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Te purpose of this paper is to present a deep learning model that simultaneously estimates targets and wall parameters in
through-the-wall radar (TWR). As a result of the complexity of the environments in which through-the-wall radars operate, TWR
faces many challenges. Te propagation of radar signals through walls is further delayed and attenuated than in free space.
Terefore, the targets are less able to be detected and the images of the targets are distorted and defocused as a consequence. To
address the above challenges, twomodes are considered in this work: single targets and two targets. In both cases, permittivity and
wall thickness are considered, along with the target’s center in two dimensions and the permittivity of targets. Terefore, in the
case of a single target, we estimate fve values, whereas in the case of two targets, we estimate eight values simultaneously, each
representing the mentioned parameters. As a result of using deep neural networks to solve the task of target locating problem in
TWR, the model has a better chance of learning and increased accuracy if it involves more parameters (such as wall parameters
and permittivity of the wall) in the target location problem. In this way, the accuracy of target locating improved when two wall
parameters were considered in problem. A deep neural network model was used to estimate wall permittivity and thickness, as
well as two-dimensional coordinates and permittivity of targets with 99% accuracy in single-target and two-target modes.

1. Introduction

Recently, through-the-wall imaging (TWRI) has become one
of the most attractive felds of research that has diferent
applications to locate, identify, and classify diferent targets
[1–3]. Trough-the-wall radar (TWR) faces many challenges
due to the complex nature of the environments in which it
operates. In comparison to signal propagation in free space,
radar returns passing through walls are further delayed and
attenuated. Tis reduces the detecting abilities of the targets,
and the images of the targets are distorted and defocused as a
consequence [4, 5]. To overcome these challenges, diferent
methods and techniques are employed [6–9]. Te TWR
challenge can also be addressed by machine learning algo-
rithms [10, 11].

Recent advancement in machine learning algorithms,
particularly deep learning, and their penetration into other
sciences have solved novel problems in various felds. Te

impact of machine learning on various felds demonstrated
the high fexibility and ability to improve previous results
and solve new problems [12–19]. Tese characteristics of
machine learning, particularly deep learning, to discover
hidden signal patterns make it an excellent tool for analyzing
radar signals. Among machine learning applications in ra-
dar, we focus on TWR and investigate how it can solve new
problems in this feld that conventional methods cannot
[20, 21].

Te estimation of wall parameters and the location of
targets are two important applications of TWR that are
gaining much attention. In each case, there are many
challenges facing each of these applications. As a result of
walls and other objects, there is ambiguity and interference
in the received signal in target locating [22]. Furthermore,
estimating the wall parameters to locate the targets helps to
provide a more complete picture of the target, which is not a
straightforward process [23, 24].
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Generally, there are two types of methods for estimating
wall and target parameters: conventional and machine-
based. Methods such as time-delay [25], flter-based
methods [26], M-Sequence sensors, and continuous basis
estimators [27] are conventional methods for estimating wall
parameters. A time-delay estimation approach also requires
at least two experiments, which is time-consuming. By
analyzing the time delay between diferent antenna intervals,
it estimates the parameters. In the flter-based method, once
the wall efects are removed, the flters are constructed in
both the echo domain and image domain, and the estimation
method is used to obtain the best focusing parameters. Te
method can only estimate the wall’s thickness and per-
mittivity. A M-Sequence sensor used a metallic wall as a
target and a sequence sensor was designed, and an echo time
delay was calculated by compressive sensing. It is not
practical to select metallic walls as target in a practical
scenario, and estimation methods to estimate the thickness
and permittivity of walls are complex.

Machine learning-based methods can be classifed into
two categories: those that utilize conventional machine
learning algorithms such as SVM and methods based on
deep learning.

In the estimation of wall parameters, Zhang et al. in
[28, 29] attempted to estimate the wall parameters using an
SVM-based method. Considering the scenarios mentioned,
it is work only when target is unchanged. Since the location
of the object is fxed, the generalization of the model is low,
and it can only estimate the parameters of a wall when the
target is fxed in a specifc location. Wood et al. in [20] used
machine learning methods for the reconstruction of target
material properties.

Also, in the target locating, Zhang et al. [30] developed
an SVM-based method for two-dimensional locating under
a homogeneous wall and a circular metal cylinder object.
Also, in [22], Zhang et al. presented a 3D positioningmethod
proposed for a homogeneous wall for a spherical metallic
object using an extreme learning machine. Te method used
can be used for one metallic target, and it has not been
evaluated for purposes where the permittivity range is close
to the human body and multitargets application. Wood et al.
[20] investigated a machine learning (ML) approach for
predicting the location of targets. Tis work performed two-
dimensional positioning with a circular object using the K-
Nearest Neighbors (KNN) algorithm and a homogeneous
nonmagnetic wall.

In TWR, conventional methods are used to target lo-
cating and estimate wall parameters independently. In some
of these methods, the wall efect must be removed to locate
targets because ambiguities in the wall parameters distort the
imaging and shift the target location. On the other hand,
conventional methods are incapable of estimating the target
characteristics and instead concentrate exclusively on the
target location. It was also very time-consuming and
complicated to estimate the target parameters in previous
studies, and they only worked when the target position
behind the wall was fxed and only one target was available.
Furthermore, they are limited to single-target mode when
estimating target location and properties.

In this work, we presented a model for simultaneously
estimating the wall permittivity and the thickness, as well as
the two-dimensional location of targets and the permittivity
of targets, using a deep learning approach. In [21], we
proposed two-dimensional positioning for the case that the
wall is modeled as a complex electromagnetic wall by
presenting three deep learning models. Te wall is assumed
to be a perfect nonmagnetic dielectric. We attempt to es-
timate the wall parameters and target parameters simulta-
neously using a deep neural network. Wall parameters
include permittivity and thickness, and target parameters
include target location and permittivity.

2. Methodologies

2.1. Deep Learning. Deep learning is a subset of machine
learning and artifcial intelligence that closely mimics the
process by which the human mind acquires knowledge. Tis
type of learning is critical in data science, which also en-
compasses statistics and forecasting modeling. Deep
learning is highly benefcial for data scientists responsible for
collecting, analyzing, and interpreting large amounts of data,
as it speeds up and simplifes the process. Deep learning is
the process of learning through neural networks with nu-
merous hidden layers, and the deeper these layers go, the
more complex and complete the models become. Deep
learning is distinguished by its approach to solving prob-
lems. Working with conventional machine learning algo-
rithms such as SVM, begins with manual feature extraction.
Ten, a machine learning model is constructed using these
features. However, deep learning is designed so that the
computer automatically detects and extracts the relevant
features. Additionally, deep learning employs end-to-end
learning, in which raw data is fed into the neural network
and assigned a task, such as classifcation. Deep learning
learns how to do this automatically. Deep learning models
are taught using large sets of labeled data and neural network
architectures that automatically learn features from the data
without the need to extract them manually. A neural net-
work is composed of multiple layers of neurons. Typically,
neural networks consist of three layers: input, hidden, and
output. As the number of layers and neurons in each hidden
layer increases, the model becomes more complex. As the
number of hidden layers and neurons in our network in-
creases, it transforms into a deep neural network called deep
learning.

Figure 1 shows an overview of artifcial neurons. Te
inputs (input neurons) are X1, X2, . . .. Each Xi in a neural
network has a weight, denoted by Wi. Indeed, each input is
weighted independently. Te neural network sum function
(sigma) then adds the products of the X and W, and the
activation function calculates the output value based on this
calculation.Te output of a neuron can be expressed as if the
activation function is represented by Associate and b is the
bias value. Te neuron output can be described as follows:

Y � F 􏽘
n

i�1
WiXi + bi

⎛⎝ ⎞⎠. (1)
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2.2.Transfer Learning. Transfer learning is the application of
the knowledge of a pretrained model to a diferent but re-
lated issue. Tis method allows us to train deep neural
networks with less data. Learning with little data is very
valuable and requires fewer hardware resources; on the other
hand, in most fundamental problems, there is little data that
can be used to train models. Transfer learning allows us to
easily extend the model’s knowledge acquired in one area to
other problems. In other words, instead of starting the
training from the beginning, we can use the patterns ob-
tained in the same problem to solve the new problem more
efciently. In transfer learning, the frst layer and the middle
(hidden) layers in a pretrained neural network are usually
kept, and the output layer in a new network becomes
replaced with another layer. Ten the whole network is
trained again with new problem data.Temain advantage of
transfer learning can be summarized in two ways: frst,
reduced learning time and the need for fewer hardware
resources, and second, a more straightforward generaliza-
tion of the problem to other issues.

2.3. FDTD. Te fnite diference time-domain (FDTD) is a
method for solving Maxwell’s equations. Te equations of
Ampere’s Law and Faraday’s Law can be written as follows:

∇ × H �
zD

zt
� ε

zE

zt
, Faraday′sLaw( 􏼁,

∇ × E � −
zB

zt
� μ

zH

zt
, Ampere′sLaw( 􏼁,

(2)

We use TMz polarization to rewrite Ampere’s Law and
Faraday’s Law as [31]
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Te scalar equations for TMz are obtained from (3) and
(4):
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Equations (5)–(7) can be written in fnite-diferences
form, and future felds can be expressed in terms of past
felds due to the space-time discretization. Te indexes m

and n denote the spatial steps in the x and y directions,
respectively, and the index q corresponds to the temporal
step. Additionally, the spatial step sizes are ∆x and ∆y in the
x and y directions, respectively. Te fnite diference ap-
proximation of (5) expanded about the space-time point
(m∆x, (n+ 1/2) ∆y, q∆t). Te resulting equation is

−μ
H
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x [m, n + 1/2] − H
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�
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Figure 1: An overview of an artifcial neuron.
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Te equation can be rewritten as follows for future value
in terms of past value:

H
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We can also write for equations (6) and (7) expanded
about the space-time point ((m+ 1/2)∆x, n∆y, q∆t) and
(m∆x, n∆y, (q+ 1/2)∆t), respectively:
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(10)

2.4. Data Gathering. Te FDTD library (https://github.com/
faport/fdtd) in Python is used to simulate a two-dimensional
TWR problem. In this case, a 30 cm square considered with
εr � 80 as the target. A 3GHz plane wave is generated using
the FDTD library using a line source. TMz polarization as-
sumed, which implies that Ex � Ey � Hz � 0 and Ez, Hx, Hy

are nonzero.Te source’s emitted wave hits the wall, and some
of it returns, while the remainder passes through the wall, hits
the target, and scatters away from the target. Finally, the
scatteredwave is received by the detector. In this step, the felds
of Ez, Hx, Hy was retrieved and used to create the required
dataset. Also, a homogeneous wall with μ � 1, σ � 0, and εr

used for data generation varies from 3 to 9. To create a single-
target dataset, the target moved in the two-dimensional space
specifed in Figure 2, also change the target permittivity from 5
to 85, the wall permittivity from 3 to 9, and the wall thickness
from 10 to 20 cm. As a result, 16,200 datasets were generated in
this mode. Te two-target mode is similar, except that instead
of one object, there are two objects, introducing three addi-
tional parameters to the problem, including the target’s two-
dimensional location and permittivity. In this case, 58,320
datasets were generated. In Table 1, the parameters that were
used for generating the dataset and their ranges are sum-
marized. Also, allocated 70% of the dataset for training, 15%
for the validation dataset, and 15% for the test dataset.

3. Numerical and Experimental Results

In this work, we used a deep neural network (DNN) to
estimate both object and wall parameters concurrently.
Python is used to implement the DNN algorithm and the

TensorFlow and Keras frameworks (https://keras.io). For
this purpose, we presented a model in which the network
input and backbone, which are the hidden layers of the
neural network, are the same for single-target and two-
target modes. However, the network output for these
modes difers. In the single-target mode, we estimate fve
parameters: the target’s two-dimensional location, wall
permittivity, target permittivity, and wall thickness. As a
result, we consider the number of neurons in the last layer
to be fve. In the case of two-targets, we estimate three
additional parameters: the 2D location and the permit-
tivity of the second target. We used the ReLU activation
function for this neural network’s frst and middle layers
but the linear activation function for the fnal layer.
Equations (11) and (12) illustrate the activation of the
ReLU and linear functions.

f(x) �
0, x≤ 0,

x, x> 0,
􏼨 (11)

f(x) � x. (12)

We trained the network using a batch size of 20, and a
learning rate of 0.001, as well as the Adam optimizer and the
Mean Squared Logarithmic Error (MSLE) loss function, as
defned as follows:

L(y, 􏽢y) �
1
N

􏽘

N

i�0
log yi + 1( 􏼁 − log 􏽢yi + 1( 􏼁( 􏼁

2
, (13)

where y is the actual value, 􏽢y is the estimated value, and N

is the total number of data. MSLE is the mean of the
squared diferences between the actual and estimated
values after log transformation. We sequentially
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combined the Dense and Dropout layers to achieve higher
accuracy and less loss in the network’s backbone. Te
network is trained for 200 epochs, and the Loss diagram
for the train and validation datasets are shown in Figure 3
in both single-target and two-target modes. Table 2
contains the accuracy and loss obtained on the valida-
tion and test datasets.

By including some target and wall specifcations in the
locating problem, we were able to improve the accuracy of the
locating while also accurately estimating the wall and target
material parameters. Indeed, each problem involves a large
number of parameters. When we attempt to solve a problem
using machine learning, if we enter all of the parameters
involved in the problem, the model present by us can better
learn the relationship between the inputs and outputs, thereby
increasing the accuracy of the solution. We observed that it is
sufcient to include additional parameters associated with the
signal received by the receiver to achieve high positioning
accuracy in the problem of two-dimensional positioning. By
including the target and the wall’s permittivity, and the wall’s
thickness in the problem, we discovered that the proposed
model not only improved target location accuracy but also
allowed for the integration of other critical parameters that
had previously been estimated separately using a diferent
algorithm. Tese parameters were estimated using the same
deep learning model to locate the targets. Te results of
training network time, inference time, the size of deep
learning models, and the number of deep neural network
parameters are given in Table 3.Te results are obtained using
Google Colab and with a fxed GPU whose model is the Tesla
K80 with 11GB of RAM.

As described in this work, we tried to use the same
backbone for a single or two targets. As shown in Figure 4,
the input and backbone of the network are the same in

both cases. Tis theorem helps us to generalize the pro-
posed algorithm to other modes using transfer learning.
As discussed in the Transfer learning section, it can use the
frst and hidden layers in a specifc scenario and train the
model in another scenario with fewer data. Next, it can be
applied the trained model for the single-target mode and
then tried to use transfer learning by removing the last
layer of the single-target model and replacing it with a new
layer for the two-target mode. Here, all available data for
the single-target mode is used frst to train the model. Te
last layer was removed (fve neurons) to estimate the
parameters in Figure 4 for single-target mode and
replaced with a layer with the eight neurons that were
again used to estimate the parameters in Figure 4 for two-
targets mode. Ten we take 14000 data from 58320 data
that we have for two-targets mode (about a quarter of the
total data obtained through trial and error). After
replacing the last layers of the model trained for the
single-target, we train the model with this 14000 data for
the two-targets mode.

Te training results, in this case, are given in Figure 5 and
Table 3. As you can see, with this technique, we could
generalize the model trained for the single-target mode to
the other mode with fewer data. We selected model pa-
rameters such as the learning rate of the loss function, etc.,
like the previously selected mode, and training has been
done for 100 epochs.

Te signal can also be added with noise to make it closer
to reality. To measure the performance of the model in the
presence of noise, we added an Additive White Gaussian
Noise (AWGN) with diferent SNRs. Figure 6 shows the
accuracy and loss value for the test dataset for single and
two-target modes. A comparison of the results of this study
with previous work is shown in Table 4.
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Table 2: Accuracy and loss results for diferent scenarios on evaluation and testing datasets.

Single-target Two-targets Transfer learning mode
Accuracy on validation dataset 99% 98% 97%
Accuracy on test dataset 99% 99% 96%
Loss on validation dataset 0.052 0.065 0.081
Loss on test dataset 0.055 0.063 0.079

Table 1: A description of the dataset parameters and their values.

Single-target Two-target
Length Step N.O. Selected state Length Step N.O. Selected state

Target permittivity 1 [5 to 85) 15 6 [5 to 85) 15 6
Target permittivity 2 — — — [5 to 85) 15 6
Wall permittivity [3 to 9) 1 6 [3 to 9) 1 6
Wall thickness (cm) [10 to 20) 1 10 [10 to 19) 1 9
Target 1: X_center1 [5 to 85) 10 9 [5 to 85) 20

30Target 1: Y_center1 [50 to 100) 10 5 [50 to 100) 20
Target 2: X_center2 — — — [X_center1 + 10 to 90) 20
Target 2: Y_center2 — — — [Y_center1 + 10 to 100) 20

Total datasets� 16,200 Total datasets� 58,320
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Figure 3: Loss diagrams in single-target and two-target locating. (a) Single-target loss. (b) Two-target loss.
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Table 3: Information of training time, inference time of one input, model size, and number of network parameters for both single and two
targets.

Single target Two targets
Training time 8.1min 29min
Inference time 0.0017 sec 0.0018 sec
Model size 2.6MB 2.7MB
Number of network parameters 220115 220718

Backbone

Input layer
Shape (285, None)

Head
Shape (5, None)

Head
Shape (8, None)

D
ro

po
ut

 

Shape 
(200, None)

Shape 
(200, None)

Shape 
(200, None)

D
ro

po
ut

 

D
ro

po
ut

 

D
ee

p 
le

ar
ni

ng
 m

od
el

0.04

0.02

0.00

-0.02

-0.04
0 20 40 60 80

Y_position

0 20 40 60 80
Y_position

0 20 40 60 80
Y_position

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

0.02

0.01

0.00

-0.01

-0.02

0.125

0.100

0.075

0.050

0.025

0.000

-0.025

-0.050

-0.075

Single target

Ez

Hx

Hy

Two targets

Xtarget1

Xtarget2

Xtarget1

Ytarget1

Ytarget2

Ytarget1

εwall

εwall

εtarget

εtarget2

εtarget1

dwall

dwall

Figure 4: Overview of the deep neural network architecture presented. Te network inputs are Ez, Hx, Hy felds and estimate the output
according to one or two objectives or specifed parameters for us.

0.5

0.4

0.3

0.2

0.1

0 20 40 60 80 100
Epochs

Lo
ss

train loss
validation loss

Figure 5: Training and validation loss for two-target using transfer learning.

International Journal of Antennas and Propagation 7



4. Conclusions and Discussion

Estimating wall and object parameters has many benefts.
In TWRI, it is challenging to obtain a clear image of the wall
because of the ambiguity in its characteristics. Due to the
proximity of the electromagnetic properties of the objects,
such as their permittivity, there are always challenges in
estimating objects and targets behind the wall. Since most
furniture in a room has a permittivity of 5 to 15, but the
human body has a permittivity that ranges from 80 to 90, it
is usually difcult for radars to distinguish between these
targets. Occasionally, they are separated by radar cross-
section (RCS) [32]. Te presented model addresses these
challenges and will permit separating these targets with
their permittivity and also simultaneously estimating wall
parameters. Meanwhile, the presented deep learning model

is very small and can perform estimation in real-time with
high speed, which makes it a good choice for TWRI
applications.

Tis paper presents a model for simultaneously esti-
mating the target and wall parameters using a deep neural
network. Target parameters include the location and per-
mittivity of the targets in two dimensions, as well as the
thickness and permittivity of the wall. Two modes were
considered, one with a single-target and one with two-
targets, which required two parameters for the wall speci-
fcation and three for each target. In this work, the dataset
was generated by varying the parameters involved in the
problem. Ten, a deep learning model was presented that
allows the parameters to be estimated for various targets by
simply changing the model’s end layer. By incorporating the
parameters in the received signal into the receiver, the
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Figure 6: Comparison of accuracy and loss on test datasets for all single-target, two-target mode for diferent SNRs. (a) Loss diagrams. (b)
Accuracy diagrams.

Table 4: A comparison of the results of this study with previous work.

Ref
Estimated parameters

Algorithm name Metrics
Wall Object

[20] — Wave number (k) CNN MAE� 6

[28] dw, εr — SVM AEdw
� 0.005

AEεr
� 0.1

[29] dw, εr, σw — LS-SVM
SVM

AEdw
� 0.0002

AEεr
� 0.05

AEsigma � 0.0005

[30] — Xdir, Ydir

KEML
SVM

LS-SVM

RMSEXdir
� 8.297

RMSEYdir
� 2.22

Tis work dw, εr Xdir, Ydir, εr Deep neural network

MSLESingleObject � 0.052
MSLETwoObjects � 0.065

AccuracySingleObject � 99%
AccuracyTwoObjects � 98%
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locating accuracy was improved to 99% while simulta-
neously estimating parameters such as wall thickness and
target and wall permittivity.
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