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Antenna selection techniques are extensively applied to reduce hardware cost and power consumption inmultiple-input multiple-
output (MIMO) systems. Tis paper proposed a low-cost antenna selection method for system sum-rate maximization based on
multiclass scalable Gaussian process classifcation (SGPC) which is capable to perform analytical inference and is scalable for
massive data. Simulation results show that the average sum-rate obtained by SGPC is 1. 9 bps/Hz more than that obtained by
conventional optimization driven user-centric antenna selection (UCAS) algorithm and 1 bps/Hz more than that obtained by the
up-to-date learning scheme based on a deep neural network (DNN) when signal-to-noise ratio (SNR) is 10 dB, the number of total
antennas at BS is 6, the number of selected antennas is 4, and the number of single-antenna users is 4.Te superiority of SGPC over
UCAS and DNN is more obvious as SNR, the number of selected antennas, or the number of users increases.

1. Introduction

Multiple-input multiple-output (MIMO) is a key technology
to support massive data transmission and high communi-
cation reliability in 5G and 6G wireless networks [1, 2].
However, the number of radio frequency (RF) chains as-
sociated with available antennas increase dramatically in
massiveMIMO, which result in expensive hardware cost and
high power consumption. One efective solution to address
this issue is antenna selection, that is, a subset of total an-
tennas is selected and connected to a small number of RF
chains, therefore, considerably improving the system energy
efciency with comparable spectral efciency and spatial
diversity [3, 4].

In general, antenna selection is a nonconvex optimiza-
tion problem; the optimal solution of which can only be
acquired via exhaustive search over available antenna sub-
sets with prohibitive complexity in massive MIMO scenario.
To reduce the searching complexity, the authors in [5] in-
troduced an iterative antenna selection algorithm based on
variable relaxation and successive convex approximation to
maximize the achievable sum-rate. A fast greedy antenna
selection method was presented in [6] for capacity

maximization with considerable additional channel gain and
minimum quantization accuracy loss. Authors of [7] pro-
posed a low complexity antenna selection scheme, user-
centric antenna selection (UCAS), which clusters the
available antennas into K groups that have the maximum
channel norms for the k-th user and the sum-rate can be
maximized by antenna selection from these groups, reducing
the searching complexity by K times. Aforementioned
conventional optimization-driven methods are more ef-
cient than exhaustive search with the sacrifce of obtaining
a suboptimal result.

In recent years, emerging machine learning techniques
for classifcation and decision-making applications of
wireless communications have been proved to achieve ex-
cellent performance with feasible complexity, compared to
conventional parametric counterparts. As a typical appli-
cation example, the antenna selection problem can be re-
solved with some superb multiclass classifer and/or
predictor of machine learning tools. Te authors in [8]
deployed a deep neural network (DNN) to model the re-
lations between the input features and optimal antenna
subsets for sum-rate maximization, which achieves more
than 95% of the optimal performance with less than 5% of its
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computational complexity. Te authors in [9] exploited
support vector machine (SVM) classifers to classify channel
feature vectors with separating hyperplane into the category
representing the antenna subset with maximal channel ca-
pacity. Te authors in [10] set forth an antenna selection
scheme for channel capacity maximization based on prin-
cipal component analysis (PCA) which projects the data
points representing diferent antennas to principal com-
ponents and select the data points that have the maximum
Euclidean distance in corresponding principal component.
In [11], decision tree and multilayer perceptron were
adopted as antenna selection approaches to improve bit
error rate (BER) performance. Te authors in [12] applied
reinforced learning via Monte Carlo tree search (MCTS) to
select antennas with maximal channel capacity or minimal
BER corresponding to the highest reword as in decision-
making processes. Te authors in [13] achieved maximum
receiver-end signal-to-noise ratio (SNR) by transmit an-
tenna selection with multiclass import vector machine
(IVM) which selects a small subset of training data, i.e.,
import vectors, to approximate the full classifcation model
very well. An efcient joint antenna selection and user
scheduling method based on stochastic gradient descent
learning was devised in [14] to obtain the optimal joint
uplink and downlink energy efciency. Tere are still much
room for learning-based antenna selection methods to
improve in either complexity or accuracy.

Tis paper proposed a novel antenna selection approach
based on multiclass scalable Gaussian process classifcation
(SGPC) to maximize the system sum-rate. Conversional
GPC is a terrifc multiclass classifer with complexity
O(CN3), where C is the number of classes and N is the
number of training data, facing two main challenges: in-
tractable inference due to non-Gaussian posterior and poor
scalability for massive data [15]. While scalable GPC
available in the literature [16–18] have additional assump-
tions that may deteriorate their performance, SGPC im-
proves the paradigm of conversional GPC without
additional assumptions [19], which provides close-form
variational inference and reduces the complexity to
O(M3), where M is the number of inducing data much less
than total training data. To the best of our knowledge, it is
the frst work that SGPC is applied to antenna selection and
surpass the state-of-the-art machine learning counterparts.

Te main contributions of this paper are summarized as
follows:

(1) Conventional antenna selection methods are
optimization-driven decision with intractable com-
plexity. Tis paper proposed to tackle the problem of
antenna selection for system sum-rate maximization
with the up-to-datemulticlass classifer SGPC, achieving
excellent performance with feasible complexity.

(2) Tis paper developed a novel input feature in terms
of channel correlation matrix to capture the im-
portant properties of interuser interference, which is
the main restricting factor in the multiuser system as
discriminative characteristics to identify the optimal
antenna subsets.

(3) Tis work conducted extensive simulation experi-
ments to evaluate the performance of the proposed
method and performed a detail comparison with the
conventional optimization-driven UCAS algorithm
and the up-to-date learning scheme based on DNN
in terms of average sum-rate performance and
complexity which demonstrated the superiority of
the proposed method.

2. System Model

Consider a multiuser MIMO system operating in time division
duplex (TDD) downlink transmission scenario, as shown in
Figure 1, where a base station (BS) with L antennas and K RF
chains serves J single-antenna users, J≤K<L. Te BS selects
a subset of K antennas and sends data streams to users.

Suppose the channel between the BS and user j is qua-
sistatic fat fading. By quasistatic, it means that the coherence
time of the channel is so long that the whole data stream can
be transmitted within this time [20]. By fat fading, it means
that all frequency components of the transmitted signal will
experience the same magnitude of fading. Denote the channel
vector between all antennas at BS and user j by hj ∈ CL, and
the channel vector corresponding to antenna subset ac by
hj,c ∈ CK. Te received signal at user j is as follows [8]:

sj � hj,cwjtj + 􏽘
i≠j

hj,cwitj + nj, (1)

where wj ∈ CK is the beamforming vector, tj is the trans-
mitted signal, nj ∼ N(0, σ2) is addictive white Gaussian
noise (AWGN), and the second term of equation (1) is
interuser interference.

Te achievable rate of user j is as follows [21]:

rj,c � logdet Ij + wH
j h

H
j,cD

−1
j hj,cwj􏼐 􏼑, (2)

Dj � Ij + 􏽘

J

i�1,i≠j
hj,cwiw

H
i h

H
j,c, (3)

where Dj represents the noise and interuser interference at
user j.

Te main objective is to select a subset of K antennas at
the BS for maximization of the sum-rate of all users, with
limited transmitted signal power. Te antenna selection
problem can be modelled as the following equation [21]:

aopt � argmax
ac∈A

􏽘

J

j�1
rj,c,

s.t. 􏽘

J

j�1
Tr wjw

H
j􏼐 􏼑≤P,

(4)

where ac denotes the selected antenna index vector,
A � a1, . . . ac, . . . aC􏼈 􏼉; C � (CK

L ) denotes the number of
available antenna subsets; P denotes the budget of trans-
mitted signal power.
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After the optimal antenna subset aopt is decided, the
optimal beamforming vector wj can be obtained via the
scheme of weighted minimum mean square error
(WMMSE) [22].

3. Materials and Methods

From a multiclass classifcation and decision-making
perspective, this paper proposed to treat the antenna se-
lection problem in MIMO systems as to classify the input
data into one of the possible antenna subsets that meet the
maximum sum-rate criteria. Terefore, it is promising to
address this issue with some terrifc multiclass classifer and
predictor.

3.1. Scalable Gaussian Process Classifcation. Gaussian pro-
cess classifcation (GPC) is a kind of excellent learning-based
probabilistic classifcation; the merits of which dis-
tinguishing it from other kinds of classifcation are it pro-
vides not only class guess in the form of predictive
probabilities, but also a measure of prediction uncertainty
[15]. However, conventional GPC performs approximation
instead of exact inference because of non-Gaussian poste-
rior. Moreover, conventional GPC has infeasible complexity
O(CN3), where C is the number of classes and N is the
number of training data; therefore, it sufers from poor
scalability to tackle massive data.

Scalable Gaussian process classifcation (SGPC) ad-
dresses abovementioned issues of conventional GPC by
augmenting its probability space via Gumbel noise variable,
which leads to analytical model evidence or evidence lower
bound (ELBO) for efcient stochastic variational inference
with reduced complexity O(M3), where M is the number of
inducing data much less than total training data [19].

Given N training inputs X � xn􏼈 􏼉
N

n�1 and corresponding
outputs yn � [y1n, . . . ycn, . . . yCn], y � vec [y1; . . . yn; . . .

yN], where ycn � 1 and the rest elements of yn equal to zero
denote n-th input sample belonging to the c-th class, SGPC
places a GP prior over the latent function fc � [fc1, . . .

fcn, . . . fcN] ∼ N(0,Kc
N), fn � [f1n, . . . fcn, . . . fCn], and

f � [f1, . . . fc, . . . fC]T of allN training inputs for all C classes
and squash this through the softmax function to predict the
class probability πcn, where [Kc

N]i,j � k(fci, fcj) and k(∙) is
the kernel function or covariance function of input vectors,
which defnes the similarity or nearness between inputs with
the assumption that inputs which are close are likely to have
similar outputs [15]. Kernel function also projects the inputs
from original space to feature space with sortable properties
[23].

πcn � p ycn � 1|fcn( 􏼁 �
exp fcn( 􏼁

􏽐
C
c�1 exp fcn( 􏼁

. (5)

To label the class of a test input x∗, frst compute the
posterior of its latent variable f∗ as equation (6), and then
compute the class probability of x∗ with this posterior and
label x∗ with the class corresponding to the largest class
probability.

p f∗
􏼌􏼌􏼌􏼌X, y, x∗􏼐 􏼑 � 􏽚 p f∗

􏼌􏼌􏼌􏼌X, x∗, f􏼐 􏼑p(f |X, y)df. (6)

However, equation (6) is analytically intractable because
of the non-Gaussian posterior p(f|X, y) of latent variables.
Terefore, approximation is needed.

Consider M inducing variables uc � [uc1, . . . ucm, . . .

ucM] ∼ N(0,Kc
M) as sufcient statistic for fc; the Gaussian

approximate to posterior of f is as follows:

q(f |X, y) � 􏽚 p(f | u)q(u |X, y) � 􏽙
C

c�1
N μc

, vc
( 􏼁, (7)

μc
� Kc

NM Kc
M( 􏼁

− 1εc
, (8)

vc
� Kc

N + Kc
NM Kc

M( 􏼁
− 1 sc Kc

M( 􏼁
− 1

− I􏽨 􏽩 Kc
NM( 􏼁

T
, (9)

where q(uc|X, y) � N(εc, sc) is the variational posterior
assumed to be a tractable Gaussian, [Kc

M]i,j � k(uci, ucj), and
[Kc

NM]n,m � k(fcn, ucm).
Te Gaussian approximate to the posterior of f∗ is as

follows:

q f∗
􏼌􏼌􏼌􏼌X, y, x∗􏼐 􏼑 � 􏽚 p f∗

􏼌􏼌􏼌􏼌X, x∗, f􏼐 􏼑q(f |X, y)df

� 􏽙
C

c�1
N μc
∗, v

c
∗( 􏼁,

(10)

μc
∗ � kc
∗M Kc

M( 􏼁
− 1εc

, (11)

v
c
∗ � k fc∗, fc∗( 􏼁 + kc

∗M Kc
M( 􏼁

− 1 sc Kc
M( 􏼁

− 1
− I􏽨 􏽩 kc

∗M( 􏼁
T

,

(12)

where [kc
∗M]m � k(fc∗, ucm).

Te class probability πc∗ of the testing input is predicted
with Markov chain Monte Carlo (MCMC) sampling [15],
i.e., sample b latent values of f∗ according to equations
(10)∼(12), softmax them and then take an average according
to equations (13) and (14).

πc∗ � πc∗ +
exp fc∗( 􏼁

􏽐
C
c�1 exp fc∗( 􏼁

, (13)

πc∗ �
πc∗
b

. (14)

USER 1

USER j

BS

Figure 1: System model.
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Te variational parameters εc and sc as well as hyper-
parameters of kernel functions are learned simultaneously
by maximization of closed-form ELBO L in equation (15)
with the Adam optimizer [24].

L � − 􏽘
N

n�1
log ρn + 1( 􏼁 − 􏽐

C

c�1
KL q uc

􏼌􏼌􏼌􏼌X, y􏼐 􏼑 p uc
( 􏼁

����􏼐 􏼑, (15)

where ρn � exp(vc′n/2 − μc′n)􏽐c≠c′ exp(vcn/2 + μcn), μcn �

[μc]n, vcn � [vc]n,n, and c′ is the class label of n-th input
sample.

3.2. Antenna Selection with SGPC. We proposed the fol-
lowing antenna selection method based on SGPC, the ef-
fcacy of which is demonstrated by performance evaluation
in Results and Discussion section. Figure 2 is the fowchart of
this method.

3.2.1. Preparing Training Data

Step 1. Manipulate N training input vector xn as equa-
tion (16) based on N training channel matrix
Hn � [hH

1 , . . . hH
k , . . . hH

K ]H. HnHH
n is the channel correla-

tion matrix to capture the feature of interuser in-
terference, the main restricting factor in the multiuser
system.

xn � abs vec HnH
H
n􏼐 􏼑􏼐 􏼑. (16)

Step 2. Normalize xn as equation (17) to mitigate possible
signifcant learning bias.

xn
′ �

xn − min xn( 􏼁

max xn( 􏼁 − min xn( 􏼁
. (17)

Step 3. Classify Hn based on the key performance indicator,
the sum-rate of all users as equation (4), label the class c, i.e.,
antenna subset index, ofHn with Algorithm 1, and create the
training output yn � [y1n, . . . ycn, . . . yCn], where ycn � 1
and yc′n � 0 (c′ ≠ c).

Step 4. Repeat Steps 2 and 3 for all Hn and generate the
training dataset T � (xn

′, yn)􏼈 􏼉(1≤ n≤N). Initialize M in-
ducing points with k-means clustering.

3.2.2. Learning SGPC Model. Maximize ELBO L in
equation (15) with the Adam optimizer to learn varia-
tional parameters εc and sc as well as hyperparameters of
kernel functions.

3.2.3. Predicting Optimal Antenna Subset. Apply testing
input x∗ to the learned SGPC model to predict optimal
antenna subset corresponding to the largest class probability
πc∗ in equation (14).

4. Results and Discussion

Extensive Monte Carlo simulation experiments with
MATLAB were conducted to evaluate the proposed antenna
selection method based on SGPC with comparison to the
conventional optimization-driven UCAS scheme [7] and the
up-to-date learning approach based on DNN [8].

Te entries of 500 channel matrixes Hn are randomly
generated as i.i.d. complex Gaussian variables. To avoid large
variance of performance evaluation, we employ 5-fold cross-
validation [25] which splits the total 500 Hn into 5 equally
sized subsets, each containing 100Hn. One subset is used for
testing and the remaining subsets for training. Te entire

Start

Prepare training data

Learn SGPC model by maximizing
ELBO in Eq. (15) with Adam optimizer

Infer the posterior of latent variable for
new input according to Eq. (10)~(12)

Prediction error
converge?

Yes

No

Calculate the class probability of new
input with MCMC sampling according to

Eq. (13)~(14)

Predict the optimal antenna subset
corresponding to the largest class

probability

End

Figure 2: Flowchart of the proposed antenna selection method.
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procedure is repeated 5 times such that all subsets are tested
once. Te default primary parameters setup is summarized
in Table 1 unless otherwise specifed.

Te kernel function adopts radial basis function (RBF)
[13].

k xi, xj􏼐 􏼑 � exp − xi − xj

�����

�����
2

􏼚 􏼛. (18)

Te system average sum-rate of the three antenna se-
lection methods while varying SNR in the range [0, 20] dB is
portrayed in Figure 3. Tanks to the superior multiclass
probabilistic classifcation capability of SGPC over DNN and
UCAS, it is obvious that SGPC outperforms DNN and
UCAS for all SNR in the study; DNN performs moderately
and UCAS provides the worst performance. It is also ob-
served that the average sum-rate achieved by the three
approaches in the study rises as SNR increases, owing to the
reason that higher SNR represents weaker noise and
interuser interference which results in higher communica-
tion reliability and higher data rate.

Figure 4 illustrates the system average sum-rate achieved
by the three antenna selection methods for diferent number
of selected antennas 2≤K≤ 5.Te number of single-antenna
users J equals to 2 in this experiment. It is indicated that the
average sum-rate achieved with SGPC surpasses that with
DNN and UCAS nomatter howmany transmit antennas are
selected, which certifes again the advantage of SGPC-based
antenna selection over DNN and UCAS to obtain high
average sum-rate. It is also observed that the average sum-
rate achieved by the three methods in the study rises as the
number of selected antennas increases becausemore selected
antennas result in more streams transmitted simultaneously
(multiplexing gain) that increase data rate or lead to higher
SINR (spatial diversity gain) that enhance communication
reliability [13].

Te superiority of SGPC over DNN and UCAS is further
demonstrated in Figure 5 which displays the system average
sum-rate vs. various number of users 1≤ J≤ 4. It is shown

that the average sum-rate is the largest for SGPC, medium
for DNN, and the smallest for UCAS, regardless of the
number of users. It is also observed that the average sum-rate
achieved by the three schemes in the study rises as the

(1) Initialize the system sum-rate R � 􏽐
J
j�1rj,c � 0.

(2) for c � 1: C do
(3) Apply WMMSE scheme to antenna subset ac to obtain optimal beamforming vector wj,c.
(4) If 􏽐

J
j�1rj,c >R

(5) aopt � ac, wopt � wj,c.

ALGORITHM 1: Labelling training data.

Table 1: Default primary parameters setup.

Parameters Value
Number of training data N� 400
Number of inducing data M� 8
Number of total antennas at BS L� 6
Number of selected antennas K� 4
Number of single-antenna users J� 4
SNR 10 dB
Learning rate 0.01
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number of users increases as it is intuitive that more users
bring about larger average sum-rate under the same
circumstance.

Last but not the least, Table 2 presents the algorithm
complexity comparison in terms of big O notation, which is
a theoretical measure of algorithm complexity commonly
used in the literature. An algorithm with complexity
O(f(n)) means its complexity or feasibility in terms of the
asymptotic upper bound of execution time is in the order of
f(n), given the problem size n. Te complexity of SGPC is
cubic with M [19], where M is the number of inducing data.
Te complexity of DNN is linear with the product of the
number Ni of nodes in every two successive layers [26]. Te
complexity of UCAS is O(J2L + J2K + JL + JK) [7], where J

is the number of users, L is the number of total antennas at
BS, and K is the number of selected antennas. In the case of
the massive MIMO system, M is typically smaller than Ni, J,
L, and K; therefore, SGPC has the lowest complexity and the
most feasibility among the three schemes.

5. Conclusions

Tis paper formulated the antenna selection problem in
MIMO systems from amulticlass classifcation and decision-
making perspective and propounded an antenna selection
method based on multiclass SGPC which outshines the

conventional optimization-driven UCAS algorithm and the
up-to-date learning scheme based on DNN in terms of
average sum-rate performance and complexity. Terefore,
SGPC is a very appealing antenna selection technique for the
MIMO system. Te future work will exploit the scenario of
users with multiple antennas.
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