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A low-pro�le planar multiple-input multiple-output (MIMO) antenna consisting of four elements with isolation improvement is
proposed for 5G mm Wave (24–40) GHz applications. Each radiating element of the MIMO antenna comprises of a microstrip-
fed tilted spade-shaped radiator with four asymmetrical slots and a partial ground plane. e antenna is optimized to resonate at
35GHz covering a wide impedance bandwidth from 23.9 to 40.1GHz. Two cross lines are then loaded between the antenna
elements to improve the isolation > − 30 dB. e MIMO structure with the decoupling lines is fabricated and tested. e
measured results are in good correlation with the simulated results. Other MIMO performance metrics such as the envelope
correlation coe�cient (ECC), channel capacity loss (CCL), diversity gain (DG), and total active re�ection coe�cient (TARC) are
examined, and the results are found to be satisfactory for the device to be used for mm-wave 5G MIMO applications. Also, the
antenna’s performance metrics such as radiation e�ciency, gain, and radiation patterns over the operating band are presented.

1. Introduction

e evolution of the cellular technology, from analog to 5G,
has been a long road, requiring an out-of-box solution for
wireless ultrahigh-speed data transmission. e 5G story will
be one of momentum, evolution, and transformation, leading
to an even more connected world, extending beyond con-
sumers to industrial applications and defence-oriented niche
applications to an enabling technology used in mobile hand-
held devices. 5G is being deployed worldwide using sub-
6GHz and mmWave frequency ranges. e �fth-generation
will be a mobile network and, unlike its predecessors, in-
cluding 4G, 3G, and 2G; it aims to be an “everything net-
work,” that is, available “everywhere” for “everyone” able to
facilitate high-speed data rates with minimal power con-
sumption [1–5]. e International Telecommunication
Union (ITU) has announced quite a few 5G bands among
several countries for cellular communication which varies

from 24.25GHz to 43.5GHz as discussed in [6]. us, RF
components design pertaining to millimetre wave (mm
Wave) and submillimetre wave bands which have gained lot
of attention among researchers globally. However, certain
limitations such as signal fading and path loss attenuations
occur with single antenna elements at such high frequencies
[7, 8]. In such situations, multiple-input multiple-output
(MIMO) antenna systems are found to be a promising
technology. It increases channel capacity thus enabling high
data rates [9–11, 40–49].

Mobile service base stations �ndMIMO antenna systems
to be incorporated with ease. Several designs of MIMO
antenna systems for 5G applications have been proposed in
the literature. [12–18]. Few notable works based on di¥erent
structures are PIFA pair-based MIMO con�guration [12],
EBG-based MIMO antennas [13, 14], DRA-based antennas
[15, 16], MIMO-based slot antenna arrays for 5G exhibiting
a wide mm Wave band resonance from 22.5 to beyond
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50GHz [17], CSRR-loaded T-shaped MIMO antenna [18],
and a MTM- and SIW-inspired MIMO antenna with AMC
[19]. However, many of these antennas suffer limited
bandwidth and complex geometry. +e design of wideband
and multiband 5G mmWave MIMO antennas has attracted
many researchers in recent times. A defected ground
structure (DGS) based 4 ports MIMO antenna [20] shows
resonance from 25.1 to 37.5GHz. A wideband 8-port MIMO
antenna covering a wide band from 27.4 to 28.23GHz is
discussed in [21]. A SIW cavity-backed antenna [22] is
proposed to cover mm Wave bands ranging from 27.55 to
62.32GHz. Few other antennas proposed in [23, 24] dis-
cussed MIMO antenna systems resonating at both sub-
6GHz frequency range like 2–5GHz and also in the higher
frequency mm Wave range like 23–29GHz [25].

Nevertheless, the design of MIMO antenna systems for
user interface components faces several encounters, such as
the requirement of high bandwidth, high gain, and com-
pactness of the structure. Apart from these, the main
challenge lies in the design of closely packed antennas with
lowmutual coupling and high isolation, more the number of
independent antennas, the higher the data rate transmission.
+e size of the mobile builds a limitation on the distance
between the antenna elements. +us, the arrangement of
MIMO antennas with high isolation within the available
space of a compact mobile phone or laptop is necessary [26].
Many isolation enhancement techniques have been dis-
cussed in the literature. Orthogonal polarization [27],
metamaterial inspired split-ring resonators [28, 29],
decoupling elements [30], defected ground structures and
layered substrate configuration [31, 32], neutralization lines
[33, 34], and self-isolated antenna [35–38] are few among
them. To this end, the design of a four-element MIMO
antenna with decoupling lines is proposed in this paper. +e
antenna is optimized to resonate at 35GHz with a wide
impedance bandwidth 23.9 to 40.1GHz (16.2GHz). +e
isolation between the antennas is improved by using a
simple decoupling structure between them.+e design of the
single antenna element and its parametric analysis of the
return loss characteristics are discussed in Sections 2 and 3,
respectively. +e orthogonal arrangement of the four ele-
ments MIMO system and the design of the decoupling
structure are discussed in Sections 4 and 5, respectively. +e
radiation pattern and the MIMO parameter discussion are
given under Sections 6 and 7, respectively.

2. Single-Element Antenna Design and Its
Working Principle

+e proposed single-element radiator consists of a tilted
spade-shaped patch printed on a 5.5 × 4.4mm2 Rogers
RO4003 substrate, whose dielectric constant εr is 3.55, loss
tangent is 0.0027, and height is 0.787mm. Figure 1 shows the
geometrical layout of the proposed antenna, and Figure 2
shows the evolution process. In configuration A, a spade-
shaped patch element whose tip is slightly tilted is chosen as
themain radiator.+is element is fed by 1.1mm × 1.375mm,
50Ω microstrip feed line, and backed by a partial ground
plane. Upon excitation, it yields a resonance around 42GHz,

with an impedance bandwidth from 36.28GHz to 43.3GHz.
+is response is mainly contributed by the feed length and
the circumferential length of the spade radiator. As observed
in Figure 3(a), the simulated surface current distribution
shows a dense current flow along the transition section of
feed line to themain radiator. An out-of-phase current flow is
observed at a distance of around 1mm from the feed location
which corresponds to λg/4 at the resonant frequency. Also, in
Figure 3(b), the simulated electric field distribution is shown,
in which a “V”-shaped sparse vector field is located. +is led
to the evolution of configuration B, where two “V” shaped
slots with width “g” inclined at an angle of 5° to the right and
32° to the left from the centre of the patch are introduced.+e
slots tend to improve the impedance matching at the op-
erating frequency without much altering the resonance. +e
width of the slots is tuned to achieve the optimum impedance
matching condition. Later, a rectangular patch of dimensions
1.54 × 1.925mm2 is added at a distance of Lg from the feed
point, which contributes for more concentrated field dis-
tribution along the open ends of the slot in the patch, rather
than at the centre. Open end of the slot reduces its Q factor
and leads to a wider bandwidth [37–39]. +is in turn leads to
the shift in the resonant frequency to around 34GHz from
42GHz. Finally, in the proposed design, the feed width is
altered by introducing a step feed at a distance of fL2 from the
feed point, to improve the impedance matching. +us, the
proposed single element exhibits a resonance at 35GHz
(23.9–37.3) GHz. +e simulated return loss characteristics of
all the configurations involved in the evolution of the final
proposed element are shown in Figure 4. +e parameters of
the antenna are fine-tuned to obtain the expected results and
are listed in Table 1.

3. Parametric Analysis on the Single Element

+e simulations are performed in the commercially available
EM tool Ansys HFSS 2018.1. +ere are several parameters
that influence the operating frequency. Figure 5 shows the
variation of parameters “g” (slot width), “fw2” (step feed
width), “L” (distance from feed point to the slot) vs. fre-
quency. Parameter g’ is varied from 0.2mm to 0.5mm in
steps of 0.1mm, fw2 is varied from 1.70mm to 1.79mm in
steps of 0.3mm, and L is varied from 3.19mm to 3.25mm in
steps of 0.2mm. It is inferred that increasing values of g and
fw2 shift the resonant frequency from lower to higher values,
whereas increasing L value retains the resonant frequency at
35GHz but offers reduced impedance matching.

4. Four Port Orthogonal MIMO Configuration

A 4 port orthogonal MIMO arrangement is shown in Fig-
ure 6, and it occupies an area of 13.75 × 13.75 × 0.787mm3.
+e antennas are placed at a distance 4mm (λ/2) in x and y
directions. +e distance between the antenna elements plays
a significant role in determining the mutual coupling. For
any shorter distances than 4mm, electromagnetic energy
from the excited patch gets coupled to the nearby radiating
element so mode separation happens in the lower frequency
region as shown in Figure 7. +e figure shows the simulated
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Figure 1: (a) Geometrical layout of the proposed single element. (b) Outline of the titled patch. (c) Perspective view of the proposed single
element.
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Figure 2: Continued.
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return loss characteristics of the proposed MIMO config-
uration for various distances from 3.5mm to 5.0mm in steps
of 0.5mm. It is observed that for a distance of 4.0mm, the
resonance of the antenna is well preserved as that of the
single element, and for any of the incrementing distances,
the impedance match is lost. +us, an optimum distance of
4.0mm along x and y directions is chosen. Figure 8 shows
the simulated S parameters of the proposed MIMO con-
figuration with Port 1 ON and all other ports OFF. +e S11
(dB) is observed to show resonance from 24GHz to
39.6GHz. A maximum isolation of around − 25 dB is
achieved at 35GHz from port 2, and a minimum isolation of
around − 28 dB is achieved from port 3 at the resonating
frequency. Figure 9 shows the simulated surface current
distribution on the proposedMIMO configuration with each

ports ON and OFF individually. When each port is excited,
we could visualize the current distribution only along that
particular patch and moderate coupling to the adjacent
antenna elements. Figure 10 shows the simulated return loss
characteristics along all the 4 ports.+e resonance at 35GHz
remains unaltered.

5. MIMO Structure with Decoupling Lines

To further improve the isolation between the antennas, a
simple decoupling element comprising of two cross lines is
used. +e cross lines run between the antenna elements
adjacent to each other as shown in Figure 11. +e width of
the decoupling line is optimized to be 2mm. An increase or
decrease in this parameter greatly affects the resonant

(d)

Figure 2: Evolution of the proposed antenna. (a) Config A, (b) config B, (c) config C, (d) config D.
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Figure 3: Simulated (a) electric field distribution and (b) surface current distribution of the proposed single element at 42GHz.
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behaviour which is shown in Figure 12. e width of the line
is varied from 1mm to 4mm in steps of 1mm, and the
optimum is chosen as 2mm. e decoupling line has im-
proved the isolation by reducing the surface wave propa-
gation inside the substrate and space wave propagation

related to the reactive coupling of nearby radiating elements.
ese lines excite orthogonal modes in the adjacent ports
leading to low mutual coupling. is can be well understood
by the surface current distribution of the MIMO con�gu-
ration along with the decoupling structure, which is shown
in Figure 13. It shows the surface current distribution under
4 conditions where each port is made ON, when the other
remaining ports are made OFF. e current is dense only
along the radiating element where excitation is applied, and
all other radiating elements have very sparse current dis-
tribution, which validates the mutual coupling reduction.
e transmission parameters between ports 1 and 2, 1 and 3,
1 and 4 with and without the decoupling line are shown in
Figure 14 for comparison. Mutual coupling between the
antennas has reduced from around − 20 dB to − 30 dB over
the entire operating band. A prototype of the �nal optimized
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Figure 4: Simulated return loss parameters of the several con-
�gurations given in Figure 2.

Table 1: Dimensions of the proposed single element.

P1 P2 P3 P4 P5 S1 S2 S3
1.03 3.57 3.02 2.83 0.91 2.51 1.36 1.16
S4 L W fL1 fL2 fW1 fW2 Lg
0.62 3.19 1.76 1.1 0.55 1.21 1.76 1.65
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Figure 5: Variation of parameters “g”, fw2′, and L vs. frequency.
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Figure 9: Simulated surface current distribution on the MIMO con�guration. (a) PORT 1 ON, others OFF. (b) PORT 2 ON, others OFF.
(c) PORT 3 ON, others OFF. (d) PORT 4 ON, others OFF.
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MIMO system with the decoupling lines are fabricated and
the photograph of the same is shown in Figure 15(a). e
measured S parameters are shown in Figure 15(b), from
where it is inferred that both the results fairly match with
each other, making the proposed MIMO system suitable for
5G mm-wave applications.

6. Radiation Pattern, Gain, and Efficiency

e radiation pattern of the proposed MIMO con�guration
with the decoupling line is measured using the commercial
far-�eld measurement system in an anechoic chamber. Field
pattern is measured both along XZ and YZ planes with theta
ranging from 0° to 360°. Figure 16 shows the measured co-
pol and cross-pol radiation pattern of antenna 1 and 3 at

35GHz. Since the antenna arrangements are symmetric
along the centre, a similar radiation pattern is expected from
the other two antennas (2 and 4) and so they are not shown.
It is seen from the �gure that both antennas exhibit almost
omnidirectional radiation at the operating frequency, which
is very important to make the proposed design a suitable one
for wireless applications. Figure 17 shows the measured gain
and radiation e�ciencies of antennas 1–4. It is observed that
the measured gain values are between 3 and 5 dB, and the
radiation e�ciencies are between 65 and 85% within the
entire bandwidth which is satisfactory for 5G MIMO
applications.

DG � 10
���������
1 − |ECC|2
√

. (3)
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Figure 12: Simulated return loss characteristics of the proposed MIMO system for various values of ‘D’.
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Figure 11: Proposed MIMO con�guration with the decoupling lines.
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7. MIMO Parameters

Few MIMO performance metrics such as ECC, DG, TARC,
and CCL ensure the multichannel performance of the
proposed antenna. us, these parameters are analysed
individually for the proposed MIMO antenna and given
below.

7.1. EnvelopeCorrelationCoe�cient (ECC). e ECC de�nes
how independent each antenna’s radiation patterns are. It is
calculated using the following formula:

ρij �
S∗iiSij + S

∗
jiSjj

∣∣∣∣∣
∣∣∣∣∣

1 − Sii
∣∣∣∣
∣∣∣∣2 − S2ij( ) 1 − Sji

∣∣∣∣∣
∣∣∣∣∣
2
− S2jj( )

. (1)
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Figure 13: Simulated surface current distribution on the MIMO con�guration with decoupling lines.
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Figure 16: Measured radiation patterns of antennas 1 and 3 at 35GHz.
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Figure 18 shows the calculated ECC between antennas 1
and 2, 2 and 3, 3 and 4. e overall correlation values lie
below the practical standard of 0.5.

e ECC of aMIMO antenna using the radiation pattern
is given as [49]

ρ12 �
∫2π0 ∫

π
0 XPR.Eθi.E

∗
θj.Pθ +XPR.Eφi.E

∗
φj.Pφ( )sin θ dθ dφ

����������������������������������������������������
∏k�i,j ∫

2π
0 ∫

π
0 XPR.Eθk.E

∗
θk.Pθ +XPR.Eφk.E

∗
φk.Pφ( )sin θ dθ dφ

∣∣∣∣∣
2
.

√

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

Here, XPR is the cross-polarization ratio of vertical and
horizontal polarized components. Pθ and Pφ represent the
angular power spectrum of the propagation environment,
Eθi, Eθj, Eφi, Eφj represent the far-�eld components in the θ
plane and φ plane, respectively. e ECC is calculated

between antennas 1 and 2 using the above expression and is
shown in Figure 18. e obtained ECC lies below the ex-
pected value of 0.5, because the antennas have high iso-
lation between them, as con�rmed by the S parameter
results.
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7.2. Diversity Gain (DG). e DG signi�es the signal-to-
noise ratio (SNR) improvement in the MIMO system as
compared with the single antenna. e ideal value of DG
(dB) is 10. It is calculated using the formula.

Figure 18 shows the DG (dB) calculated between antenna
elements 1 and 2, 2 and 3, 3 and 4. It is seen that the DG value
varies between 9.6 and 10 which is very close to the ideal
value as anticipated.

7.3. Total Active Re�ection Coe�cient (TARC). e TARC
de�nes the return loss of the entire MIMO array and in turn
signi�es the e¥ective bandwidth. It is calculated using the
following formula:

TARC �

������������������������������

S11 + S12e
jθ

∣∣∣∣∣
∣∣∣∣∣
2

( ) + S21 + S22e
jθ

∣∣∣∣∣
∣∣∣∣∣
2

( )( )

2

√√

.
(4)

Figure 19 shows the simulated and measured TARC of
the proposed MIMO con�guration. It is observed that the
TARC is less than 10 dB for the operating frequency range
from 22GHz to 39GHz, which validates the MIMO per-
formance to be good.

7.4. Channel Capacity Loss (CCL). e CCL de�nes the
maximum attainable limit with which the signal can be
transmitted without substantial loss. e following set of
equations is involved in calculating CCL.

CCL � − log2 det(α), (5)

where α �

α11 α12 α13 α14
α21 α22 α23 α24
α31 α32 α33 α34
α41 α42 α43 α44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and αij � 1 − (∑Mj�1 |Sij|

2).

e CCL calculated between antennas 1 and 2, 2 and 3, 3
and 4 is shown in Figure 20. e obtained CCL values are
considerably less than the standard value of 0.4 bits/s/Hz as
required for a MIMO antenna design.

8. Conclusion

A planar four-elementMIMO antenna with decoupling lines
is proposed for 5G mm Wave applications. e antenna
structure is simple and compact occupying an area of
148.8mm3 (13.75 × 13.75 × 0.787mm3), and the frequency
dependency on each parameter is emphasized in this article.
e antenna resonates at 35GHz with a − 10 dB impedance
bandwidth of 50.62% (23.9–40.1) GHz. e decoupling lines
greatly reduce the isolation between the antennas from
− 20 dBto − 30 dB. e calculated MIMO parameters such
as ECC, DG, TARC, and CCL lie within the acceptable limits
making the proposed structure suitable for wireless
applications.
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