoretical analyses are carried out to reveal the Cramer–Rao lower bounds (CRLBs) of TDOA and FDOA
estimation precisions of pulse signals and also to obtain insights on how the CRLBs are affected by various parameters, including
pulse number, signal-to-noise ratio (SNR), pulse width, and pulse repetition interval (PRI). Simulation results verify the cor-
rectness of the derived CRLBs and their variations with different parameters.

1. Introduction

Passive localization has been an important research topic in
the field of signal processing for decades [1, 2], and source
locations are always determined by measuring various in-
termediate parameters, such as time difference of arrival
(TDOA), frequency difference of arrival (FDOA), and angle
of arrival (AOA) [3–5].Whenmultiple receivers are spatially
distributed and they have relative motions with respect to
(w.r.t.) the emitter, TDOA and FDOA between signals
collected by different receivers can be estimated for high-
precision emitter localization [6–8].

Existing TDOA and FDOA estimation literature mostly
focuses on continuous signals in areas of communications
and acoustics [6–11]. Such signals usually span durations on
the order of a few milliseconds to tens of milliseconds.
During such a short period of time, only negligible position
changes are introduced between emitters and receivers.
(erefore, it is reasonable to treat the TDOA and FDOA as
static parameters. (eoretical analyses have been carried out
to give Cramer–Rao lower bounds (CRLBs) of the TDOA
and FDOA estimation precisions for continuous signals,

which reveal how the precisions are affected by various
factors [12].

(e theoretical performance of TDOA and FDOA es-
timation for pulse signals can hardly be obtained by directly
extending existing conclusions for continuous signals [12].
At first sight, an extension can be realized by treating pulse
trains, which consist of temporally sparse pulse signals, as
amplitude-modulated continuous signals, i.e., the inter-
pulse intervals are considered to be zero-amplitude signals.
A huge challenge blocks this extension, i.e., the additive
noises within inter-pulse intervals should not be taken into
account for TDOA and FDOA estimation of pulse signals, as
each pulse is sampled only after being detected and there are
gaps (instead of noises) between adjacent pulses. Compared
with the commonly used continuous signal model [6–11],
the pulse signals are temporally sparse, and the signal energy
distributes along the time axis in the form of discrete pulses.
In such scenarios, various factors, such as the time span and
the cumulative duration of the pulse signals, affect the
TDOA and FDOA estimation precisions in much different
ways for pulse signals than continuous ones. (is paper
provides in-depth analyses to make clear how these factors
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affect the TDOA and FDOA estimation precisions for pulse
signals.

In this paper, we analyze the CRLBs of TDOA and
FDOA estimation accuracies for pulse signals. (e results
degenerate to the existing result [12] for continuous
signals when the pulse number decreases to 1. Based on
the formulations of the CRLBs, the paper analyzes how the
TDOA and FDOA estimation precisions are affected by
various factors, including signal-to-noise ratio (SNR),
pulse number, pulse width, and pulse repetition interval
(PRI). As an extension of the results for coherent pulses,
the TDOA and FDOA estimation CRLBs for independent
pulses are also provided, together with influence analyses
of the above-mentioned factors on the estimation
precisions.

(e rest of the paper is organized as follows. Section 2
formulates the problem of TDOA and FDOA estimation
for pulse signals. Section 3 analyzes the CRLBs of the
TDOA and FDOA estimation precisions for coherent
pulse signals, establishes a relationship between the de-
rived results and the existing results for continuous sig-
nals, and gives the corresponding CRLBs for independent
pulse signals. Section 4 analyzes the influences of various
factors, including signal-to-noise ratio (SNR), pulse
number, pulse width, and pulse repetition interval (PRI),
on the TDOA and FDOA estimation performance. In
Section 5, simulations are carried out to verify the cor-
rectness of theoretical results of the CRLBs and how they
are affected by various factors. Section 6 summarizes the
whole paper.

2. Problem Formulation for TDOA and FDOA
Estimation of Pulse Signals

Pulse-radiating emitters like radar are mainly used for
energy-dependent applications such as target detection,
and their signals usually do not contain complicated
modulations [13]. (e modulation parameters of each
pulse are usually consistent, e.g., linear frequency mod-
ulated (LFM) signals with the same modulation param-
eters. Such pulse trains can be modeled with coherent
signals [14, 15]. Furthermore, assume that the signal
bandwidth is very small when compared with the carrier
frequency; then, the signals can be approximated as
narrowband ones, and the doppler frequency shifts of the
signals at different stations keep unchanged during the
observation time.

Suppose that K pulse signals are received by two sensors;
the TDOA and FDOA of the pulses between the two re-
ceivers are td and fd. (e samples of the kth pulse at the two
receivers can be written in a vector form as follows:

x1,k � ake
jφks + u1,k,

x2,k � bke
jφk e

jϕ0e
jϕk(v)Dvs(−τ) + u2,k, k � 1, . . . , K,

(1)

where xi,k � [xi,k(1), . . . , xi,k(N0)]
T and ui,k � [ui,k(1), . . . ,

ui,k(N0)]
T for i � 1, 2 denote the observation samples and

noise samples with respect to a sampling interval T, re-
spectively, and N0 is the sample number within each pulse.

s � [s(1), . . . , s(N0)]
T stands for the signal samples,

s(−τ) � [s(1 − τ), . . . , s(N0 − τ)]T, Dv � diag exp􏼈 (jvl)},
with l � [0, 1, . . . , N0 − 1]T, and τ � td/T and v � 2πfdT are
TDOA and FDOA-dependent parameters. ak, bk ∈ R denote
the relative amplitudes of the kth pulse signal received by the
two receivers w.r.t. that of the first pulse received by the first
receiver, which satisfies a1 � 1. (e Gaussian white noises at
the two receivers are denoted by u1,k(t) and u2,k(t), re-
spectively, which satisfy E |u1,k(t)|2􏽮 􏽯 � E |u2,k(t)|2􏽮 􏽯 � σ2

with the noise variance σ2 assumed to be known. When the
noise variance is unknown, similar conclusions can be
obtained as these for known σ2 following the guidelines of
analyses in [12]. ϕ0 stands for the initial phase offset between
the two receivers caused by the asynchronization between
different sampling clocks, and φk ∈ [0, 2π) represents the
additional phase shift of the kth pulse signal relative to the
first one satisfying φ1 � 0. ϕk(v) � 2πfdT

(1)
k ≜ v · nk repre-

sents the additional phase shift caused by the doppler fre-
quency shift at the beginning of the k th pulse, where
nk � T

(1)
k /T and n1 � 0.

Based on time-frequency transformation, the temporally
delayed signal s(−τ) can be approximated by a spectrally group-
delayed form of the original signal [12], which is given by

s(−τ) � FHDτFs, (2)

where F � 1/
���
N0

􏽰
exp(−j(2π/N0)ll

T) and Dτ � diag exp􏼈

(−j2πτ/N0l)}. (e superscripts (·)T, (·)∗, and (·)H denote
transpose, conjugate, and conjugate transpose operators,
respectively. In (2), the time-delayed signal s(−τ) is
interpreted as a variant of s after a series of transfor-
mations, where s is first transformed to the spectral
domain by left multiplying the Fourier matrix F; then,
each spectral component is group-delayed by a TDOA τ
and finally transformed back to the temporal domain by
left multiplying the conjugate transposed Fourier matrix
FH. One can demonstrate (2) by left multiplying both
sides with F, and then it becomes more apparent that
each spectral component of s(−τ) is a phase-shifted
replica of the corresponding component of s, and the
shifted phases are time-delay and frequency-dependent
and they form Dτ .

Unknown parameters contained in the above observa-
tion model include amplitudes a � [a2, . . . , aK]T and b �

[b1, b2, . . . , bK]T and phases φ � [φ2, . . . ,φK]T for different
pulses, and η � [sT

r , sT
i ]T and θ � [ϕ0, τ, v]T shared by all

pulses, where subscripts (·)r and (·)i denote the real and
imaginary parts of a variable, respectively. (e whole pa-
rameter set in the observation model is

ξ � ηT
, aT

, bT
,φT

, θT
􏽨 􏽩

T
. (3)

Denote xk � [xT
1,k, xT

2,k]T, x � [xT
1 , . . . , xT

K]T; then, x has a
complex Gaussian distribution in the case of white Gaussian
noise, which is given by

x ∼ CN μ, σ2I2KN0
􏼐 􏼑, (4)

where
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μ � μT
1 , · · · , μT

K􏽨 􏽩
T
,

μk �
ake

jφks

bke
jφk e

jϕ0e
jϕk(v)DvF

HDτFs
⎡⎢⎣ ⎤⎥⎦≜

μk,1

μk,2
􏼢 􏼣.

(5)

(e task of TDOA and FDOA estimation is to estimate τ
and v based on the observations of the two sensors, i.e.,
x1,1, x1,2, . . . , x1,K and x2,1, x2,2, . . . , x2,K.

3. Cramer–Rao Lower Bound of TDOA and
FDOA Estimation

(is section analyzes the theoretical lower bounds of the
TDOA and FDOA estimation precisions for coherent pulse
trains and establishes a relationship between the bounds and
the existing results for continuous signals [12]. Finally, the
results are extended to independent pulses.

3.1. Case of Coherent Pulses. (e Fisher information matrix
(FIM) of the parameter set ξ, denoted by Jξ , can be obtained
according to (4) as follows [16]:

Jξ � 2 · Re
zμ
zξ

􏼠 􏼡

H

· σ−2I2KN0
·

zμ
zξ

􏼠 􏼡
⎧⎨

⎩

⎫⎬

⎭. (6)

After straightforward derivations, the FIM of θ can be
obtained from (6) as follows:

Jθ �
2
σ2

J2,2 − JT
1,2J

−1
1,1J1,2􏼐 􏼑, (7)

where

J1,1 � ‖s‖22 diag(α) − c
−1ααT

􏽮 􏽯, (8)

J1,2 �

c
−1

c1b
2
2 − c2a

2
2􏼐 􏼑‖s‖22 −

2π
N0

c
−1

c1b
2
2 − c2a

2
2􏼐 􏼑β(1)

b
2
2η

(1)
2 − c

−1
a
2
2 + b

2
2􏼐 􏼑 􏽘

K

k�1
b
2
kη

(1)
k

⎛⎝ ⎞⎠

⋮ ⋮ ⋮

c
−1

c1b
2
K − c2a

2
K􏼐 􏼑‖s‖22 −

2π
N0

c
−1

c1b
2
K − c2a

2
K􏼐 􏼑β(1)

b
2
Kη

(1)
K − c

−1
a
2
K + b

2
K􏼐 􏼑 􏽘

K

k�1
b
2
kη

(1)
k

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

J2,2 �

c1c2

c
‖s‖22 −

2π
N0

c1c2

c
β(1) c1

c
􏽘

K

k�1
b
2
kη

(1)
k

−
2π
N0

c1c2

c
β(1) c1c2

c

2π
N0

􏼠 􏼡

2

β(2)
−
2π
N0

c1

c
sH

􏽘

K

k�1
b
2
krk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

c1

c
􏽘

K

k�1
b
2
kη

(1)
k −

2π
N0

c1

c
sH

􏽘

K

k�1
b
2
krk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

sH
(−τ) 􏽘

K

k�1
b
2
k
􏽥L2k⎛⎝ ⎞⎠ − c

−1
􏽘

K

k�1
b
2
k
􏽥Lk

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦s(−τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where αk � a2
k + b2k, α � [α2, . . . , αK]T, c1 � 􏽐

K
k�1 a2

k,
c2 � 􏽐

K
k�1 b2k, c � 􏽐

K
k�1(a2

k + b2k), η(1)
k � sH(−τ)􏽥Lks(−τ),

β(1) � sHFHLFs, β(2) � sHFHL2Fs, rk � FHDH
τ LF􏽥LkFHDτFs,

􏽥Lk � nkIN0
+ L, and L � diag l{ }. Detailed derivations of (7)

are listed in Appendix A.
(e CRLB of θ can finally be obtained by computing the

inversion of (7), i.e., CRLBθ � Jθ􏼈 􏼉
−1, whose 2nd and 3rd di-

agonal elements represent the theoretical lower bound for the
mean square errors of the estimations of τ � td/T and v � 2π
fdT, respectively. Linear transformations can then be executed
on the two diagonal elements to obtain the CRLB of td and fd.

3.2. Particular Case of a Single Pulse. By setting the pulse
number K � 1, the problem studied in this paper degen-
erates to the particular one containing a single pulse, which

is equivalent to the widely studied problem for continuous
signals [6–11]. In this particular case, J1,1 and J1,2 become
emptymatrices in (7), 􏽥L1 � L, c1 � 1, c2 � b21, and c � 1 + b21,
and thus Jθ simplifies to the following form:

Jθ �
2
σ2

b
2
1

1 + b
2
1

‖s‖22 −
2π
N0

β(1) η(1)
1

−
2π
N0

β(1) 2π
N0

􏼠 􏼡

2

β(2)
−
2π
N0

sHr1􏽨 􏽩
r

η(1)
1 −

2π
N0

sHr1􏽨 􏽩
r
sH

(−τ)L2s(−τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)
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By eliminating the differences in variable definitions
between (11) and equation (20) in [12], it can be proved via
straightforward mathematical derivations that the two FIMs
are consistent, which indicates that the derived CRLB result
is equivalent to the existing one in [12] in the particular case
of a single pulse.

However, in addition to what have been revealed in the
results in [12], the CRLB in (A2) also provides details about
how the TDOA and FDOA estimation precisions are af-
fected by the parameters of pulse trains. (ese details
provide clues for making clear how the TDOA and FDOA
estimation precisions will be improved whenmore andmore
pulses are being accumulated.

3.3. Case of Independent Pulses. When signals of multiple
pulses are modulation-embedded and independent of each
other, which is the case for emitters such as modern radars
[17], the vector form of the signal sampling within each
pulse is

x1,k � sk + u1,k

x2,k � bke
jϕ0e

jϕk(v)Dv,ksk(−τ) + u2,k k � 1, · · · , K.
(12)

(e definitions of the variables in (12) are similar to
those in (3) with some slight differences, the waveforms of
different pulses in (12) are distinguished by adding pulse
index k as subscripts, the doppler shift matrix Dv,k corre-
sponding to different pulses may differ due to unequal pulse
lengths, all the amplitudes of the pulse signals at the first
receiver are ak � 1 as they are taken as references of the
signals at the second receiver, and no random phase shift φk

is introduced between different pulses at a certain receiver as
it is contained in the reference signal.

In this observation model, the unknown parameters of
the k th pulse are ξk � [sT

k,r, s
T
k,i, bk]T, and the parameters

shared by all pulses are θ � [ϕ0, τ, v]T. (e observation data
in (12) obey a Gaussian distribution similar to that in (4),
and the FIM of θ can be concluded following similar der-
ivations as that in the first subsection of this part, which is
given by

Jθ′ �
2
σ2

􏽘

K

k�1

b
2
k

1 + b
2
k

sk

����
����
2
2 −

2π
Nk

sH
k F

H
k LkFksk sH

k (−τ)􏽥Lksk(−τ)

−
2π
Nk

sH
k F

H
k LkFksk

2π
Nk

LkFksk

��������

��������

2

2
−
2π
Nk

sH
k F

H
k D

H
τ,kLkFk

􏽥Lksk(−τ)􏽨 􏽩
r

sH
k (−τ)􏽥Lksk(−τ) −

2π
Nk

sH
k (−τ)􏽥LkF

H
k LkDτ,kFksk􏽨 􏽩

r
􏽥Lksk(−τ)

����
����
2
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where lk � [0, 1, . . . , Nk − 1]T, Nk is the number of sam-
plings within the kth pulse, Lk � diag(lk), 􏽥Lk � nkINk

+ Lk,
Dv,k � diag exp(jvlk)􏼈 􏼉, and sk(−τ) � FH

k Dτ,kFksk. (e CRLB
of θ can be obtained by computing the inverse of (13) as
CRLBθ′ � Jθ′􏼈 􏼉

−1, in which the 2nd and 3rd diagonal elements
correspond to the lower bounds of the mean squared error of
τ � td/T and v � 2πfdT, and they give the precision bounds
of td and fd after linear transformations. By setting K � 1, it
is not difficult to prove that the result in (13) in the case of a
single pulse is also consistent with the results given in [12].

4. Influences of Various Factors on TDOA and
FDOA Estimation Precisions

(e FIM of the TDOA and FDOA in (7) indicate that the
TDOA and FDOA estimation precisions for pulse trains are
affected by various factors, such as signal-to-noise ratio

(SNR), pulse width (PW), pulse number, and pulse repe-
tition interval (PRI). When the number of pulses is large, the
influence of a certain factor on the parameter estimation
performances is affected combinatorially by the amplitudes
of all pulses, making it much too complicated or even
impossible to analyze theoretically the influence of each
pulse’s parameters on the overall TDOA and FDOA esti-
mation precisions. In order to establish a relationship be-
tween the various factors and the parameter estimation
performances, we introduce an additional assumption that
the SNR of all pulses is equal, so that in-depth analyses will
be available.

4.1. Simplification of FIM. When the SNR of different pulses
is equal, the FIMs of coherent and independent pulses can be
simplified to the formulations in (14) and (15), respectively:

4 International Journal of Antennas and Propagation



Jθ ≈
2
σ2

b
2
1

1 + b
2
1

tr R1( 􏼁 −
2π
N0

tr FHLFR1􏼐 􏼑 tr R3( 􏼁

−
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2π
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2

tr FHL2FR1􏼐 􏼑 −
2π
N0

tr FHLDτFR2􏼐 􏼑􏽨 􏽩
r

tr R3( 􏼁 −
2π
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tr FHLDτFR2􏼐 􏼑􏽨 􏽩
r

tr R4( 􏼁
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, (14)

J′θ ≈
2
σ2

b
2
1

1 + b
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1
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N1
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1 L1F1R′1􏼐 􏼑 tr R′3( 􏼁

−
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tr FH
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H
τ,1L1F1R′2􏼐 􏼑􏽨 􏽩

r

tr R′3( 􏼁 −
2π
N1

tr FH
1 D

H
τ,1L1F1R′2􏼐 􏼑􏽨 􏽩

r
tr R′4( 􏼁
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, (15)

where tr(·) represents the trace operator, R1 � KssH,
R2 � n0Ks(−τ)sH, R3 � n0Ks(−τ)sH(−τ), R4 � 􏽐

K
k�1 n2

ks
(−τ)sH(−τ), R′1 � 􏽐

K
k�1 sksH

k , R′2 � 􏽐
K
k�1 nksk(−τ)sH

k ,
R′3 � 􏽐

K
k�1 nksk(−τ)sH

k (−τ), and R′4 � 􏽐
K
k�1 n2

ksk(−τ)

sH
k (−τ). Detailed derivations for the simplifications are listed
in Appendix B.

(e FIMs in (14) and (15) corresponding to cases of
coherent and independent pulse trains have very similar
formulations. (e only difference lies in the matrix sets of
R � R1,R2,R3,R4􏼈 􏼉 and R′ � R′1,R′2,R′3,R′4􏼈 􏼉, which is
caused by the distinction in waveforms of independent
pulses. When the lengths and SNR of independent pulses are
equal and the number of pulses is very large, the difference is
very weak, which becomes negligible according to the law of
large numbers. In both cases, the CRLB obtained by FIM
inversion will also be approximately equivalent. (is result
indicates that although coherent pulse trains have much
fewer unknown parameters than independent pulse trains
due to repeated pulse waveforms, the reduction of the
unknown parameter dimension does not lead to significant
improvements in TDOA and FDOA estimation precisions.
(is conclusion is similar to the one in [14], which points out
that prior information about the signal waveform contrib-
utes only slightly to the frequency estimation precision.

4.2. Influence Analyses of Different Factors. Based on the
simplified FIM, this section analyzes how the TDOA and
FDOA estimation precisions are affected by various factors,
including SNR, pulse width, pulse number, and PRI.

When the SNR of the pulses varies, the values of the
matrices in R change with it, which results in different FIMs
in (14). However, the relative pulse amplitudes at the two
receivers, i.e., b21, keep fixed, and the value of each element in
Jθ is proportional to the SNR. (erefore, the values of the
elements in CRLBθ obtained by FIM inversion are inversely

proportional to the SNR, and the root mean squared errors
(RMSEs) of the TDOA and the FDOA estimates, i.e.,CRLBτd

and CRLBfd
, are inversely proportional to the square root of

the SNR, i.e., SNR−1/2.
(e variation of the pulse width changes the number of

samplings in each pulse, i.e., N0, and also changes the di-
mensions of the matrices in the trace operator tr(·) and the
diagonal weighting matrix L in (14). As the SNR of the pulses
is assumed to be constant, the signal energy increases lin-
early with increasing pulse width. In addition, the carrier
frequency f0 of approximately narrowband pulse signals can
be denoted coarsely as a proportion to the sampling fre-
quency fs, i.e., f0 � ρfs with 0< ρ< 1. (us, in the time-
frequency conversed vector Fs in (14), only the element on
the (ρN0)th row has a significant non-zero value, and only
the weight coefficients of ρN0 and (ρN0)

2 in L and L2
dominate the weighted sums of tr(FHLFR1) and
tr(FHL2FR1). By jointly considering the linear increase of
signal energy with pulse width, it can be concluded that the
values of matrices in R � R1,R2,R3,R4􏼈 􏼉 increase squarely
or cubically with PW, which depends on whether the matrix
is weighted linearly or squarely by L. (erefore, the values of
each element in Jθ are linearly proportional to PW according
to (14). By combining it with the computation process of
matrix inversion, we can infer the relationship of CRLBτd

and CRLBfd
w.r.t. PW as CRLBτd

∝PW−1/2 and
CRLBfd

∝PW−1/2.
In order to analyze the influences of pulse number and

PRI on the TDOA and FDOA estimation precisions, we
further assume that the pulses are equally spaced along the
time axis, and the PRI is equal to n times the sampling
interval, and then the proportionalities of the matrices in the
set of R with the pulse number K and the PRI are
R1 � KssH∝ K1, PRI0􏼈 􏼉, R2 � ((K − 1)(K − 2)/2)ns(−τ)

sH ≈ ∝ K2, PRI1􏼈 􏼉, R3 � ((K − 1)(K − 2)/2)ns(−τ)sH

(−τ) ≈ ∝ K2, PRI1􏼈 􏼉, and R4 � ((K − 1)(K − 2)(2K − 3)
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/6)n2s (−τ)sH(−τ) ≈ ∝ K3, PRI2􏼈 􏼉, where ≈∝ stands for
“approximately proportional to.” (e relative approxima-
tion error is roughly 1.5/K, which is negligible in practical
applications when K is as large as several tens or even
thousands. (en, we have

Jθ ≈ ∝
K

1
K

1
K

2

K
1

K
1

K
2

K
2

K
2

K
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0

PRI
0

PRI
1

PRI
0

PRI
0

PRI
1

PRI
1

PRI
1

PRI
2
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Furthermore, by combining it with the process of CRLB
computation via FIM inversion, the relationship between the
TDOA and FDOA estimation CRLBs with the pulse number
and the PRI can be concluded to be CRLBτd

∝ K−1/2, PRI0􏼈 􏼉

and CRLBfd
∝ K−3/2, PRI−1􏼈 􏼉.

In summary, the TDOA and FDOA estimation preci-
sions of coherent pulses are affected by various factors in a
way as that shown in Table 1.

It is indicated by Table 1 that the PRI has no influence on
the TDOA estimation accuracy, and the pulse number and
the PRI (which jointly determine the time span of the ob-
served pulse signals) affect the FDOA estimation accuracy
very significantly. In practical TDOA and FDOA estimation
applications, the signal parameters of SNR, PW, and PRI are
determined by the emitter and the signal propagation path
and are not revisable at the non-cooperative receiver.
However, one can improve the TDOA and FDOA estima-
tion precisions by increasing the pulse number K. An effi-
cient way to enlarge K is gathering pulses of the same
emitter, which may be scattered along the time axis when
some pulses between them are not received due to low SNR.
Gathering such pulses also increases PRI as a by-product and
helps to further improve FDOA estimation precision
according to Table 1.

In the case of independent pulses, the difference be-
tween the FIM in (15) and its counterpart for coherent
pulses in (15) is caused by the difference between the
matrix sets R and R′. Each matrix in R′ contains an in-
variant component that depends on pulse energy and some
other stationary factors, together with a variable compo-
nent that depends on specific modulations of different
pulses. When the widths and amplitudes of different pulses
are equal, the variable components of different pulses
cancel each other, and the invariant components accu-
mulate linearly or super-linearly according to the
weighting matrices. As the number of pulses increases, the
variable components cancel each other and tend to zero
according to the law of large numbers. (erefore, the
matrices in R′ are affected by different factors in a similar
way as the matrices in R. Based on this approximated
model, it can be proved by similar analyses as these in this
subsection that the TDOA and FDOA estimation accu-
racies of independent pulses are affected roughly in the
same way as that shown in Table 1.

5. Simulations and Analyses

In this part, we carry out simulations to demonstrate the
correctness of the CRLB results and the conclusions on the

influences of different factors on TDOA and FDOA esti-
mation precisions. Assume that the pulse signals are linear
frequency modulated (LFM) with a bandwidth of 1MHz,
and the signal carrier frequency is 1GHz. (erefore, the
signals are approximately narrowband. (e received signals
are down-converted to a low intermediate frequency and
then sampled with a frequency of 10MHz. (e time delay of
the signals at the two receivers is 0 s, and the frequency shift
is 1 kHz.

In the first group of simulations, we fix the pulse width
at 30 us, the SNR at 5 dB, and the PRI at 100 us and in-
crease the pulse number from 5 to 80. (e TDOA and
FDOA estimation CRLBs obtained from (7) are shown in
Table 2. (e results show that when the number of pulses
increases from 5 to 80, the theoretical accuracy of the
TDOA estimate improves from 0.49 ns to 0.12 ns, and that
of the FDOA estimate improves from 13.2 Hz to 0.24 Hz.
(e amplitudes of improvements are approximately 4 and
55 times, respectively, which are roughly inversely pro-
portional to the 1/2 and 3/2 powers of the pulse number.
(is result is basically consistent with the results in Ta-
ble 1, and the slight difference between them is mainly
caused by the effect of finite pulses, which leads to a
deviation between the accumulation operations in sim-
ulations and the expectation operations in theoretical
analyses.

Based on the above simulations, we then fix the number
of coherent pulses at 40 and vary the SNR of the pulse signals
from −5 dB to 35 dB. (e TDOA and FDOA estimation
CRLBs are obtained and shown in Table 3. When the SNR
increases by 40 dB in the simulations, the TDOA and FDOA
estimation CRLB increases from 0.54 ns to 5.4e− 3 ns and
from 2.16Hz to 0.0216Hz, respectively, which both improve
by 100 times. (e results indicate that the TDOA and FDOA
estimation precisions are proportional to the inverse of the
square root of the SNR, which is consistent with the results
in Table 1.

(en, we fix the number of coherent pulses at 40 and the
SNR on both receivers at 5 dB and then vary the pulse width
from 5 us to 30 us. (e TDOA and FDOA estimation CRLBs
are shown in Table 4. When the pulse width increases by 6
times, the theoretical lower bounds of the TDOA and FDOA
estimation precisions are reduced from 0.44 ns to 0.17 ns and
from 1.7Hz to 0.68Hz, respectively, which are improved by
2.6 times and 2.5 times. (e amplitudes of improvement are
approximately equal to

�
6

√
, which are consistent with the

results in Table 1.
Finally, we fix the number of coherent pulses at 40, the

SNR on both receivers at 5 dB, and the pulse width at
30 us and increase the PRI from 0.1 ms to 10ms. (e
TDOA and FDOA estimation CRLBs are shown in Ta-
ble 5. When the PRI increases by 100 times, the theo-
retical lower bound of the TDOA estimation accuracy
keeps unchanged at about 0.17 ns, and that of the FDOA
estimation accuracy improves from 0.68 Hz to 0.0068 Hz.
(e improvement amplitudes are 0 times and 100 times,
respectively, which are immune to and linearly propor-
tional to the PRI, respectively. (e results are consistent
with those in Table 1.
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6. Conclusions

(is paper analyzes the TDOA and FDOA estimation
CRLBs of pulse signals and provides deep insights to reveal
how the CRLBs are affected by various factors, including
signal-to-noise ratio (SNR), pulse width (PW), pulse
number, and pulse repetition interval (PRI). (eoretical
results indicate that the TDOA and FDOA estimation
precisions of coherent pulse signals vary roughly in the same
way with respect to different environmental factors as those
of independent pulse signals. Simulation results in scenarios
of varying pulse numbers, SNRs, pulse widths, and PRIs

demonstrate the correctness of the theoretical results on how
TDOA and FDOA estimation precisions are affected by
these factors.

Appendix

A. Derivation of the Fisher Information
Matrix in the Case of Coherent Pulses

(e blocks in the partial derivative zμ/zξ in (7) are given as
follows:

Table 1: Influences of pulse parameters on TDOA and FDOA estimation precisions.

SNR PW Pulse number (K) PRI
CRLBτd

SNR−1/2 PW−1/2 K−1/2 PRI0

CRLBfd
SNR−1/2 PW−1/2 K−3/2 PRI−1

Table 2: TDOA and FDOA estimation precision for different pulse numbers.

Pulse number 5 10 20 40 80
TDOA (ns) 0.49 0.34 0.24 0.17 0.12
FDOA (Hz) 13.2 5.04 1.92 0.68 0.24

Table 3: TDOA and FDOA estimation precision for different SNRs.

SNR (dB) −5 5 15 25 35
TDOA (ns) 0.54 0.171 0.054 0.017 5.4e− 3
FDOA (Hz) 2.16 0.683 0.216 0.0683 0.0216

Table 4: TDOA and FDOA estimation precision for different pulse widths.

Pulse width (us) 5 10 20 30
TDOA (ns) 0.44 0.31 0.22 0.17
FDOA (Hz) 1.7 1.18 0.85 0.68

Table 5: TDOA and FDOA estimation precision for different PRIs.

PRI (ms) 0.1 1 10
TDOA (ns) 0.17 0.17 0.17
FDOA (Hz) 0.68 0.068 0.0068
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where Pk � ejφk ejϕ0ejϕk(v)DvFHDτF, gk,1 � jbkPks,
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(e item in the brace on the right-hand side of (7) can be
expressed as
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. (A.3)

Denote 􏽥B � [B1,B2,B3,B4], where

B1 � Re 􏽘
K

k�1
QH

k Y1,k

⎧⎨

⎩

⎫⎬

⎭ �
a2sr · · · aKsr

a2si · · · aKsi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (A.4)

B2 � Re 􏽘
K

k�1
QH

k Y2,k

⎧⎨

⎩

⎫⎬

⎭ �
b1sr b2sr · · · bKsr

b1si b2si · · · bKsi

􏼢 􏼣, (A.5)

B3 � Re 􏽘
K

k�1
QH

k Y3,k

⎧⎨

⎩

⎫⎬

⎭ �
− a

2
2 + b

2
2􏼐 􏼑si · · · − a

2
K + b

2
K􏼐 􏼑si

a
2
2 + b

2
2􏼐 􏼑sr · · · a

2
K + b

2
K􏼐 􏼑sr

⎡⎢⎢⎣ ⎤⎥⎥⎦, (A.6)

B4 � Re 􏽘
K

k�1
QH

k
􏽥Gk

⎧⎨

⎩

⎫⎬

⎭ �

−c2si

2π
N0

c2(􏽥r)i − FHDH
τ F 􏽘

K

k�1
b
2
k
􏽥Lk

⎛⎝ ⎞⎠s(−τ)⎛⎝ ⎞⎠

i

c2sr −
2π
N0

c2(􏽥r)r FHDH
τ F 􏽘

K

k�1
b
2
k
􏽥Lk

⎛⎝ ⎞⎠s(−τ)⎛⎝ ⎞⎠

r
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, (A.7)

where c1 � 􏽐
K
k�1 a2

k, c2 � 􏽐
K
k�1 b2k, c � 􏽐

K
k�1(a2

k + b2k), and
􏽥r � FHLFs. It can be concluded from (A.4)–(A.7) that
BT
1

BT
2

􏼢 􏼣 B3 B4􏼂 􏼃 � 0, which means that the last two block

elements in the second and third rows in (A.3) are all 0s,
together with the submatrices in the symmetrical posi-
tions. Denote the real part of the lower-right submatrix

consisting of 4×4 blocks in (A.3) by 􏽥Z, and it can be
concluded via straightforward calculations that

􏽥Z �

Z1 0 0 0

0 Z2 0 0

0 0 Z3 C

0 0 CT Z4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.8)
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where

Z1 � Re 􏽘
K

k�1
YH
1,kY1,k

⎧⎨

⎩

⎫⎬

⎭ � ‖s‖22 × IK−1,

Z2 � Re 􏽘
K

k�1
YH
2,kY2,k

⎧⎨

⎩

⎫⎬

⎭ � ‖s‖22 × IK,

Z3 � Re 􏽘
K

k�1
YH
3,kY3,k

⎧⎨

⎩

⎫⎬

⎭ � ‖s‖22 × diag(α),

Z4 � Re 􏽘
K

k�1

􏽥GH

k
􏽥Gk

⎧⎨

⎩

⎫⎬

⎭ �

c2‖s‖
2
2 −

2π
N0

c2β
(1)

􏽘

K

k�1
b
2
kη

(1)
k

−
2π
N0

c2β
(1)

c2
2π
N0

􏼠 􏼡

2

β(2)
−
2π
N0

sH
􏽘

K

k�1
b
2
krk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

􏽘

K

k�1
b
2
kη

(1)
k −

2π
N0

sH
􏽘

K

k�1
b
2
krk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

􏽘

K

k�1
b
2
kη

(2)
k
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,

C � Re 􏽘
K

k�1
YH
3,k

􏽥Gk

⎧⎨

⎩

⎫⎬

⎭

�

b
2
2‖s‖

2
2 −

2π
N0

b
2
2β

(1)
b
2
2η

(1)
2

⋮ ⋮ ⋮

b
2
K‖s‖22 −

2π
N0

b
2
Kβ

(1)
b
2
Kη

(1)
K
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,

(A.9)

where αk � a2
k + b2k, α � [α2, . . . , αK]T, β(1) � sHFHLFs,

β(2) � sHFHL2Fs, η(1)
k � sH(−τ)􏽥Lks(−τ), η(2)

k � sH(−τ)􏽥L2ks
(−τ), and rk � FHDH

τ LF􏽥LkFHDτFs.
In addition, denote Z0 � Re 􏽐

K
k�1 Q

H
k Qk􏽮 􏽯 � (􏽐

K
k�1

(a2
k + b2k)) × I2N0

; then, the FIM of the parameter set
ξ1 � [aT, bT,φT, θT]T can be derived according to (16) using
the matrix inversion lemma [18] as follows:

Jξ1 �
2
σ2

􏽥Z − 􏽥BTZ−1
0

􏽥B􏼒 􏼓. (A.10)

Based on the formulations of the matrices in (A.10), the
upper-right and lower-left (2K − 1) × (K + 2) matrices of Jξ1
can be concluded to be 0, which implies that the estimation
performances of the parameter sets [aT, bT]T and [φT, θT]T

are independent of each other. Denote ξ2 � [φT, θT]T; then,
its FIM can be obtained from (A.10) as follows [18]:

Jξ2 �
2
σ2

Z3 C

CT Z4

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − c
−1

BT
3B3 BT

3B4

BT
4B3 BT

4B4

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≜
2
σ2

J1,1 J1,2

JT
1,2 J2,2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(A.11)

where J1,1, J1,2, and J2,2 are defined in (8)–(10).
(e FIM of θ can be finally obtained from (A.11) by using

the matrix inversion lemma [18] to conclude in the form
given in (7).

B. Derivations for FIM Simplification

When the SNR of different pulses is equal, some simplifi-
cations hold, i.e., c1 � Ka2

1 � K, c2 � Kb21, c � K(1 + b21),
αk � 1 + b21 for k � 1, . . . , K, α � (1 + b21)1K−1, and thus
(8)–(10) can be rewritten as
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J1,1 � 1 + b
2
1􏼐 􏼑‖s‖22 IK−1 −

1
K
1K−11

T
K−1􏼚 􏼛,

J1,2 � 0K−1 0K−1 b
2
1‖s(−τ)‖

2
2 n − n01K−1( 􏼁􏽨 􏽩,

J2,2 �
b
2
1

1 + b
2
1

K‖s‖22 −
2π
N0

Kβ(1)
􏽘

K

k�1
η(1)

k

−
2π
N0

Kβ(1) 2π
N0

􏼠 􏼡

2

Kβ(2)
−
2π
N0

sH
􏽘

K

k�1
rk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

􏽘

K

k�1
η(1)

k −
2π
N0

sH
􏽘

K

k�1
rk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

sH
(−τ) 􏽘

K

k�1

􏽥L2k + b
2
1 􏽘

K

k�1
n
2
k − Kn

2
0

⎛⎝ ⎞⎠IN0
⎡⎢⎢⎣ ⎤⎥⎥⎦s(−τ)
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,

(A.12)

where n � [n2, . . . , nK]T and n0 � (1/K) 􏽐
K
k�1 nk. Moreover,

Jθ �
2
σ2

b
2
1

1 + b
2
1

K‖s‖22 −
2π
N0

Kβ(1)
􏽘

K

k�1
η(1)

k

−
2π
N0

Kβ(1) 2π
N0

􏼠 􏼡

2

Kβ(2)
−
2π
N0

sH
􏽘

K

k�1
rk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

􏽘

K

k�1
η(1)

k −
2π
N0

sH
􏽘

K

k�1
rk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

r

sH
(−τ)

1
K

􏽘

K

k�1
L + nkIN0

􏼐 􏼑
2⎛⎝ ⎞⎠s(−τ)
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. (A.13)

As the PRI is often much larger than the pulse width in
most pulse-radiating systems such as radar [13, 17], nk≫N0
for k≥ 2, and the FIM in (A.13) can be approximated to the
formulation in (13) by neglecting high-order minima.
Similarly, the FIM in (13) corresponding to independent
pulse trains can also be simplified to the formulation in (15).

Data Availability

(e data used in this study were generated via simulations.
Readers can get the data and repeat the simulations fol-
lowing the illustrations in our study.
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