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In this paper, we investigate the problem of direction of arrival (DOA) and polarization estimation for non-Gaussian signal in
polarization-sensitive augmented coprime array. Instead of the second-order cumulant statistics, the fourth-order cumulant
statistics of the received signals are used for parameter estimation because they can detect more information of the non-Gaussian
signal. First, polarization-sensitive augmented coprime array is designed, where each sensor element is equipped with a pair of
orthogonal electric dipoles. Furthermore, a low-complexity reduced-dimensional Capon algorithm which uses the fourth-order
cumulant of the received array signal is proposed for DOA and polarization estimation. Only one-dimensional peak search is
required by reconstructing peak search function.*eoretical analysis has proven the effectiveness of the algorithm, and simulation
results demonstrate that the proposed fourth-order cumulant reduced-dimensional Capon algorithm outperforms the
other algorithms.

1. Introduction

*e research on directional of arrival (DOA), as a funda-
mental project in array signal processing, has attracted great
attention from relevant scholars all around the world [1, 2].
In recent years, it is proved to be feasible in many fields, such
as sonar, radar, and communication system. With the
proposal and improvement of related algorithms for dif-
ferent scenarios, the estimate accuracy of DOA is gradually
improved, the complexity is also gradually reduced, and
more sources could be detected [3–7]. However, existing
DOA estimation techniques are usually based on scalar
sensor array structures with equal element spacing not
greater than half-of-wavelength, which is also called uniform
linear array [8]. *is array structure can obtain unambig-
uous DOA estimates while suffering from heavy mutual

coupling effects and low system resolution [9]. Simulta-
neously, only relying on DOA information received by scalar
sensor array, it is hard to distinguish different signals im-
pinging on the array from similar directions of arrival.
Meanwhile, polarization-sensitive array (PSA) [10] is pro-
posed to obtain another two-dimensional information
combined with DOA information, which can distinguish
different signals in higher dimensions, especially signals with
similar incident angles. Many kinds of polarization-sensitive
sensors have been designed for receiving different electro-
magnetic vector signals, like triad [11], cocentered orthog-
onal loop and dipole (COLD) [12], and crossed dipoles [13].
Relative algorithms are also proposed for measuring joint
DOA and polarization estimates [14–16].

In addition, coprime array (CA) [17, 18] is proposed by
extending the array aperture and reducing mutual coupling
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effect sparse array, in order to improve the array perfor-
mance. It solves the problem of compact array structure in
uniform linear array, whose phase ambiguity can be elim-
inated by vectorizing the covariance matrix of the received
signal to construct a virtual array. Based on CA, some high-
performance DOA estimation algorithms have been pro-
posed in the field of PSA [19, 20]. In [19], the CA is split up
into two uniform linear arrays, and a minimum distance
parallel factor algorithm is proposed to obtain an accurate
estimate, though the advantage of high degrees of freedom
(DOF) in CA is not exploited. In order to take full advantage
of the large virtual aperture of the CA, a coarray interpo-
lation method is proposed in [20]. However, it suffers from
high computational complexity when solving the large
stacked recovered covariance matrix.

Augmented CA (ACA) [21], as an improved array, is
equipped with more virtual elements than other CAs after
vectorization and a closed-form formula in its virtual array’s
continuous part can be derived, which is more suitable for
covariance matrix vectorization. Furthermore, compared
with the covariance matrix which only uses second-order
statistics of the received signals, fourth-order cumulants can
demonstrate more information of non-Gaussian signals
[22]. Besides, by constructing the fourth-order cumulants of
the received signals, the array aperture of the equivalent
virtual array is significantly extended [23], while the noise is
suppressed in the fourth-order cumulant due to its Gaussian
property [24]. As a result, fourth-order cumulant and its
corresponding algorithms have shown great advantages in
parameter estimation. However, the CA research on PSA
and the corresponding algorithms has just begun, and more
and more updated array structure designs and high-preci-
sion estimation algorithms are required in this field.

In this paper, we introduce the augmented CA to po-
larization-sensitive arrays in electromagnetic environment
and design a kind of new sparse array called polarization-
sensitive ACA (PSACA). Each sensor element is equipped
with a pair of orthogonal dipoles, which are orthogonal to
each other while the array element location is the same as
ACA. On the other hand, a fourth-order cumulant reduced-
dimensional Capon (FOC-RD-Capon) algorithm is pro-
posed for non-Gaussian signals. First, the fourth-order
cumulant is constructed by received signals, replacing the
covariancematrix in traditional Capon algorithm, which can
obtain a large amount of consecutive virtual elements.
Benefited from the fourth-order cumulant, DOF are in-
creased and virtual array aperture is extended in contrast to
the virtual array by vectorization of covariance matrix.
Second, considering the high calculation burden of three-
dimensional spectral peak search for DOA and polarization
estimates, a reduced-dimensional Capon algorithm is pro-
posed, which only requires one-dimensional spectral peak
search. *e accuracy of the algorithm can be improved by
shortening the search interval. *e proposed algorithm is
proved to have much lower complexity than traditional
Capon algorithm. Numerous simulations illustrate the ef-
fectiveness of the ACA in polarization-sensitive scenarios
and the proposed FOC-RD-Capon algorithm.

To summarize, the contributions of this paper are as
follows:

(1) We design the ACA in polarization-sensitive sce-
nario, where each sensor element is a pair of or-
thogonal dipoles to receive electric field strength
vector. Compared with traditional CA, ACA can
achieve higher DOF.

(2) We use the fourth-order cumulant signal instead of
second-order cumulant signal for non-Gaussian
signal, which can demonstrate more information to
obtain high estimation performance. Moreover, the
equivalent virtual array for the fourth-order
cumulant signal has more consecutive elements.

(3) We propose a low-complexity reduced-dimensional
algorithm for polarization-sensitive augmented CA,
avoiding three-dimensional peak search. Meanwhile,
the proposed algorithm enjoys high estimation ac-
curacy with multi-parameter autopairing.

*e rest of the paper is arranged as follows.
Section 2 demonstrates the data model of the signal

impinging on the PSA. Section 3 introduces the array
structure of PSACA and its virtual array element model after
employing the fourth-order cumulant. Section 4 elaborates
the proposed reduced-dimensional Capon algorithm. Sec-
tion 5 depicts the simulation results, and Section 6 concludes
the paper.

Notations. We use lower-case (upper-case) bold character to
imply vector (matrix). (·)∗, (·)T, and (·)H denote the con-
jugate, transpose, and the conjugate transpose of a matrix or
vector, respectively. ⊗ denotes the Kronecker product, and
⊙ represents Khatri–Rao product. (·)− 1 represents matrix
inverse. angle(·) means phase operator. diag ·{ } means di-
agonalization operator. 〈a, b〉 means the integer set from a

to b, and E[·] means the mathematical expectation of a
vector or matrix.

2. Data Model

Consider that K far-field non-Gaussian narrowband signals
impinge on the linear array with M sensors where each
sensor element consists of a pair of orthogonal electric di-
poles to ensure vector receiving capability. *e two dipoles
with different polarization modes in an element are sup-
posed to be distributed in the direction along with x-axis and
y-axis, respectively, which are able to receive the electric
component in the corresponding direction. *e elevation
angles of the signals are θk ∈ [−π/2, π/2], k ∈ 〈1, K〉. *e
corresponding polarization information in the signal can be
modeled as two polarization parameters: polarization aux-
iliary angle ck ∈ [0, π/2], k ∈ 〈1, K〉 and polarization phase
difference ηk ∈ [−π, π), k ∈ 〈1, K〉. As a result, the single
snapshot data model of the received signal on the array is
written as [16]

y(t) � a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ sK b(t) + n(t), (1)
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where ak � [ej2πd1sin θk/λ, ej2πd2sin θk/λ, . . . , ej2πdMsin θk/λ] de-
notes the directional vector and dm, m ∈ 〈1, M〉 is the lo-
cation of m − th sensor element. b(t) ∈ CK×1 represents the
non-Gaussian signal vector while n(t) ∈ CM×1 is the white
Gaussian noise vector. sk ∈ C2×1 symbolizes the polariza-
tion-space steering vector of k − th signal for orthogonal
electric dipoles, which can be represented as [13]

sk � Φ θk( ω ck, ηk( 

�
0 −1

cos θk 0
 

sin cke
jηk

cos ck

⎡⎣ ⎤⎦,
(2)

where Φ(θk) denotes the coordinate matrix only containing
DOA information, which is determined by the polarization
mode of the electric dipoles, and ω(ck, ηk) is the polarization
vector. Assume that J snapshots are received during a period
of time for parameter estimation, and the overall received
signal is modeled as [25]

Y � [A⊙ S]B + N, (3)

where A � [a1, a2, . . . , aK], S � [s1, s2, . . . , sK] are the di-
rectional matrix and electric matrix, respectively.
B � [b1, b2, . . . , bJ] ∈ CK×J denotes the non-Gaussian signal
vector while N � [n1,n2, . . . ,nJ] ∈ C2M×J symbolizes the
additive Gaussian noise matrix.

Note that the number of the signals to be estimated in
this paper is known. If the number is uncertain, methods
such as matrix decomposition [26], information theory [27],
or Geist’s circle [28] can be used for estimation.

3. ACA and Virtual Elements

Based on the array model in [21], Figure 1 depicts the
array structure of the ACA, which is composed of two
subarrays. *e two subarrays are both uniform linear
arrays. Subarray 1, which is marked with white rectangles,
is equipped with N array elements with adjacent interval
Mλ/2. Meanwhile, subarray 2 is marked with black cir-
cles, whose total array elements are 2M with adjacent
interval Nλ/2. *e total element number of the ACA is
2M + N − 1 because the first element of subarray 1 and
subarray 2 is located at the same place. ACA is considered
as the improvement of traditional CA because it keeps
subarray 1 unchangeable while extending the array ap-
erture of subarray 2 twice as that of CA by equipping 2M

sensor elements.
It can be obviously concluded from Figure 1 that the

sensor element location of each subarray is that

S1 � 〈0, N − 1〉Mλ/2,

S2 � 〈0, 2M − 1〉Nλ/2,
 (4)

where 〈a, b〉 denotes the integers from a to b. *erefore, the
overall position set of the sensor elements is described as
SACA � S1 ∪S2.

According to the data model for PSA presented in
Section 2, the fourth-order cumulant matrix of received
signal Y with J snapshots can be expressed as [24]

C4 � E Y⊗Y∗(  Y⊗Y∗( 
H

  − E Y⊗Y∗(  E Y⊗Y∗( 
H

 

− E YYH
 ⊗E YYH

 
∗

 .

(5)

Assume that the signals are independent with each other,
and fourth-order cumulant matrix can be considered as the
covariance matrix of virtual received signal corresponding to
an equivalent virtual array whose element location set is the
difference co-array of the physical sensor elements, which
can be defined as

SACA 4 � di − dj|di, dj ∈ SACA . (6)

Figure 2 demonstrates the virtual array structure after
fourth-order cumulant extension for ACA and CA with the
same physical sensor elements. *ere are both 12 physical
sensor elements with M � 4, N � 5 in ACA and
M � 7, N � 6 in CA. As depicted in the figure, CA has 25
consecutive virtual elements while ACA has 47 consecutive
virtual elements, which is obviously more than that of CA.
Benefited from the merit, ACA can achieve high DOF to
detect more signals [29].

4. FOC-RD-Capon Algorithm

4.1. Algorithm Process Introduction. Capon algorithm can
obtain multi-parameter estimates simultaneously by amulti-
dimensional peak search, which has been widely used in
DOA estimation. However, the direct introduction of Capon
algorithm from scalar sensor array to polarization-sensitive
array will result in the dramatic increase in search dimen-
sion, which causes the inevitable high-dimensional search
process. To reduce the calculation burden of the Capon
algorithm in polarization-sensitive arrays while improving
the estimation performance for non-Gaussian signals, a
FOC-RD-Capon algorithm is proposed in this section. *e
introduction will be presented as follows.

Traditional Capon search function for DOA and po-
larization estimation is expressed as [30]

FCapon a1, a2, · · · , aQ  �
1

MHR− 1M
, (7)

where R is the covariance matrix of the received signal and
M denotes the array manifold for Q parameters. In PSA
scenarios, the array manifold includes three parameters,
DOA θ, polarization auxiliary angle c, and polarization
phase difference η, which means three-dimensional peak
search is required, but it is unrealistic in engineering ap-
plication. *is part introduces a kind of parameter elimi-
nation method for polarization dimensional reduction.

Replacing the covariance matrix by the fourth-order
cumulant matrix C4, define M � ac(θ)⊗ s(θ, c, η), where
ac(θ) is the directional vector for virtual array structure
which is the difference coarray of physical array. *en, the
peak search function for PSA fourth-order cumulant sce-
nario is given by
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FCapon(θ, c, η) �
1

M(θ, c, η)
HC−1

4 M(θ, c, η)
. (8)

Note that s � Φ(θ)ω(c, η) and a characteristic of Kro-
necker product is defined as

(AB)⊗ (C D) � (A⊗C)(B⊗D) [25]. *e array manifold
can be reconstructed as M � [a(θ) ⊗Φ(θ)]ω(c, η); there-
fore, (8) is written as

FCapon(θ, c, η) �
1

ω(c, η)
H ac(θ)⊗Φ(θ) 

HC−1
4 ac(θ) ⊗Φ(θ) ω(c, η)

. (9)

Classifying the terms in the function according to the
parameters, the terms only about DOA is expressed as
U(θ) � [ac(θ) ⊗Φ(θ)]HC−1

4 [ac(θ) ⊗Φ(θ)]. Besides, there is
an identity ω(c, η)Hω(c, η) � 1 that holds. *en, the peak
search function has been transformed into the minimum
finding under constraints that

Fm(σ,ω) � ωHUω + σ 1 − ωHω . (10)

In order to find the minimum value of (10), we calculate
the partial derivative of Fm(σ,ω) about ωH that

zFm(σ,ω)

zωH
� Uω − σω. (11)

Let (11) equal 0 to calculate the final estimates that
Uω � σω. Instead of solving the equations, we assume it as the
form of eigenvalue and eigenvector pairs, where σ is the
eigenvalue and ω is the corresponding eigenvector. Based on
the analysis above, the peak search function (9) is expressed as

FCapon(σ,ω) �
1

ωHUω

�
1

ωHσω
.

(12)

Because σ is a constant, (12) is actually the search about
the eigenvalue [32].

FCapon(σ) �
1

σωHω

�
1

σU,min
.

(13)

Every peak calculation can be considered as finding the
minimum eigenvalue about U which is only constructed by
DOA information. Polarization information is eliminated in
Capon search function to tremendously reduce the com-
putational complexity.

1 2 3 M...

2

3

N...1

2 M...

Nλ/2

Mλ/2

Subarray 1

Subarray 2

Figure 1: ACA structure.
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Figure 2: *e virtual array structure after fourth-order cumulant extension for ACA and CA.
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After finding K peaks about the DOA estimates
θk, k ∈ 〈1, K〉, the corresponding U is obtained as

U θk  � ac
θk ⊗Φ θk  

H
C−1
4 ac

θk ⊗Φ θk  . (14)

Polarization matrix ωk is measured by the eigen de-
composition of U(θk). Note that U(θk) ∈ C2×2 has 2 ei-
genvalue and eigenvector pairs, and the eigenvector whose
eigenvalue is the smallest is the estimate ωk. Ultimately,
polarization estimates are obtained as

ck � arc tan abs ω[1]
k /ω[2]

k  ,

ηk � angle ω[1]
k /ω[2]

k ,

⎧⎪⎨

⎪⎩
(15)

where k ∈ 〈1, K〉 and ω[i] denotes the i − th element in
vector ω.

*e main steps of the proposed FOC-RD-Capon algo-
rithm are summarized as follows:

Step 1. Compute the fourth-order cumulant matrix of
received signal C4 according to (5).
Step 2. Obtain the peak search function with (8) and
reconstruct it according to the characteristic of Kro-
necker product (9).
Step 3. Establish the search dictionary θi ∈ [−π/2, π/2]

to calculate U(θi) with each dictionary element θi.
Step 4. Perform eigen decomposition of U(θi) and find
its smallest eigenvalue σU,min.
Step 5. Find K peaks in (13) to estimate θk, k ∈ 〈1, K〉.
Step 6. Calculate the eigenvector ωk corresponding to
the smallest eigenvalue in U(θi), k ∈ 〈1, K〉.

4.2. Discussion. *e calculation burden of the FOC-RD-
Capon algorithm mainly results from the following steps.
Assume that there are P sensor elements in the ACA.
Computing the fourth-order cumulant of the received signal
requires O[J(2P)4]. *e inverse of fourth-order cumulant
matrix needs the complexity of O[(2P)6]. Every peak search
consists of O(64P2L) for L-times peak search. *erefore, it
can be summed up that the proposed FOC-RD-Capon al-
gorithm is composed of the complexity of
O(64P2L + 16JP4 + 64P6).

Meanwhile, the traditional Capon algorithm without
dimensional reduction requires three-dimensional peak
search. Computing the fourth-order cumulant and inverse
of it requires totally O[J(2P)4 + (2P)6], which is the same as
the proposed algorithm. However, the three-dimensional
peak search needs the complexity of O(64P2L3) for L-times
search in each dimension. To sum up, the approximate
calculation burden of the traditional Capon algorithm is
O(64P2L3 + 16JP4 + 64P6), which is obviously higher than
that of the proposed algorithm. Figure 3 shows the com-
parison of the complexity of the two algorithms with the
number of sensor elements.

In addition, ACA is employed for the proposed algo-
rithm due to the following merits:

(1) ACA is a kind of sparse array, where array aperture is
extended andmutual coupling effect is eliminated. In
practice, the coprime numbers M and N can be
chosen according to the requirement to satisfy dif-
ferent scenarios. Benefited from the sparse structure,
the DOA and polarization estimation results are
tremendously improved.

(2) *e proposed algorithm uses the fourth-order
cumulant statistic instead of the second-order
cumulant, where the received signal can be regarded
as the signal received by the equivalent virtual array.
*e virtual array is the difference coarray of physical
array. Based on the conclusion and the analysis in
Section 3, ACA can achieve more consecutive ele-
ments than CA, which means being able to detect
more signals.

Cramér–Rao bound (CRB) is often used as the standard
error which can be calculated. We derive the CRB formula to
evaluate the RMSE performance of the algorithms on the
designed ACA. Define As � A⊙ S, Π⊥As

� I2P −As(AH
s As)

− 1

AH
s , and P � 

J
j�1 bjb

H
j /J, and the formula of CRB for

polarization-sensitive ACA is demonstrated as [32]

CRB �
κ2

2J
Re DHΠ⊥As

D ⊕PT
  

− 1
, (16)

where D � [d1, . . . ,dK, e1, . . . , eK, f1, . . . , fK], dk � z(ak

⊗ sk)/zθk, ek � z(ak ⊗ sk)/zck � ak ⊗Γksk, Γk � diag
sin ck, cos ck , fk � z(ak ⊗ sk)/zηk � ak ⊗Ξksk, Ξk

� diag 0, jηk . κ2 is the power of noise.

5. Simulation Results

Numerous simulations are performed to verify the effec-
tiveness of the designed ACA and proposed FOC-RD-Capon
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Figure 3: *e complexity comparison between the proposed al-
gorithm and the traditional Capon algorithm.
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algorithm, where root mean square error (RMSE) is
employed as an evaluation standard to judge the perfor-
mance. RMSE is defined as

RMSEa �
1
K



K

k�1

���������������

1
L



L

l�1
ak,l − ak 

2
 




, (17)

which is the RMSE of parameter a. L denotes the times of
independent Monte Carlo simulations. ak is the actual pa-
rameter, and ak,l is its estimate in l − th simulation. *e two
sinusoidal waveform signals are impinging on the ACA, and
the DOA and polarization parameters are set as
(θ1, c1, η1) � (20∘, 9∘, 13∘), (θ2, c2, η2) � (40∘, 29∘, 33∘). *e
array structure of ACA is M � 4, N � 5, and the total
number of physical array elements is 12, which means
subarray 1 is equipped with 5 sensor elements and subarray 2
has 8 sensor elements.

5.1. Scatter Plot of the Proposed Algorithm. Figures 4 and 5
depict the scatter plots of DOA and polarization estimates,
where 100 independent Monte Carlo simulations are per-
formed. Simulation environments are set as follows: the
signal-to-noise ratio (SNR) is 15 dB and the number of
snapshots J is 300. As is exhibited in the figures, DOA
estimates and two polarization estimates are accurately
measured and different parameters are correctly paired. In
addition, it can be noticed that the variances of polarization
estimates are higher than DOA estimates.

5.2. RMSE Performance of Different Algorithms versus SNR.
Figures 6–8 demonstrate the RMSE performance of the
proposed FOC-RD-Capon algorithm versus SNR, where
CRB curve is given as the standard. Snapshots are fixed as
200 while SNR varies from −10 dB to 20 dB. Compared with
the propagator method (PM) [33], estimating signal pa-
rameter via rotational invariance techniques (ESPRIT) [34],
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and parallel factor (PARAFAC) [35] algorithms, the pro-
posed algorithm has the lowest RMSE, and its curve is closest
to the CRB. Meanwhile, the RMSE of all the four algorithms
decreases as the SNR improves, which indicates its influence
to the estimates.

5.3. RMSE Performance of Different Algorithms versus
Snapshots. Figures 9–11 show the RMSE performance
versus snapshots. Similar to Section 5.2, PM, ESPRIT, and
PARAFAC algorithms are used for comparison and CRB
curve is depicted as the standard. With the increase of
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Figure 6: DOA estimation of different algorithms versus SNR.
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Figure 7: c estimation of different algorithms versus SNR.
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snapshots, the estimation accuracy of all the algorithms is
improved. Meanwhile, the proposed FOC-RD-Capon al-
gorithm has the least RMSE whatever snapshots are, which
shows its great performance.

6. Conclusion

In this paper, we make use of the inherent information in
fourth-order cumulant of non-Gaussian signals, proposing a
FOC-RD-Capon algorithm for PSACA. Compared with the
scalar sensor arrays, each sensor element of PSASA is
equipped with a pair of orthogonal electric dipoles to receive
vector signals, which is able to obtain joint DOA and po-
larization estimates. *e proposed algorithm reduces the

search dimension of Capon method from three dimensions
to one dimension, tremendously reducing the calculation
burden. According to the analysis and the numerous sim-
ulations, the effectiveness of the proposed FOC-RD-Capon
algorithm is confirmed.
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[35] T. D. Pham and J. Möcks, “Beyond principal component
analysis: a trilinear decomposition model and least squares
estimation,” Psychometrika, vol. 57, no. 2, pp. 203–215, 1992.

International Journal of Antennas and Propagation 11


