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Aiming at the problems of poor data efectiveness, low modeling accuracy, and weak generalization in the tuning process of
microwave cavity flters, a parametric model for coaxial cavity flter using kernel canonical correlation analysis (KCCA) and
multioutput least squares support vector regression (MLSSVR) is proposed in this study. First, the low-dimensional tuning data is
mapped to the high-dimensional feature space by kernel canonical correlation analysis, and the nonlinear feature vectors are fused
by the kernel function; second, the multioutput least squares support vector regression algorithm is used for parametric modeling
to solve the problems of low accuracy and poor prediction performance; third, the support vector of the parameter model is
optimized by the diferential evolution whale algorithm (DWA) to improve the convergence and generalization ability of the
model in actual tuning. Finally, the tuning experiments of two cavity flters with diferent topologies are carried out. Te ex-
perimental results show that the proposed method has an obvious improvement in generalization performance and prediction
accuracy compared with the traditional methods.

1. Introduction

Temanufacture of coaxial cavity flters usually includes two
steps: design and tuning. Te design is mainly based on the
electromagnetic simulation software, which produces ap-
proximate theoretical errors. In addition, the diference
between processing tolerance and metal coating makes it
difcult to achieve the physical size of the microwave cavity
flter after production, and its output response cannot match
the theoretical results. Terefore, tuning has become an
indispensable link. To facilitate the tuning after processing,
the tuning screws are usually installed on the real object to
replace the resonant and coupling rods in the cavity. By
constantly changing the direction and amplitude of the
screws, the waveform of the output response can meet the
requirements of the performance indicators.

In view of the complex dynamic characteristics such as
nonlinearity and strong coupling in the tuning process of
coaxial cavity flters, how to efectively use a large number of
of-line and online data generated in the tuning process to

establish a relationship model that can accurately refect the
tuning law is the focus of many scholars at home and abroad.
At present, the relevant modeling methods mainly include
feedback neural networks, fuzzy logic, and support vector
regression algorithm. Te research on neural network
methods is concentrated on the basis of electromagnetic
simulation software, such as the model between microwave
element size and parameters [1], the tuning model between
tuning element and return loss [2], and the model between
refection characteristic phase and center frequency [3].
However, the parameters in these models fuctuate greatly
and are easily afected by the structure of microwave
components, so it is difcult to extract the return loss and
refection characteristic phases. To reduce the amount of
training data and shorten the modeling time, a high-
precision microwave flter parameter prediction model us-
ing the adaptive learning neural network is proposed in [4].
It is applied to the optimization design of microwave flters.
Although the neural network has strong nonlinear mapping
ability, it has strict requirements for data quality. For the
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cavity flter with insufcient feld tuning data, the modeling
accuracy has great limitations.

Faced with a complex tuning process, Miraftab frst
introduced engineers’ experience in fuzzy rules into the
tuning process of cavity flters [5]. Tis method uses ex-
perience and data fusion to establish the relationship model
between coupling and tuning elements and is applied in low-
order cavity flters. Te drawback of this method is that it is
difcult to apply to multiple cross-coupled cavity flters, and
the process of designing fuzzy rules is extremely complex.
Diferent from fuzzy algorithms, support vector regression
modeling is a novel small-sample learning method with
a solid theoretical foundation [6]. It has better generalization
ability than the neural network when the number of samples
is small. On the basis of previous research, multicore support
vector regression based on parameter self-adjustment is used
to model the tuning process of cavity flters [7]. However,
faced with multi-input and multioutput data from cavity
flters, the above method needs to solve the complex qua-
dratic programming problem and should consider the
coupling relationship between output variables. To improve
the solving efciency of multioutput systems, some studies
using multicore machine learning have been proposed
[8–12], which provides an important theoretical reference
for the development of this study. Nonetheless, in industrial
applications, the large-scale data collection and hyper-
parameter optimization time used for machine learning
modeling often exceeds the tuning time. From a practical
operational perspective, it is difcult to achieve.

To avoid these problems, parametric models based on
vector feld and machine learning were proposed in [13, 14],
which provides a new idea for the modeling of the tuning
process. However, with the increase in the order of the coaxial
cavity flter, the input-output and action space dimensions of
reinforcement learning increase sharply, resulting in an ex-
ponential growth of the value function network size and an
increase in the training cost. In [15, 16], a parametric
modeling method based on hybrid neural networks and deep
learning has been proposed successively, but the data ac-
quisition process of cavity flter in industrial applications is
cumbersome, and the time of large-scale data acquisition will
even exceed the tuning time.Terefore, from a practical point
of view, these methods are difcult to implement. On the
other hand, although SVR has obvious advantages in para-
metric modeling, the parameter identifcation of the algo-
rithm itself relies too much on expert experience and
laboratory experiments. Terefore, intelligent biomimetic
algorithms such as the genetic algorithm (GA), particle swarm
optimization algorithm (PSO), and genetic whale algorithm
(GWA) are generally used to calculate parameters [17–19].
However, these algorithms also have the problem of easily
falling into local optima and complex parameter calculations.

Given the aforementioned research analysis, the para-
metric model of coaxial cavity flters will encounter three
challenges. (1) Te difculty of feature data fusion under
diferent tuning modes and the impact of data validity on
model accuracy. (2) Low modeling accuracy and weak
generalization ability of parameterized models for multi-
input multioutput tuning processes based on multivariate,

strongly coupled, and nonlinear relational data. (3) Dealing
with the computational efciency and convergence speed of
optimization algorithms in the solving process. Te goal of
this article is to provide a parametric model for cavity flter
using kernel canonical correlation analysis and multioutput
least squares support vector regression.

Te contribution and novelty of this work includes three
aspects: (i) the feature vectors under diferent modes of initial
and fne tuning are fused by KCCA, which solves the
problems of poor data validity and large input vector di-
mensionality of a single feature; (ii) the output coupling and
complex computation process of quadratic programming in
parameter modeling are avoided by combining the least
squares method with the improved support vector regression;
(iii) the diferential evolution whale algorithm is used for
model parameter identifcation, which improves the opti-
mization speed and global search ability of themodel.Te rest
of this study is organized as follows: Section 2 describes the
theoretical synthesis of the cavity flter. Section 3 presents the
principal component analysis of the raw data. Sections 4 and 5
mainly introduce the establishment of tuning model and
parameter optimization. Section 6 shows the simulation re-
sults and analysis. Te last section is the conclusion.

2. Theoretical Synthesis of Cavity Filter

2.1. Description of the Problem. Te working process of this
paper mainly includes data collection and kernel canonical
correlation analysis, electromechanical characteristic mod-
eling, and model parameter identifcation. First, collect the
input and output data pairs (d, S) generated during the
tuning process, where d denotes the screw tuning height and
S denotes the corresponding output response; secondly, the
coupling matrix is extracted from the scattering parameter
(S-parameters) as mentioned in [20], and the characteristic
parameters under diferent modes are fused through the
kernel canonical correlation analysis technology. Build
a data set for electromechanical characteristic modeling;
fnally, the electromechanical relationship model of the
cavity flter based on multioutput support vector regression
is established according to the collected data sets of input
and output relationships. On this basis, the diferential
evolution whale algorithm is used to realize the adaptive
identifcation of model parameters. Te fow chart of the
parametric model for the cavity flter is shown in Figure 1.

2.2. Mechanism and Characteristics of Cavity Filter. Te
produced coaxial cavity flter is difcult to achieve in physical
size, and its output response cannot be consistent with the
theoretical results. Generally, the cavity flter is equipped with
tuning screws, and the output S-parameters can meet the
performance requirements by changing the length of the
tuning screws.Te S-parameters have the following nonlinear
relationship with the coupling matrix [21]:

S11 � 1 + 2jR1[sI − jR + M]
−1
11 ,

S21 � −2j
�����
R1R2


[sI − jR + M]

−1
n1 ,

(1)

2 International Journal of Antennas and Propagation



where R1 and R2 are the input and output port coupling,
respectively. R denotes the diagonal matrix, I denotes the
identity matrix.Te coupling matrix (M) extracted from the
S-parameter contains diferent feature information, such as
diagonal elements, adjacent coupling elements, and cross-
coupling elements, which are interrelated in diferent tuning
stages. To reduce the redundant information in the tuning
model, this study uses the KCCA multifeature fusion
method to fnd the key information from the multidi-
mensional features and convert the original extracted feature
vector into a new low-dimensional vector.

3. Kernel Canonical Correlation Analysis

Te tuning data of the cavity flter has serious nonlinear
characteristics, especially for the cavity flter with initial
tuning or multiple cross coupling. In addition, there is
a strong coupling between the input variables, and it is
difcult to describe the internal law of tuning with a single
model. Terefore, data preprocessing and correlation
analysis play a crucial role in modeling accuracy and gen-
eralization ability. Te KCCA is a nonlinear data analysis
algorithm, which transforms the nonlinear relationship of
input space into the linear relationship of feature space
through the kernel function and carries out correlation
analysis in the new space. P � x | x ∈ Rp{ }, Q � y | y ∈ Rq ,
X � (x1, x2, . . . , xn), and Y � (y1, y2, . . . , yn). Te random
variables in the observation space are transformed into the
kernel function of the following high-dimensional space by
implicit mapping [22].

φ: x ∈ R
p⟶ φ(x) ∈ Hx,

ϕ: y ∈ R
q⟶ ϕ(y) ∈ Hy,

⎧⎨

⎩ (2)

where R and H denote the observation space and high-
dimensional feature space, respectively. φ(x) and φ(y)

denote the implicit mappings of x and y from the obser-
vation space to high-dimensional feature space through
kernel functions, respectively. φ(x) � (φ(x1), φ(x2),
. . . ,φ(xn)), ϕ(y) � (ϕ(y1), ϕ(y2), . . . ,ϕ(yn)). Te essence
of the kernel function is equivalent to the mapping of input
data from low-dimensional space to high-dimensional
space, and its mathematical expression is as follows:

c � 
n

i�1
φi ∗φx xi( ,

d � 
n

i�1
ϕi ∗ ϕy yi( ,

(3)

where c and d denote the constant vectors of the high-
dimensional space to be solved. ∗ denotes a multiplication
sign. Using equation (3), the problem of solving high-
dimensional space constant vectors c and d is trans-
formed into the problem of solving low-dimensional space
constant vectors φx and ϕy [23].

X
∗

� c
Tφx(x) � 

n

i�1
φi〈φx xi( ,φx(x)〉,

Y
∗

� d
Tϕy(y) � 

n

i�1
ϕi〈ϕy yi( , ϕy(y)〉,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where X∗ and Y∗ denote the transformed characteristic
components. T and 〈·〉 denote the transpose and inner
product, respectively. Te core problem of KCCA is to solve
the corresponding equations (3) and (4) when the corre-
lation coefcient is the largest. Te mathematical expression
of the correlation coefcient is as follows [24]:

ρ � Corr X
∗
, Y
∗

(  �
Cov X

∗
, Y
∗

( 
��������

Var X
∗

( 

 ��������

Var Y
∗

( 

 , (5)

where Var(·) and Cov(·) denote the variance matrix and
covariance matrix, respectively. Te variance and covariance
of X∗ and Y∗ are calculated as follows:

Var X
∗

(  � c
Tvar φx( c � φT

xK(x, x)φx,

Var Y
∗

(  � d
Tvar ϕy d � ϕT

yK(y, y)ϕy,

Cov X
∗
, Y
∗

(  � c
Tcov φx,ϕy d � φT

xK(x, y)ϕy,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where K(x, y) � (φx,φy), the following correlation co-
efcients can be obtained by substituting equations (5) into
(6).

ρ �
φT

xK(x, y)ϕy
�����������������������
φT

xK(x, x)φx ∗ ϕ
T
yK(y, y)ϕy

 . (7)

Te problem of solving the correlation coefcient is
transformed into a constrained optimization problem, and
its objective function and constraint conditions are as
follows:

Test sample

Output data Input data (Classified data)

Feature extraction

KCCA

Matching calculation

Output results

IMSVR

Parameter fitting

Training sample

Input data

Data
preprocessing

Modeling

Whale algorithm

Adaptive parameter
identification

Figure 1: Flow chart of the parametric model for the cavity flter.
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max
φx,ϕy

φT
xK(x, y)ϕy,

s.t.φT
xK(x, x)φx � ϕTyK(y, y)ϕy � 1.

⎧⎪⎪⎨

⎪⎪⎩
(8)

Te Lagrange multiplication is used to solve the above
constrained extreme value problem, and the corresponding
Lagrange equation is

L � φT
xK(x, y)ϕy −

ρ1
2

φT
xK(x, x)φx − 1 ,

−
ρ2
2

ϕT
yK(y, y)ϕy − 1 ,

(9)

where ρ1 and ρ2 denote the Lagrange multiplier. Calculate
the partial derivative of L with respect to φx and ϕy andmake
it zero. Te following equations are obtained by deriving φx

and ϕy, respectively.

zL

zφx

� K(x, y)ϕy − ρ1K(x, x)φx � 0,

zL

zϕy

� K(y, x)φx − ρ2K(x, x)ϕy � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where ρ1 � ρ2 � λ, the solution of KCCA problem is
equivalent to solving the eigenvector problem correspond-
ing to the following generalized eigenequation:

0 KxKy

KyKx 0
⎡⎣ ⎤⎦

φx

ϕy

⎡⎣ ⎤⎦ � λ
KxKx 0

0 KyKy

⎡⎣ ⎤⎦
φx

ϕy

⎡⎣ ⎤⎦, (11)

where Kx � φT
xφx, Ky � ϕTϕyy , and φx and ϕy denote the

eigenvectors to be solved. By solving the above equation, φx,
ϕy, and the correlation coefcient ρ can be calculated.

4. Parametric Modeling

Te traditional multioutput regression problem is usually
solved by transforming the multidimensional output into
one dimensional output, which often ignores the correlation
between variables, to reduce the accuracy of the model. To
solve this problem and fully consider the correlation of
output components, this study improves the loss function of
the original algorithm and proposes a parametric modeling
strategy combining KCCA and MLSSVR.

4.1. SupportVectorRegression. Te essence of support vector
regression is to map the input space to the high-dimensional
space through nonlinear mapping and perform linear re-
gression through the estimation function in the high-
dimensional space. In this study, select the training set
(xi, yi) ∈ Rp × Rq of n group sample data, in which the input
variable xi � (xi1, xi2, · · · xip)T and the output variable
yi � (yi1, yi2, · · · yiq)T. Tis research improves the insensitive
loss function in the traditional single-output function re-
gression algorithm, using the loss function on the hyper-
sphere instead of the loss function on the hypercube. Te
improved loss function is as follows [25]:

L ei

����
����  �

0 ei

����
����< ε,

ei

����
���� − ε 

2
ei

����
����≥ ε,

⎧⎪⎨

⎪⎩
(12)

where ‖ei‖ �

����

eT
i ei



, ei � yi − φT(xi)w − bT, and ε denotes
the width of the neutral zone, which is the tolerance for
errors, φ denotes a nonlinear mapping function,
b � [b1 b2 · · · bn], w � [w1 w2 · · · wn], i denotes the number
of input samples, and q denotes the dimension of the output
variable. Te improved function takes the ftting error of
each component into account, which can not only achieve
the goal of overall optimization, but also weaken the noise.

4.2. Multioutput Least Squares Support Vector Regression.
Diferent from support vector machines, LS-SVR usually
rewrites the primary loss function into a quadratic loss
function and changes the inequality constraints into equality
constraints, which avoids the complex calculation of solving
quadratic programming problems and improves the efciency
of optimization. However, the traditional LS-SVR algorithm
is only applicable to the regression modeling of single-output
systems. When faced with multioutput nonlinear systems, the
single-output systems are usually simply combined, thus
ignoring the potential correlation information between out-
put variables. In view of this, this study improved the objective
function and constraint equation and used the absolute error
to describe the overall error of the sample, thus establishing
a multioutput regression model. Te parametric model
structure is shown in Figure 2, where u, v, and w denote the
resonant cavity self-coupling, adjacent cavity coupling, and
cross coupling variables, respectively. g, s, and t denote the
number of corresponding variables. Te model has a simple
structure and is easy to calculate. Te new eigenvector xi in
the parametric model is mapped to the high-dimensional
space φ(xi), and then the linear modeling is realized in the
new feature space [26].

yi � 
n

i�1
αi〈φ(x), φ xi( 〉 + bi, (13)

where K(x, xi) � 〈φ(x),φ(xi)〉 denotes the nonlinear
mapping. In this study, the least squares method is in-
troduced to change the inequality constraint in traditional
support vector regression into an equality constraint, and
the square term of error is used as the experience loss of the
training set. Finally, the quadratic programming problem is
transformed into solving linear equations, which improves
the calculation speed and convergence accuracy of the al-
gorithm. Te values of w and b are obtained through the
following optimization and constraint functions [27]:

min J �
1
2



q

r�1
wr

����
����
2

+
C

2


n

i�1


q

r�1
e
2
ir + c0 

n

i�1
Eir,

s.t.
eir � yir − wrφ

T
r xi(  − bir,

Eir � yir − f xir( 
����

����
2
,

⎧⎪⎪⎨

⎪⎪⎩

(14)
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where xi � [xi1 xi2 · · · xip]T, and yi � [yi1 yi2 · · · yiq]T denote
the input and output variables. wi � [w1 w2 · · ·wn]T ∈ Rn×q

denote the output weight, bi � [b1 b2 · · · bn]T ∈ Rn denotes
the bias coefcient vector, φ(xi) � [φ1(xi)φ2(xi) · · ·φn(xi)]

T

denotes the input mapping function, c0 denotes the penalty
coefcient of the overall error of the sample, C denotes the
j-th dimension output error of the i-th sample, eir denotes the
j-dimensional output error of the i-th sample, and Ei denotes
the overall ftting error.Te objective function and constraints
are transformed into the following Lagrange function:

L �
1
2



q

r�1
wr

����
����
2

+
C

2


n

i�1


q

r�1
e
2
ir + c0 

n

i�1
E
2
ir

− 
n

i�1


q

r�1
αir yir − w

T
r φ xi(  − bir − eir ,

(15)

where α � [α1 α2 · · · αq] and β � [β1 β2 · · · βq] denote
Lagrange factor. Use equation (3) to calculate the partial
derivatives of wr, br, eir, and αir, respectively, and obtain the
following expression with KKT condition:

zL

zwr

� 0⟶ ωr � 
n

i�1
αirφ xi( ,

zL

zbir

� 0⟶ 
n

i�1
αir � 0,

zL

zeir

� 0⟶ C · eir � αir,

zL

zαir

� 0⟶ yir − w
Tφ
r xi(  − bir − eir � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

By eliminating wr and eir. Te solution of the optimi-
zation problem can be transformed into the solution of the
following linear equations:

0 I
T

I k x, xr(  + c
−1
0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

bir

αir

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0

yr + c0 ·
ℏr
C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where I denotes the unit matrix, k(x, xr) � φT(x)φ(xr).
When the output error of the r-th dimension is greater than
or equal to zero, ℏr � 1. Te values of the variables br and wr

are obtained by solving the above linear equations, and the
regression function of the output of the r-dimension is as
follows:

fr(x) � 
n

i�1
αirkr x, xr(  + bir. (18)

Te Gaussian radial basis function has good ability to
handle complex nonlinear relationships between sample
inputs and output. It requires fewer parameters to be de-
termined and has high computational efciency. Terefore,
the kernel function used in this study is the Gaussian radial
basis function:

k x, xr(  � exp
− x − xr

����
����

2σ2
 , (19)

where σ denotes the kernel width parameter, which refects
the size of the training data sample space range. When its
value is large, the space range is small. When the number of
support vectors is large and the regression parameters have
been calculated, the kernel method may sufer from the curse
of dimensionality. To efectively utilize all sample in-
formation, a sparsization method based on singularity criteria
is used to continuously update the sample subset. Tis subset
efectively reduces the redundant information of input
samples while maximizing the coverage of input sample in-
formation, thus signifcantly reducing the solution size. Te
main steps include (1) initialize an empty sample set D0, and
when obtaining the frst sample vector x1, make D1 � x1; (2)
when the number of samples is greater than 1, calculate the
minimum distance c � minxv∈Di

‖xi − x]‖ between the new
sample xi and the current sample set; (3) when the minimum
distance is less than a preset threshold δ1, (xi, yi) is not added
to Di, otherwise the prediction error ei is calculated; and (4)
when |ei| is greater than the preset threshold δ2, add (xi, yi) to
Di and update Di to Di+1, otherwise proceed to (2). Te
thresholds δ1 and δ2 are used to control the accuracy and scale
of the solution. Increasing δ1 and δ2 is benefcial for reducing
the size of sample set D, but it will lead to a decrease in the
performance of the beamformer. Tis article takes δ1 as 0.1 of
the kernel radius and δ2 as the root mean squares value of the
average steady-state mean square error, which can achieve
high computational accuracy on a smaller scale. Te steps to
establish the parametric model of the cavity flter using
MLSSVR algorithm are as follows:

Step 1: Set the initial value of C, σ, and c0. Based on the
collected sample dataset, the MLSSVR algorithm is
used to establish the regression function of the multi-
input and output tuning system for the cavity flter.
Step 2: Substitute the input and output matrices and
relevant parameters of training samples into the sub-
function. Use the established initial regression function
to detect the test sample data and calculate the test
error eir;

Input layer

Output layerHidden layer

xi1

xi2

xip

yi1

yi2

yiq

KCCA

vi1

vis

wi1

wit

uig

ui1

xi5

w=[w1,w2, ... wn]T

b=[b1,b2, ... bn]T

Figure 2: Parametric model structure of coaxial cavity flter.
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Step 3: For any r-th dimension output, the value of ℏr is
determined according to eir;
Step 4: According to the calculated αir and br, the
regression function of the cavity flter multi-input and
output tuning system is established. Te work fow
chart of the improved whale algorithm is shown in
Figure 3.

5. Parameters Identification

Te forecast accuracy of MLSSVR is mainly afected by the
kernel function parameter σ, the penalty factor C and c0,
where the value of the penalty factor corresponds to the
empirical risk generated by the training samples. If the
penalty factor is too small, the punishment for exceeding the
insensitive band in the sample is too small, and the training
error is too large. On the contrary, if the penalty factor is too
large, the error penalty will be too large, while the model
structure restriction will be reduced, resulting in the model
being too complex; the kernel function parameters can
refect the distribution of sample data in high-dimensional
feature space information.

5.1. Diferential Evolution Whale Algorithm. DWA is a heu-
ristic-intelligent algorithm that imitates the behavior of whale
predation. Compared with the traditional optimization al-
gorithm, it has the advantages of less control parameters,
a simple implementation, and high fexibility. DWA imitates
the whale’s predation method, which mainly includes three
stages hunting predation, bubble net predation, and free
search. Te position of each individual represents the po-
tential solution, and the global optimal solution is obtained by
constantly updating the position of the whale.

Shrink Surround: Since there is no prior knowledge of
the global optimal solution of the search space before solving
the optimization problem, a population of individuals is
randomly selected as the target for predatory activities, and
other whale individuals in the population are surrounded by
the optimal individuals. Te position update equation is as
follows [28]:

xi(k + 1) � x
∗
i (k) + F

→
(k) · d

′
,

d
′

� J
→

(k) · x
∗
i (k) − xi(k),

⎧⎪⎨

⎪⎩
(20)

where xi(k + 1) denotes the position of the i-th whale at
iteration k. F

→
(k) and J

→
(k) denote the coefcient vector,

and F
→

(k) � 2δ ∗ rand(·) − δ, J
→

(k) � 2rand(·), δ denotes
the convergence factor of linear descent. rand(·) denotes the
random number in [0, 1]. In the process of bubble net
predation, the position update between whale and prey is
expressed by the following logarithmic spiral equation [29]:

xi(k + 1) � di
′eϑl cos(2πl) + x

∗
(k),

di
′ � x
∗
(k) − xi(k + 1)


,

⎧⎨

⎩ (21)

where di
′ denotes the distance between the search individual

and the current optimal solution, ϑ denotes the spiral shape
parameter, l denotes a random number uniformly

distributed in [−1, 1], and x∗(k) denotes the current best
position vector. Te algorithm can choose the predation
behavior by setting the probability c of the predation
mechanism. Te whale’s position update equation is as
follows [30]:

xi(k + 1) �
xi(k + 1) − F

→
(k) · d(k) c ∈ [0, 0.5,

di
′eϑl cos(2πl) + x

∗
(k) c ∈ [0.5, 1,

⎧⎪⎪⎨

⎪⎪⎩
(22)

where |c|< 1, each whale is in the phase of gradually sur-
rounding the current optimal solution. To ensure that all
whales can search completely in the solution space, the
distance between whales in the whale algorithm is used to
update the position to achieve the purpose of random search.
Terefore, when |c|≥ 1, the search experience will swim
toward the random whale.

xi(k + 1) � xr(k) + F
→

(k) · d
″
,

d
″

� J
→

(k) · xr(k) − xi(k),

⎧⎪⎨

⎪⎩
(23)

where xr(k) denotes the position of the current random
individual. d″ denotes the distance between the current
search individual and the optimal solution. To increase the
diversity of the population, the diferential evolution is
introduced in the process of population position updating,
which avoids the premature phenomenon brought by the
local optimal solution. Te location updating formula is as
follows:

xi(k + 1) � τ · x
∗

− xi(k)(  + τ · xr(k) − xi(k)( , (24)

where x∗ and xr(k) denote the optimal individual position
and the random individual, respectively, k denotes iterations
and τ is a random number in [0 1]. Tis study combines the
powerful exploration capabilities of diferential evolution
algorithm with the whale algorithm to enhance the devel-
opment space of the whale algorithm. First, the whale al-
gorithm is used to preprocess the position of the individual
population and generate an initial population. Ten, the
diferential evolution algorithm is used to cross-select the
generated population to achieve population update iteration.
Te algorithm process is shown in Table 1.

To prevent over- and underftting of the model, the
insensitivity coefcient is given empirically in this study.
Select the following sample mean square deviation as the
evaluation function of DWA:

f C, σ, c0(  �
1
n



n

i�1
f xi(  − yi


, (25)

where f(xi) and yi denote the measured and expected
values of the model, respectively. Te optimization goal is to
make f(C, σ, c0) reach the minimum value. n denotes the
population number. Te ftness function is 1 /1 + f. Pa-
rameter settings of the DWA algorithm are as follows: the
evaluation number Iter � 45, the population size N � 30,
diferential variability factor F � 0.75, and crossover rate
CR � 0.9. Compare DWA with GA (population size
N1 � 30, maximum generation gmax � 45, replication
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probability Pr � 0.65, crossover probability Pc � 0.85, mu-
tation probability Pm � 0.05), PSO (particle number
N2 � 0.85, maximum particle velocity Vmax � 0.85,

acceleration constant c1 � c2 � 2), and GWA (Pr � 0.7,
Pc � 0.8, Pm � 0.01), the parameter optimization curve is
shown in Figure 4. Te optimal parameters for MLSSVR
prediction model using the DWA as follows: C � 15.24.9,
σ � 0.092, and c0 � 9.74.

Te optimization results show that the improved whale
optimization algorithm has a higher convergence accuracy
and better stability than the other optimization algorithms
and basic whale optimization algorithms.

6. Simulation Results and Analysis

To evaluate the accuracy of the parametric model of the
coaxial cavity flter, the standard deviation (STD), the
maximum absolute error (MAE), and the correlation co-
efcient (R) of three diferent methods are used for analysis
and comparison. Te calculation equation is as follows:

STD �

���������������������

1
n − 1



n

i�1


q

r�1
f xir(  − yir



2




,

MAE �
1
n



n

i�1


q

r�1
f xir(  − yir


,

R �


n
i�1 

q
r�1 f xir(  − f xir(   yir − yir( 

������������������������


n
i�1 

q
r�1 f xir(  − f xir(  

2
 ������������������


n
i�1 

q
r�1 yir − yir( 

2
 ,

(26)

where f(xir) and yir denote the real and predicted values of
the measured data, respectively. n and q denote the number of
samples and output variables, respectively. Substitute the
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Spiral update 
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parameters
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Figure 3: Work fow chart of the improved whale algorithm.

Table 1: Diferential evolution whale algorithm.

Input: Population size; iterations; fobj
Output: Optimal whale individual x∗(k)

1. Set whales population xi, initial position xi(0), kmax;
2. Calculate fi of each whale according to fobj
3. Update individual optimal location x∗(k)

4. while (k≤ kmax)

5. for i � 1 to N do
6. Update parameter δ, F

→
(k), J

→
(k), fi(k) and c;

7. if (0≤ c< 0.5)

8. if | F
→

(k)|< 1
9. Update the location of the whale population by
equation (20)
10. else if | F

→
(k)|≥ 1

11. Update the location of the whale population by
equation (21)
12. end
13. else if 0.5≤ c< 1;
14. Update the location of the whale population by
equation (23)
15. end
16. end
17. Calculate fi(k) and update x∗i (k);
18. if fi(k)<fa(k)

19. Update the individual position of whales by equation (24)
20. end
21. Let k � k + 1
22. end
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tuning process relationship data into the parameter pre-
diction model, and compare the kernel clustering back
propagation neural network (KC-BPNN) and multioutput
fuzzy support vector regression (MFSVR) with the KCCA-
MLSSVR method proposed in this paper. Te prediction
results are shown in Figures 5 and 6. It can be seen from this
fgure that the STD and MAE of the proposed method
prediction results are lower than those of the other two
models; in addition, the absolute value of R by the proposed
model is close to 1, which is higher than the other two
methods.Te above results indicate that the proposedmethod
can not only efectively reduce the impact of high-
dimensional data on the model’s prediction accuracy but
also improve the model’s adaptability and generalization

ability. Te S-parameter simulation curve of the ninth-order
cavity flter with three diferent methods is shown in Figure 7.

Te purpose of cavity flter tuning is to make the
S-parameters of the output response meet the key perfor-
mance indexes (KPI) required before production. To further
verify the feasibility of the method, a ten-order cross-
coupled cavity flter with complicated topology is taken as
the experimental object for simulation experiments. Kpis are
as follows: center frequency f0 � 2.38GHz, passband width
bw � 0.10GHz, the maximum return loss RL � −34dB,
maximum insertion loss IL � −0.35dB. It can be seen from
Figure 8 that the return loss, insertion loss, and out-of-band
suppression of the proposed method can meet the KPI.

For more quantitative comparison, the insertion loss
(IL), return loss (RL), and left and right out-of-band
suppression (RS or LS) of S-parameters calculated by dif-
ferent methods are shown in Tables 2 and 3. From the data
given in the table, the proposed method in this study is
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Figure 4: Fitness value for parameter identifcation of diferent
algorithms.
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consistent with the KPI, while the S-parameters using KC-
BPNN, LS-SVR, and Gaussian process regression (GPR)
methods have large deviation.

7. Conclusion

Te tuning process of the coaxial cavity flter has great non-
linearity, and the output characteristics vary greatly in diferent
tuning stages. To solve this problem, a parametric model method
for coaxial cavity flter fusing KCCA andMLSSVR is proposed in
this study. First, the redundant eigenvectors are digested by
KCCA,which not only reduces the input vector dimension of the
prediction model but also accelerates the training speed of the
system. Second, a parametric model using MLSSVR has higher
prediction accuracy than traditional modeling methods. Finally,
the model parameters are optimized by DWA, which improves
the adaptive ability and convergence speed of the model. Te
experimental results show that the proposedmethod in this study
has higher prediction accuracy and generalization performance
in the process of cavity flter model parameter ftting.
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