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In this paper, an efective synthesis method for sparse uniformly excited concentric ring array (CRA) element positions featuring
a minimum sidelobe level (SLL) is presented. Tis method is based on the chaos sparrow search algorithm (CSSA), which can
search for the optimal solution under multiple constraints. By improving the constraint on the number of array elements on each
ring, the solution range of the optimal solution is further reduced, and the global search ability of the algorithm is efectively
improved by introducing tent mapping into the algorithm to initialize the population. Numerical examples are presented to assess
the efectiveness and reliability of the proposed method, showing that it can achieve better results than existing methods in the
design of sparse concentric ring array arrangements.

1. Introduction

Concentric ring array (CRA), which has the symmetrical
structure of a circular array, ensures that its beam and
antenna gain performance are basically maintained in
a certain range, and it can relatively achieve mutual coupling
balance. Tese excellent properties have made it the subject
of intensive investigations in recent years [1–4]. In partic-
ular, array synthesis patterns with arbitrary element posi-
tions have attracted more attention [5, 6]. Compared with
a uniform array antenna with the same aperture, the sparse
array antenna can achieve the same resolution with fewer
array elements; then, the cost of the antenna system is re-
duced [7]. At the same time, sparse array antennas can
achieve a low sidelobe level (SLL) without amplitude
weighting. In the synthesis of sparse uniformly excited
concentric ring arrays, the location of the element is an
important factor in the optimal performance because of its
ability to obtain the minimum peak sidelobe level (PSLL),
but it also leads to complex nonlinear optimization problems
[8, 9].

To solve the nonlinear problem of sparse uniformly
excited concentric ring array design, several synthesis

techniques have been proposed. A method based on space
tapering has been suggested by Willey [10], which can be
used by controlling the element density taper to match the
amplitude taper of the minimum SLL. For the fast synthesis
of CRA, a deterministic approach that takes inspiration from
density-tapered techniques to optimize the location of array
elements has been presented in [11, 12]. Te normalized
Taylor amplitude taper of the conventional flled array was
considered a distribution function to determine the location
of the array elements. However, the results obtained by
analytical methods are often not globally optimal, and their
applications in array synthesis are mostly limited to the
suppression of sidelobes. With the advent of intelligent
optimization methods, such as genetic algorithms (GAs)
[13–16], particle swarm optimization (PSO) [17], and dif-
ferential evolution (DE) [18], they have been successfully
applied to the synthesis of sparse CRA due to their global
search capability. A hybrid approach (HA) for CRA syn-
thesizing to suppress the PSLL has been proposed in [19],
which is convenient for synthesizing uniform amplitude
concentric ring arrays with certain constraints. Although
intelligent optimization algorithms have the advantage of
solving sparse array nonlinear synthesis and achieving better
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optimization results, their solving efciency is low, and it is
easy to fall into a local optimum.

Te sparrow search algorithm (SSA) imitates the for-
aging and antipredation behavior of sparrows [20], which
has the advantages of high search accuracy, strong versa-
tility, and easy implementation compared with other in-
telligent algorithms [21, 22]. To improve the global search
ability and prevent falling into the local optimal solution,
a chaos sparrow search algorithm (CSSA) is proposed by
introducing a tent-mapping chaos operator into the SSA,
which efectively guarantees the uniformity of the initial
population and enhances population diversity. Tis method
achieves the suppression of PSLL by optimizing the position
distribution of uniformly excited CRA elements. Te sim-
ulation results demonstrate the efectiveness and superiority
of the proposed method.

Te paper is organized as follows: Section 2 formulates
the problem, and Section 3 describes the procedure of
synthesis. Numerical examples and results are presented in
Section 4 to fully demonstrate the efectiveness and supe-
riority of this proposed method. Finally, Section 5 concludes
this paper.

2. Synthesis of CRA

In Figure 1, a sparse concentric array with a single element at
the center and Nr rings from the center to the edge is shown,
and the starting element of each ring is arranged on the X-
axis. Te radius of each ring is rn, and the number of ele-
ments on the corresponding ring is Nn. Generally, the array
factor can be characterized as follows [19]:

AF(θ, φ) � 1 + 􏽘

Nr

n�1
􏽘

Nn

m�1
e

jkrnsinθcos φ−φmn( ), (1)

where k is the wave number, k � 2π/λ, λ is the operating
wavelength, φmn is the angular position of themth element in
the nth ring, φmn � 2π(m − 1)/Nn, and φ and θ are the
azimuth and elevation angles, respectively.

Assuming that the diameter of the outer ring is D, the
minimum spacing of array elements is dmin. To improve the
search efciency, all elements of the array need to satisfy the
minimum spacing constraint between adjacent elements and
the maximum aperture constraint:

rn � ndmin + ∆rn, n � 1, 2, · · · , Nr,

rNr
�

D

2
,

0≤∆ri ≤∆rj ≤
D

2
− Nrdmin, 1≤ i< j≤Nr.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Te array radius vector R � r1, r2, · · · , rNr
􏽮 􏽯 can be

represented as follows [19]:

R � C + ΔR, (3)

where C � dmin, 2dmin, · · · , Nrdmin􏼈 􏼉 is the constant part and
ΔR � ∆r1,∆r2, · · ·∆rNr

􏽮 􏽯 is the variable part.

After determining the ring radius, the maximum
number of array elements Nnmax on a ring can be expressed
by the ring radius rn and minimum array element spacing
dmin as follows [13]:

Nnmax �
2πrn

dmin
􏼤 􏼥. (4)

Teoretically, Nn can be any integer between 1 and
Nnmax, but the scarcity of array elements will result in array
directivity and gain losses. Terefore, constraints should be
set to the minimum number of array elements on the ring.
To make the element distribution of the sparse array satisfy
the feature of gradual sparsity from the center to the edge,
Nn on the sparse array is expressed as

Nn � Nnmin + Nnmax − Nnmin( 􏼁 · kn􏼄 􏼅,

Nnmin �
Nnmax

3
+ 2

Nnmax

3
􏼒 􏼓 · rand(0, 1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where kn is the sparse coefcient, which is used to control the
sparse rate of elements on each ring, kn is determined by the
amplitude distribution on the corresponding full-array ring,
i.e., sparse coefcient kn � I1, I2, · · · , INr

􏽮 􏽯, and Nnmin is the
minimum number of array elements on the ring. To increase
the optimization space of Nn, Nnmin is set to a random
number between Nnmax/3 and Nnmax.

Te ftness function is defned as follows [19]:

PSLL r, Nn( 􏼁 � max
AF(θ, φ)

AFmax

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩, 0< θmin < θ≤

π
2

, (6)

where AF(θ, φ) represents the array factor, AFmax is the
maximum value of themain beam, and θmin is position of the
frst null point.

3. CSSA Analysis

To improve the efciency of the convergence performance of
the sparse concentric ring array optimization problem while
reducing the PSLL, the CSSA is used to solve the synthesis of
sparse concentric ring arrays. Since the position updating of
the CSSA is jumpy and discontinuous, the local optimum
can be efectively avoided.Te specifc optimization steps are
as follows.
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Figure 1: Geometry of a sparse concentric ring array.

2 International Journal of Antennas and Propagation



Step 1. Population initialization.
Assuming that the SSA involves a group of NP sparrows

with a spatial dimension dim, the position distribution of
sparrows can be expressed as
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ΔRNp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x1,1 x1,2 · · · x1,dim

x2,1 x2,2 · · · x2,dim

⋮ ⋮ ⋱ ⋮

xNp,1 xNp,2 · · · xNp,dim

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

To improve the global search ability of the algorithm and
avoid the decline of population diversity in later iterations,
tent mapping is chosen as the initialized population for the
chaotic sequence of the optimization algorithm. Te chaotic
self-mapping of the tent is represented as

Zi+1 �

2Zi, 0≤Z≤
1
2

,

2 1 − Zi( 􏼁,
1
2
<Z≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

which can be abbreviated as

Zi+1 � 2Zi( 􏼁mod1. (9)

Random variables are introduced to the tent mapping to
prevent the destruction of the randomness, ergodicity, and
regularity of chaotic variables:

Zi+1 � 2Zi( 􏼁mod 1 +
rand(0, 1)

NPT
, (10)

where T is the maximum number of iterations.
After the chaotic variable is generated by (10), it is in-

troduced to the solution space of variables, and the initial
population is generated as

x � lb + Ub − lb( 􏼁 · Zd, (11)

where lb andUb are theminimum andmaximum values of x,
respectively.

Step 2. Population update based on the SSA.
In the SSA, a discoverer-joiner sparrow population

model is established, and some sparrows are randomly se-
lected as guards. Te discoverer position update formula is
as follows [22]:

x
t+1
i,j �

x
t
i,j · exp

−i

α · T
􏼒 􏼓, R1 < ST,

x
t
i,j + Q · L, R1 ≥ ST,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where xt
i,j is the position of the ith sparrow of the tth

generation in the jth dimension, α is a uniform random
number in (0, 1], T is the maximum number of iterations,
R1 ∈ [0, 1] indicates the warning value, ST ∈ [0.5, 1.0] in-
dicates the alert threshold, Q is a random number satisfying
the standard normal distribution, and L is a matrix of 1 ×

dim whose elements are all 1. When R1 < ST, the sparrow

population is in a safe state, and the discoverer continues to
forage. When R1 ≥ ST, danger is found, and all sparrows
must fy to safety immediately.

In addition to discoverers, the remaining sparrows in the
population are joiners, and their position update formula is
as follows [21]:

x
t+1
i,j �

Q · exp
x

t
worst,j − x

t
i,j

i
2

⎛⎝ ⎞⎠, if i>
Np

2
,

x
t+1
p + x

t
i,j − x

t+1
p

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · A
+

· L, otherwise,
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⎪⎪⎪⎪⎪⎪⎩

(13)

where xP is the best position of the discoverers and xworst
indicates the global worst position in the current iteration.
When i>Np/2, it means that the ith joiner needs to change
its search area to continue searching for food. Conversely, it
means that the ith joiner converges to the global optimal
position and performs random foraging around.

Te formula for updating the position of the guard
position is as follows [21]:

x
t+1
i,j �

x
t
best + β · x

t
i,j − x

t
best,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, if fi >fg,

x
t
i,j + K ·

x
t
i,j − x

t
worst,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

fi − fw( 􏼁 + ε0
⎛⎝ ⎞⎠, if fi � fg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where xbest is the current global best position, β is a step
control parameter satisfes a distribution of N (0, 1), K is
a random number between [−1, 1], ε0 is a very small constant
to avoid zero denominators, fi is the ftness value of the
individual sparrow at present, and fg and fw are the best
and worst ftness values at present, respectively.Te position
of these sparrows is random at frst. When fi >fg, the
sparrows are vulnerable to predators at the edge of their
foraging area. When fi � fg, it suggests that sparrows at the
center of the group are conscious of the danger and demand
to approach others quickly to adjust their foraging strategies.

4. Numerical Examples and Results

To validate the superiority and stability of the proposed
sparse array synthesis method based on the CSSA, we show
three examples of unequally spaced concentric ring arrays
with diferent array apertures, where 100 independent runs
for each case are conducted. In all experiments, the antenna
elements are rotationally symmetric on the rings, the
minimum element spacing dmin is set to 0.5λ, and the CRA’s
amplitude is equal. In the algorithm, the proportion factor of
the number of discoverers to the population PN � 0.8, the
guard scale factor QN � 0.2, and the safety value ST � 0.8
in (12).

4.1. Example A: R � 4.98λ. In the frst example, the array
including a total of 8 concentric rings with an array radius of
4.98λ is considered, and the distributed antenna elements
are equally spaced on each ring to form an annular grid
array. Te population size is 100, and the number of
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Figure 2: Adaptability curve of 10 independent experiments: (a) SSA; (b) CSSA.
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Figure 3: Array synthesis results obtained by CSSA for array aperture R� 4.98λ: (a) element position; (b) radiation pattern in the φ � 0
plane; (c) 3-D view of the radiation pattern.
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generations is 1000. An eight-ring uniform array is used as the
original reference array, and a Taylor distribution of −30dB is
chosen as the array excitation function; then, the sparse co-
efcient kn� {0.98, 0.91, 0.81, 0.70, 0.57, 0.46, 0.38, and 0.34}.

Figures 2(a) and 2(b) show the adaptation curves of the
SSA and CSSA for 10 independent experiments, respectively.
It can be seen that the adaptation curve of the CSSA con-
verges faster and has better convergence than the SSA. Te
value of the optimal solution obtained from 10 independent
experiments using the SSA ranged from −28.21 dB to
−29.83 dB, with an average value of −29.08 dB. Te value of
the optimal solution obtained from 10 independent ex-
periments using the CSSA ranged from −29.08 dB to
−30.07 dB, with an average value of −29.77 dB, which is
about 0.69 dB lower than that of the SSA. Te results show
that the CSSA has better stability than the SSA. Although
Figure 2(b) shows that nearly 500 iterations are necessary to
reach convergence, numerical results suggested that after

500 iterations, performance remains good. Terefore, the
maximum number of iterations T� 500 is chosen in the later
numerical experiments.

Figure 3(a) shows the optimal element distribution of an
acquired array with a single element at the center in 100
independent trials. It has 8 rings with 192 elements. Te
radius of each ring is 0.50λ, 1.00λ, 1.50λ, 2.00λ, 2.61λ, 3.34λ,
4.17λ, and 4.98λ. Te corresponding number of elements is
6, 12, 18, 21, 31, 37, 31, and 35. Figure 3(b) shows the ra-
diation pattern in the φ � 0 plane, and the PSLL is −30.08 dB,
which is better than when using GA (−22.94 dB) [13], MGA
(−23.74 dB) [14], and HA (−29.03 dB) [19]. Te 3 dB main
beamwidth obtained by the CSSA is 0.1129, which is slightly
wider than HA (0.1126) [19]. Te radiation pattern in three
dimensions is illustrated in Figure 3(c). Finally, the total
computation time for 500 iterations to complete a single trial
is approximately 512 s on a laptop with 8GB RAM running
MATLAB R2019b.
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Figure 4: Array synthesis results obtained by CSSA for array aperture R� 4.7λ: (a) element position; (b) radiation pattern in the φ � 0 plane;
(c) 3-D view of the radiation pattern.
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4.2. Example B: R � 4.7λ. Another synthesis experiment
with an array radius of 4.7λ has been conducted with the
proposed CSSA. A seven-ring uniform array is used as the
original reference array, and a Taylor distribution of −30 dB
is chosen as the array excitation function; then, the sparse
coefcient kn � {0.97, 0.89, 0.77, 0.63, 0.50, 0.39, and 0.34}.
We compared the CSSA with the GA and HA, respectively.
GA [13] obtained the best PSLL of −27.82 dB by only op-
timizing the ring radius and strictly constraining the element
number on the corresponding ring. HA [19] obtained the
best PSLL of −27.92 dB by both optimizing the ring radius
and the element number on the ring.Te best PSLL obtained
by the CSSA is −29.16 dB when the number of rings Nr � 7
and the total amount of elements Nt � 161, which is 1.34 dB
lower than when using GA and 1.24 dB lower than when
using HA. Figure 4(a) shows the best element distribution of
an acquired array. Te radius of each ring is 0.59λ, 1.13λ,

1.66λ, 2.26λ, 3.01λ, 3.80λ, and 4.70λ. Te corresponding
number of elements is 7, 13, 19, 25, 32, 29, and 35.
Figure 4(b) depicts the radiation pattern in the φ � 0 plane,
while Figure 4(c) depicts the radiation pattern in three di-
mensions. Finally, the total computation time for this ex-
ample to complete a single trial is approximately 381 s.

4.3. ExampleC:R � 4.3λ. In the third example, the proposed
CSSA method has been used to carry out a synthesis ex-
periment with an array radius of 4.3λ. Te best array is built
with 147 elements distributed in 7 rings, and the best ele-
ment distribution of the obtained array is shown in
Figure 5(a). Figure 5(b) shows the comparison of array
radiation patterns between HA and CSSA in the φ � 0 plane.
It can be concluded that the CSSA has obtained a 1.13 dB
lower PSLL than HA and that the 3 dB main beamwidth
obtained by the CSSA is slightly higher than that obtained by
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Figure 5: Array synthesis results obtained by CSSA for array aperture R� 4.3λ: (a) element position; (b) radiation pattern in the φ � 0 plane;
(c) 3-D view of the radiation pattern.
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HA. Figure 5(c) depicts the corresponding 3-D view of the
radiation pattern. Finally, the total computation time for this
example to complete a single trial is approximately 377 s.

Finally, Table 1 presents the performance comparison
results between the proposed CSSA and some state-of-
the-art algorithms when R� 4.98λ, 4.7λ, and 4.3λ, which
include the number of rings Nr, the total number of ele-
ments Nt, the best PSLL, the direction coefcient, and the
3 dB beamwidth. Table 2 illustrates the radius rn and the
number of elements Nn on the corresponding ring acquired
by the CSSA. Numerical examples show that the CSSA is able
to obtain lower PSLL values under the same ftness
conditions.

Based on the above analysis results, it can be concluded
that optimizing the array element positions by the CSSA can
obtain a better PSLL suppression efect while maintaining
a higher directivity coefcient and a narrower 3 dB beam-
width. In the three simulation examples, the proposed
method has preferable efciency and good convergence. In
addition, the comparison of the proposedmethod with state-
of-the-art algorithms demonstrates its superiority in array
sparse optimization.

5. Conclusion

We proposed an efective method for the synthesis of sparse
CRA with multiple constraints, which efectively achieved
SLL suppression of equally uniformly excited CRA. Te
numerical results demonstrate that the proposed CSSA
method achieved a better SLL suppression efect than other
methods when the apertures were fxed. Moreover, the
proposed method has the potential to solve other array
models with multiple constraints, such as rectangular planar

arrays and conformal unequally spaced arrays, which have
a certain reference value for the optimal design and engi-
neering applications of array antennas in the future.
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