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The hybrid real-binary differential evolution (HDE) algorithm has been proficient in addressing electromagnetic optimization
problems (EOPs) involving both real and binary variables. However, its optimization performance on different control parameter
(CP) settings is not further studied, and the method to determine the values of CPs is more likely to use the trial-and-error
method, which lacks universality on both unimodal and multimodal benchmarks. To completely account for the effect of CPs in
HDE, the Taguchi method is utilized to identify the values of each CP. The orthogonal experiment result is the average rank of the
mean values of 23 benchmark functions obtained by HDE and other classic optimization algorithms. Based on the analysis of
variance results, three CPs that have a major effect on the performance of HDE are selected, and each of them is changed from level
1 to level 5 to further obtain the best combination of CPs, which is indicated as HDEy;,. To further enhance the local search ability
of HDEy;, for the global best, a modified algorithm (HDEy;,) is proposed based on a novel mutation strategy selection method,
and the simulation results demonstrate that the minimum values obtained by HDE;, are smaller than those obtained by HDE .
Two EOPs, including planar microwave absorber and Yagi-Uda antenna designs, are solved to validate the performance of HDEy;
and HDE,. The results reveal that the HDE,;; and HDEy;, outperform HDE, demonstrating the efficacy of the proposed method
for identifying the CPs of HDE. In the end, a low profile and wideband RCS reduction pixelated checkboard metasurface is
optimized utilizing the HDE,;,, proving that the proposed algorithm can be a good candidate for hybrid real-binary electro-
magnetic problems.

1. Introduction

Many hybrid evolution algorithms have been proposed to
address problems involving both real and binary parameters
[1-6], and some of them have been utilized to solve antenna
optimization problems such as antenna array synthesis
[4, 5], material selection of microwave absorbers [6], and
pixelated antenna design [4, 5]. A hybrid real-binary dif-
ferential evolution (HDE) algorithm was proposed for an-
tenna design in [5]. The optimization results of HDE were
compared with those of hybrid real-binary particle swarm
optimization (HPSO) [4], and the results demonstrated that

HDE outperforms HPSO. The procedure for setting the
control parameters (CPs) of HDE, however, was not
explained.

As we know, despite the improved method for en-
hancing the performance of evolution algorithms, the
control parameters (CPs) of each algorithm have greatly
affected its optimization performance. As a result, it is
critical to obtain the proper value of each CP. The traditional
method usually adjusts the value of each CP via the trial-
and-error method or empirical rules, resulting in an algo-
rithm that is unsystematic and insufficiently generic for
practical applications [7].
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To address the issue of optimal CP setting, the Taguchi
method (TM) was used for the identification of the strategy
parameters of particle swarm optimization (PSO) [8, 9].
Four CPs, inertia weight w, cognitive acceleration c,, social
acceleration c¢,, and the maximum velocity along any di-
mension V., were determined using TM in [8]. However,
the result of each experiment was the mean fitness value of
the best particle found for 50 independent runs of the
Rosenbrock function, which was a multimodal benchmark
function. The best combination of these four CPs was de-
termined using the response table, and the performance of
PSO with the new CPs was validated by the Griewank
function. The simulation results revealed that better results
were achieved by the PSO with the optimal CPs obtained
through TM. The study in [9] investigated more than seven
control factors of PSO based on the Taguchi method, and the
experimental results for four benchmarks demonstrated that
the population topology is the major factor in influencing
PSO performance. The intrinsic limitation of this method is
that it only considers two or four multimodal functions and
lacks universality for other problems. Taguchi method was
also adopted for finding the best combination of CPs for the
ant colony optimization (ACO) algorithm [10]. The opti-
mum combination of CPs of the ACO was determined by
a response table, and the confirmation experiment was
conducted to test the efficiency of the ACO with these CPs
for a distribution allocation problem. However, from the
perspective of optimization using the Taguchi method, the
result of a confirmation experiment is not always better than
the results of experiments established from the orthogonal
array [11].

This paper proposes a new TM for CP selection of HDE
by evaluating more than 23 benchmark functions. Six pa-
rameters, including different mutation operations, the
number of populations, the upper and lower boundaries of
the scaling factor, and the crossover rate for real and binary
parts, respectively, are considered as the factors in the or-
thogonal experiment design. The main contributions of this
paper are summarized as follows:

(1) To fully compare the performance of HDE on
multimodal and unimodal functions, the result of
each experiment in the Taguchi method is the av-
erage rank value, which is calculated among the
mean values of 23 benchmark functions obtained by
HDE with the CPs given in this experiment and
other classic nature-inspired algorithms. To de-
termine the best combination of CPs for HDE, the
percent contributions of each factor are calculated,
and the single factorial designs of the significant
factors are evaluated. The ideal set of CPs for HDE is
designated as HDE,;.

(2) To enhance the ability to search the global opti-
mum, a novel mutation strategy selection method is
proposed to HDE;;, which is denoted as HDE,,.
The simulation results show that the minimum
values achieved by HDE,, are less than those ob-
tained by HDEy; with a little sacrifice in conver-
gence ability.
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(3) The performance of HDE,,;, HDEy,, and the
original HDE is compared within three cases:
benchmark functions and two electromagnetic op-
timization designs. Both the results of these cases
show improved optimization performance and in-
vestigate the effectiveness of this method to select the
proper CPs for HDE.

(4) A pixelated checkboard metasurface, which is on the
lossy substrate backed by a 1-mm-thick aluminum
plate with an air gap, is designed and has a lower
profile and broader band of RCS reduction com-
pared with the reference one.

2. Parameters Selection Using TM for HDE

2.1. The Control Parameters of HDE Algorithm. As depicted
in [5], HDE combines classical DE and Boolean DE for real and
binary parts, respectively. An individual of the population at
generation G in HDE, denoted as 1<i< N, where N, is
population size in the HDE, is also a candidate solution. For
a hybrid real-binary minimization problem F(X;;), where
- —r b . . —r
X6 = (X5 X;¢) is a vector of M + N dimensions, X, =
(RiG Rig, ... RIG) and ?iG = (B}, B}, .. BY;) represent
real and binary variables, respectively.

Figure 1 shows the three main procedures of mutation,
crossover, and selection. Different from the original HDE,
there are six control parameters, such as mutation strategy
(MS), population size N, the upper and lower boundaries of
scaling factors F,, and F,_; for real part as well as the
crossover probabilities for real variables CR,, and binary
variables CR,, respectively. Table 1 lists five mutation
strategies for the real and binary parts of HDE. For real part,

—r
V¢ denotes a mutated vector, and ry, r,, 73, 7,4, and 75 are
randomly chosen indices in the range [1,Np] such that

riEryErsEr,#rs#i € [1,Npl. F is a vector with M
dimensions that the element is randomly chosen in the range
[Fpnin> Frnax)- It can be observed that the mutation strategies
for binary parts convert the numeric operators “-,” “+,” and
“~” in the mutation strategies for real parts into the logic
operators “AND,” “OR,” and “XOR” accordingly.
r,»n € [1,2,...,5] in binary part are same with the defi-
nition in the real part that r| #r, #r;#r,#r5# j € [1,Np],

—b
and F is a random N-bit binary string. The binominal
crossover operation is used independently to generate trial

vectors ﬁ):G and ﬁiG for real and binary parts, respectively.
Jrana @nd k.4 are two randomly chosen integers in the
ranges [1, M] and [1, N], respectively. randi is a uniform
random number within the range [0, 1].

2.2. Parameters Selection Using TM. This section describes
the detailed procedures for choosing the optimal CPs using
TM for HDE with better performance. TM is a robust design
approach based on the orthogonal array (OA) and signal-to-
noise ratio (SNR) to study a large number of parameters with
a limited number of experiments. OA, which is represented



International Journal of Antennas and Propagation

Begin

v

Set control parameters including Np, F__, F

min’ ~ max’

CR, CR, and MS

Initialize the individuals X'I,O (i=1, 2,..., Np)of the population

v

Evaluate the fitness values of all individuals

v

End | ——— f:,::f:’Mieiet ciriteAriZ)}l?::i:: =
—  Yes ""’&’i\i(;’
For each individual
Real part [ Binary part

mutation operator MS for real part

A

. L
v ‘ﬁ A
Generate a mutated vector \7f . by the r |

Generate a mutated vector V' by the
| mutation operator MS for binary part

1 Selection operation

Combine U; . and UffG into a new individual Q o
B, {Om ifF (U, sF(X,)
G+l T

X6 otherwise

element in V7,
Generate a trial real variable by the
crossover operator
if (randi < CR))

Check the boundary condition of each ‘

WG . . .
U],i,(; - or (] _]mnd’] -
T
i,

1,2,.., M) U =

Generate a trial binary variable by the
crossover operator

otherwise Xt

Mutation operation

if (randi < CR))
or(k=k ,k=1,2,..,N)

otherwise

rand®

Crossover operation I

l

Figure 1: The flowchart of HDE.

by the notation OA(N,k,s,t), is utilized to design the
experiments. Compared to the full factorial design, exper-
iment design using OA may effectively reduce the number of
experiments while maintaining the essential information.
N, and k indicate the number of experiments to be con-
ducted and the number of variables whose effects are about
to be analyzed, respectively. s indicates the levels of each
variable, and ¢ suggests the strength. SNR, which is used to
select the current best level of each variable, indicates the
adaptation of the design parameters.

In this paper, OA (25, 6, 5, 2) is employed, and the factors
with their corresponding level values are listed in Table 2. 23
functions, comprising 7 unimodal and 16 multimodal
benchmark functions, are tested to further evaluate the
performance of HDE on various types of benchmark
functions. The detailed expression, including the upper and
lower bounds of each function, can be found in [12]. All
functions are tested on the assumption that partial real
variables are represented by a binary string with a quanti-
zation error of less than 2 x 107 %, as suggested in [6].

The result of each experiment is a mean rank value,
which can be calculated as follows: first, the mean values of
23 benchmark functions with 100 independent runs are
obtained by HPSO [4], IHPSO [6], GA, HGWO [13], BEO
[14], and HDE,, where HDE, denotes the HDE algorithm
with the combination of CPs in the » th experiment and
1 <n<N,. Second, the rank of the mean value of the m th

benchmark function obtained by the HDE, algorithm,
denoted as r,,,, is calculated. Third, the average rank values
of HDE, by Y2 r,.. are calculated. Table 3 displays the
factor values and results of each experiment, and the values
of MS are shown as the level value. It is clear that the
minimum result is obtained by the 25th experiment.

After all experiments are conducted, a response table

based on (1) is created and displayed in Table 4.

1 m
Mpa = —101g ZZ(L‘”’)2 , (1)

i=1

where f7 ! denotes the i th experiment value of factor p at
level I. m is the number of experiments in which the level of
factor p is I. For a minimum problem, if all experiment
results are greater than zero, “the larger the better” char-
acteristic is selected for choosing the best level of each factor
from the response table. Hence, the best level values for these
six factors are 50, 0.2, 0.7, 0.9, 0.1, and 1 with respect to the
levels (5, 2, 2, 5, 1, and 1), and the minimum SNRs of each
factor are shown in bold. The average rank value for HDE
with current CPs is 3, which is slightly larger than the result
of the 25th experiment in Table 3. Additionally, from the
analysis of variance (ANOVA) [15], the percent contribution
of each factor is calculated, and the results show that the
factors CR,, MS, and N, have a greater impact on the
performance of HDE.

p
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TaBLE 2: Factors and the value of each level of the factor.

Factors
Level
» Fmn Faex CR. CR, MS

1 10 0.1 0.6 0.1 0.1 DE/rand/1

2 20 0.2 0.7 0.3 0.3 DE/rand/2

3 30 0.3 0.8 0.5 0.5 DE/best/1

4 40 0.4 0.9 0.7 0.7 DE/best/2

5 50 0.5 1 0.9 0.9 DE/current-to-best/1

TaBLE 3: CPs and results of each experiment.

N, N, Foin Foox CR, CR, MS Results
1 10 0.1 0.6 0.1 0.1 1 3.91
2 10 0.2 0.7 0.5 0.7 5 5.83
3 10 0.3 0.8 0.7 09 2 5.91
4 10 0.4 0.9 0.9 0.3 3 5.48
5 10 0.5 1 0.3 0.5 4 5.91
6 20 0.1 0.7 0.3 0.3 2 2.96
7 20 0.2 0.8 0.9 0.1 4 3.43
8 20 0.3 1 0.1 0.7 3 5.78
9 20 0.4 0.6 0.7 0.5 5 5.43
10 20 0.5 0.9 0.5 09 1 513
11 30 0.1 0.8 0.5 0.5 3 5.22
12 30 0.2 1 0.7 0.3 1 3.13
13 30 0.3 0.9 0.3 0.1 5 4.74
14 30 0.4 0.7 0.1 0.9 4 5.78
15 30 0.5 0.6 0.9 0.7 2 4.48
16 40 0.1 0.9 0.7 0.7 4 5.48
17 40 0.2 0.6 0.3 0.9 3 5.74
18 40 0.3 0.7 0.9 0.5 1 3.13
19 40 0.4 1 0.5 0.1 2 4.17
20 40 0.5 0.8 0.1 0.3 5 4,96
21 50 0.1 1 0.9 09 5 5.43
22 50 0.2 0.9 0.1 0.5 2 3.30
23 50 0.3 0.6 0.5 0.3 4 3.83
24 50 0.4 0.8 0.3 0.7 1 2.87
25 50 0.5 0.7 0.7 0.1 3 2.83

The bold value represents the lowest value among the results.

To further evaluate the influence of CR,, MS, and N, on
the performance of HDE, the level of one of them is changing
from 1 to 5 gradually while keeping the other CPs the same
with the optimal level values obtained by the response table.
Thus, a total of 13 extra experiments are conducted, and the
minimum average rank value of 2.304 is obtained, as shown in
Table 5. The corresponding CPs are N,=30, F,,=0.2,
Fax =07, CR, =09, CR,=0.1, and DE/rand/1 mutation
strategy, and HDE with these CPs is denoted as HDEy;,.

Table 6 displays the statistics of 23 benchmark functions
that are optimized by 8 different algorithms, whose values of
control parameters are listed in Table 7, used in under 100
independent runs, and the minimum average values of each
benchmark function are shown in bold. The Ar in the last
row denotes the average rank of the mean value of each
benchmark obtained by different algorithms. As for the
mean values, the results obtained by IHPSO are the best
because Ar is the smallest at 2.87. The Ar of HDEy;, is 2.957,
which is slightly larger than 2.87 for IHPSO and less than
4.957 for HDE, indicating that the search ability of HDE has

improved with the new set of CPs. The lower standard
deviation values of F, to F,; with the exception of Fy are
obtained by HDE;,, showing that HDE,;, is more stable
than HDE. However, the minimum results achieved by
HDE,, are greater than those of HDE, especially for the
benchmarks with high dimensions. Because the mutation
strategy of HDE is based on DE/best/1, and the population
evolution of HDE has more potential to search around the
global best to reach the global optimum, the minimum
values obtained by HDE are lower than HDE, for bench-
marks with high dimension. However, it is more likely to be
trapped in the local optimum for HDE with the DE/best/1
mutation strategy. For multimodal benchmark functions
with fixed dimensions of F,, to F,;, HDE;, performs better
on the benefits of small landmarks and the DE/rand/1
mutation strategy and, therefore, has greater potential to
thoroughly explore the search space.

In order to overcome the shortage of HDE, for lacking
local search ability to find the optimum values, it is necessary
to combine the DE/best/1 mutation strategy into the HDE
to increase its search ability around the global best. To
enhance its local search ability of HDEy,;, a modified al-
gorithm, which is denoted as HDEy,, is proposed, and the
details of HDE, are presented in Algorithm 1. After the first
iteration of HDE, the population is sorted and divided into
two parts depending on the fitness values. The sub-
population S1 consists of the Np/3 individuals with the best
fitness values, and the remaining individuals form the
subpopulation S2. At the mutation procedure, if the target
vector is a member of subpopulation S1, the DE/best/1 is
performed to generate the corresponding mutant vector;
otherwise, the DE/rand/1 is used.

Table 6 shows the statistics of HDEy;, for benchmarks.
From the perspectives of HDE and its two modified algo-
rithms, the average results generated by HDEy;; and HDEy,
are better than those obtained by HDE, but the minimum
values achieved by HDE, are less than those of HDE,;, and
even close to the results of HDE. Although the Ar of HDEy,
is slightly greater than that of HDEy;,, the overall perfor-
mance of HDE,, is better than HDE.

To further compare the performance of these three al-
gorithms, the stop criterion is set to the global optimum
reaching f, or the number of fitness function evaluations
(NFFES) reaching 2 x 10*. The statistics of success rates and
running times of 23 benchmarks performed by HDE,
HDEy,, and HDE,, are listed in Table 8. The success rate is
the ratio of the number of runs that the global optimum
reaches to f,. to 100 independent runs, and the times that
have been consumed by 100 runs are also shown in Table 8.
Actually, the running times of 13 benchmarks of HDE, are
shorter than those of the other two algorithms. The success
rates obtained by HDEy;, have increased by 10%-50% over
those of HDE.

3. Applications in Electromagnetic Optimization

Three EOPs, PMA, Yagi-Uda antenna, and pixelated met-
asurface designs, are optimized in this section to validate the
performance of HDE,.
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TABLE 4: Response table.
Factors
Levels
N, Fin F .« CR, CR, MS
1 —14.748 —-13.457 -13.521 -13.717 -11.760 -11.428
2 -13.418 -12.984 -12.737 -13.318 -12.443 -12.653
3 —-13.540 -13.629 -13.295 -13.786 -13.520 -14.203
4 -13.607 -13.753 -13.792 -13.514 -14.003 -13.974
5 -11.542 -13.575 -13.985 -13.062 -14.975 —14.473
Optimal level values 50 0.2 0.7 0.9 0.1 1
Percent contribution 0.259 0.021 0.066 0.024 0.327 0.302
The bold values represent the lowest values of each column.
TaBLE 5: Experiment results of HDE with fixed F,,, Fin,y and CR, and varying N, CR;, and MS.
Experiments

Factors

2 3 4 5 6 7 8 9 10 11 12 13
N, 10 20 30 40 50
Fo., 0.2
Fpo 0.7
CR, 0.9
CR, 0.1 0.3 0.5 0.7 0.9 0.1
MS 1 2 3 4 5
Results 4.348 2.739 2.304 2.739 3.043 3.087 3.043 3.478 4.609 3.826 3.783 2.826 4.609

3.1. PMA Design. PMA design is a hybrid real-binary op-
timization problem in which the material and thickness are
represented by a fixed-length binary string and a real
number, respectively. The optimization goal is selecting the
material with the appropriate thickness for each layer to
minimize the reflection coefficient of an incident wave
within the desired frequency band. In this section, a five-
layered PMA design with PEC-backed is investigated, and
its geometry is depicted in Figure 2. The detailed material
parameters used in this case can be found in [16]. The
incidence angle is denoted as 6, and the maximum
thickness of each layer is 2mm. The fitness function is
defined as follows:

Minimize F(f, 6) = R(f, 6) + y max [o, Yt - Td], (2)
i=1

where R ( f, 0) represents the maximum reflection coefficient
in decibels within the desired frequency band. The second
term is a plenty function, which enables the overall
thickness of PMA satisfy the design requirement. Y t;
denotes the actual overall thickness of PMA in the op-
timization process, and the maximum thickness of the
PMA is represented by T, which is preset before the
optimization. y is set to 10°, which is a larger number to
ensure that the overall thickness of the final global best
PMA design is smaller than T,.

Two cases, denoted as case 1 and case 2, are optimized
using five algorithms, namely, HDE [5], HPSO [4], IHPSO
[6], HDEy,, and HDE,, respectively. Cases 1 and 2 involve
minimizing the reflection coefficient under normal in-
cidence within the low-frequency band (0.2-2 GHz) and
high-frequency band (2-8 GHz) with the constraint
T; = 5mm. The statistics for the 20 independent runs are
listed in Table 8, and Figure 3 shows the convergence curves.

It is obvious that the average results obtained by HDE, are
the lowest for both cases 1 and 2. The convergence curves
versus the number of fitness function evaluations (NFFEs)
obtained by HDEy; and HDE at the early evolution show
a significant difference in that HDE has a faster convergence
speed than HDEy;, at the initial stage, due to the MS of HDE,
i.e., DE/best/1, having more potential to search around the
local optimum and get a better result. However, the hybrid
MS selection method employed by HDEy;, can efficiently
solve the lack of exploitation of HDEy; and speed up the
convergence at the early iterations. According to Table 9, the
average and the minimum results obtained by HDEy;, are
better than those obtained by HDEy,. Furthermore, the
minimum results optimized by HDEy, are comparable to
the minimum results obtained by HDE with only the DE/
best/1 mutation strategy.

3.2. YAGI-UDA Antenna Design. In this section, a Yagi-Uda
antenna is designed using HDE, HDEy;,, and HDE,, and
the performance of the designs is compared. As shown in
Figure 4, the traditional Yagi-Uda antenna consists of several
linear dipole elements, one of which is energized directly by
a feed transmission line. The total structure can be divided
into three parts, including the driven element, reflector,
and directors. The radiation performance of a Yagi-Uda
antenna is comparable to that of an end-fire array since the
parasitic elements in the front y-axis serve as directors and
the rear dipole as a reflector. The currents of the reflector
and directors are induced by mutual coupling [17]. In
general, the lengths of the directors are slightly shorter than
the driven element, while the length of the reflector is
slightly longer. The Yagi-Uda in Figure 4 has a high gain
along the x-axis, and the gain will be enhanced with the
increasing number of directors. With the benefits of high
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TaBLE 7: Control parameters of each algorithm in Table 6.
Algorithms Variable types Control parameters
Population size N, = 20, crossover percentage Pc = 0.8, mutation percentage
GA Pm = 0.3, mutation rate y = 0.03, roulette wheel selection, and selection pressure
p=8
Binary variables Population size N, = 20, exploration ability control parameter a, = 2, exploitation
BEO [13] e P . i
ability control parameter a, = 1, and generation probability GP = 0.5
HGWO [14] Population size N, = 20, .coeﬁiaent. ais hneatrly decreased from 2 to 0 over the
course of iterations, and inertia weight w = 0.5 x (1 + rand)
Population size N, = 20, inertia weight for binary part wg = 1, the upper and lower
boundaries of inertia weights for real part wg .. = 0.9, wg ... = 0.4, accelerating
HPSO [4] . . max ; .
coefficients ¢; = ¢, = 2, and the maximum velocities for real part and binary part,
VR,max =0.1x (Rmax - Rmin)’ VB,max =6
THPSO [6] All parameter sets are the same as the setting in HPSO
Population size N, = 40, the scaling factor F = 0.7, the crossover probabilities for
HDE [5] real variables CR, = 0.8, and binary variables CR, = 0.2, mutation strategy:
Hybrid variables DE/best/1
Population size N, = 30, the upper and lower boundaries of scaling factors F ., =
HDEy, 0.7 and F;, = 0.2, the crossover probabilities for real variables CR, = 0.9, and
binary variables CR,, = 0.1, mutation strategy: DE/rand/1
Population size N, = 30, the upper and lower boundaries of scaling factors F ., =
HDE 0.7 and F;, = 0.2, the crossover probabilities for real variables CR, = 0.9, and
N2 binary variables CR, = 0.1, novel mutation strategy selection from DE/best/1 and
DE/rand/1
(1) Set Np = 30, F,;, = 0.2, F,,, = 0.7, CR, = 0.9, CR, = 0.1
(2) Initialize the pop randomly distributed in the solution space.
(3) Set gen=0, FEs=0, Max FEs=10*
(4) while FEs < MaxFEs do
(5) gen = gen + 1
(6) ifgen>1
(7) Sort the population based on their fitness values, and the top Np/3 individuals form subpopulation S1, and the remaining

individuals form subpopulation S2.
(8) end if
(9) fori=1— Np do
(10) ificS1

(15)  Perform the crossover operation.
(16)  Perform the selection operation.
(17) end for

(18) FEs=FEs+Np

(19) end while

(20) Return the best agent fitness.

@11 Perform the mutation operation based on DE/best/1.
(12) else
13) Perform the mutation operation based on DE/rand/1.
(14) end

ALGORITHM 1: Pseudocode of HDE,.

gain, lightweight, simple configuration, and easy fabrica-
tion, Yagi-Uda antennas are primarily employed for TV
and amateur radio applications.

In this scenario, FEKO, a 3D electromagnetic field solver
based on the method of moments (MOM, the method of
integral equation) 18, 19], is used to simulate a six-element
Yagi-Uda antenna made up of a given length of dipoles.
Table 10 displays the real-binary variables in relation to the
electric parameters. The length of each linear dipole element

L;(1<i<6) must be chosen from a set of lengths ranging
from 0.31, to 0.611, with 0.01A; increment, where A, is
wavelength operating at 165 MHz in free space. As a result,
each Yagi-Uda antenna element has 32 possible selections,
and we need five bits to represent the choice length of each
element. For example, the binary strings “00000” and
“11111” represent the first and 32nd choices from the given
length, i.e., 0.31, and 0.61A,. The spacing of each adjacent
director S; (1 <i<5) is a real variable that ranges from 0.01 to
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TABLE 8: Statistics of success rates and running times of 23 benchmarks performed by HDE, HDEy;,, and HDE, at the criteria of either the
global best reaching f, or the NFFES reaching 2 x 10%.

. Success rates Times (s)
Functions f min f.
HDE (%) HDE,; (%) HDE,, (%) HDE HDE,, HDE,,
F, 0 1.36E—-05 22 13 58 1216.49 1461.99 1297.74
F, 0 6.45E - 04 14 15 58 1482.24 1637.37 1215.51
F; 0 35.1 71 86 95 812.80 950.44 817.99
F, 0 0.337 14 2 14 1192.31 1257.03 1123.93
F5 0 41.5 36 95 87 1070.54 692.13 649.65
Fq 0 0.372 21 96 66 1259.65 783.79 928.77
F, 0 0.0143 41 6 19 1658.40 1657.20 1519.22
Fq —-5865.8 —-5480 11 52 12 1140.49 1063.66 1175.29
F, 0 15.6 73 31 83 1116.22 1620.31 1254.30
Fy, 0 0.0106 24 78 42 1245.84 1200.16 1042.69
F, 0 0.0675 16 31 51 1184.87 1156.77 1048.72
F, 0 0.0962 51 95 70 844.21 586.37 772.00
Fi3 0 0.228 2 100 96 1182.40 635.94 552.72
F, 1 1 0 0 0 425.75 410.30 418.70
Fis 0.0003 0.001 48 86 86 485.74 319.04 208.07
Fi -1.0316 -1.03 98 100 100 24.46 22.14 25.75
F,, 0.398 0.398 87 100 100 70.90 40.47 28.25
Fig 3 3 0 0 0 447.35 466.08 583.27
F -3.86 -3.86 85 100 97 162.40 48.94 106.44
Fy -3.32 -3.30 43 90 85 735.10 603.73 506.76
F,, —10.1532 -7.77 28 77 66 602.29 442.56 418.67
F,, —10.4028 -8.52 38 75 71 500.58 447.18 413.41
F,, —-10.5363 —-8.98 31 82 82 617.20 439.38 373.11
FIGURE 2: The configuration of PMA.
1 _12 1 L 1
) oo
& ~ &
g 22 > e - £ -20 4 L
2 N 2
oy Pl pon— \‘\
= .ﬁ""q_.--..________
26 ; o -24 : —_——
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HDE = HPSO HDE = HPSO
HDE, \=1= THPSO HDE, \=1= IHPSO
--- HDE,_, -== HDE
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(b

FIGURE 3: The convergence curves of (a) case 1 and (b) case 2 optimized by HPSO, IHPSO, HDE, HDEy;;, and HDE .
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TaBLE 9: The statistics of case 1 and case 2 for PMA designs.
. Case 1 (0.2-2) GHz Case 2 (2-8) GHz

Algorithms . .

Max Min Avr Std Max Min Avr Std
HPSO [4] -16.74 —-28.38 —21.42 4.09 -17.5 -24.1 -21.92 1.77
THPSO [6] -17.18 -28.38 -23.74 4.93 -22.28 —25.34 -23.57 0.73
HDE [5] -17.20 —-28.38 -24.16 3.47 —-20.94 —-25.78 -23.73 1.06
HDE,, -16.99 —-28.04 —24.80 2.70 -22.05 —25.35 —23.37 0.73
HDEy, -21.39 -28.37 -25.43 2.61 —22.36 —25.46 -23.92 0.86

L3 L6
X
SZ SS
Reflector Driven Directors
element
FIGURE 4: Six-element Yagi-Uda antenna configuration.
TaBLE 10: The real and binary variables in HDE for Yagi-Uda antenna design.
Real variable Binary variable
Si S, S; Sy Ss L L, Ly Ly Ls Lg
S, € [0.01,0.5], (1<i<5) L; € (00000 ~ 11111), (1< j<6)

?i,G 0217 0199 0364 0408 0.37 10010 01111 01111 01101 01100 01100
Eiﬁgters 0.2171, 0.1991, 0.364), 0.408\, 0.371, (19)0.481, (16)0.451, (16)0.451, (14)0.431, (13)0.421, (13)0.42},

0.5 times A,. The total hybrid variables consist of five real
variables and thirty bits of binary variables, like X;; in
Table 9. The radius of each dipole is fixed to 0.0033691, in
the physical model.

It is known from [17] that the best directivity of a six-
element Yagi-Uda antenna is 13.41 dB without taking into
account the front-to-back ratio (FBR). Therefore, the opti-
mization objective is to reduce the FBR as much as possible
while increasing the directivity over 13.41 dB. The fitness
function can be expressed as follows:

Minimize F = y max{0, 13.41 — D} — FBR, (3)

4)

E(6=90°,6 =0
FBRzZOloglo( (6=190"¢ 0)}>,

max{E (6 = 90°, ¢,,)

where the first term in (3) is a plenty function to ensure that
the directivity of a six-element Yagi-Uda antenna, which
is denoted as D, is less than 13.41 dBi. FBR is calculated by
(4), which denotes the ratio of the electric field at point
(0=90°,¢ =0°) to the maximum electric field at the
points (6 =90°,¢, € [160°,200°]). y is set to 10’ in this
case to ensure that the directivity criterion is met first and

next to make the FBR as larger as possible during the
optimization.

The maximum NFFEs is 10* in this case, and each al-
gorithm is run five times independently. Table 11 gives the
obtained statistics and CP values of HDE, HDEy;, and
HDE,, for Yagi-Uda antenna designs. The best average
result is obtained by HDEy;;, and the design with the lowest
fitness value is obtained by HDEy,. The success rate in
Table 10 denotes the ratio of the number of runs satisfied
with the plenty term in (3) to five independent runs. HDE
has a success rate of only 60%, showing that it is ineffective in
this case. Figure 5(a) displays the average convergence
curves obtained by HDE, HDEy;;, and HDEy,. The mini-
mum F value achieved by HDE;, is —24.7, which is 3.1 less
than the minimum F value obtained by HDE. From the
directivity pattern shown in Figure 5(b), the lower front-
back ratio is obtained by HDEy,. The optimal result ob-
tained by HDEy, is {0.2171,, 0.1991,, 0.364\,, 0.408),,
0.37A,,1,0,0,1,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,0, 1, 1,
0, 0, 0, 1, 1, 0, 0}. Hence, the lengths of six dipoles
are L, =0481, L, =045\, L,=0.45), L,=0.431,
Ly = 0.421;, and Ly = 0.42A,, respectively.
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TaBLE 11: The statistics for Yagi-Uda antenna designs.

Success rate

Algorithms Parameters setting Max Min Avr (%)
0
N, =40,F=0.7,CR, =0.8,CR, = 0.2
P > > > b > _
HDE [5] DE/best/1 626.25 21.60 158.15 60
N,=20,F,,=02F_,. =07CR, =09,
p min max —_ - —_
HDEy, CR, = 0.1, DE/rand/1 20.01 23.94 22.75 100
N,=30,F,,=02,F,, =07CR, =09
P >~ min >+ max > T 4 — — -
HDEy, CR, = 0.1, DE/rand/1, DE/best/1 20.38 247 20.85 100
5000
4000
2 3000
g
= 2000
1000 —
0 —
0 2000 4000 6000 8000 10000
NFFEs
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mmm HDEN1
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@
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FIGURE 5: (a) Average convergence curves and (b) directivity versus 6 of six-element Yagi-Uda antenna optimization using HDE, HDE,

and HDE,.
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3.3. Wideband RCS Reduction Checkerboard Metasurface
Design. Checkerboard metasurface (CM) is one type of
metasurface that has been widely used for radar cross
section (RCS) reduction [20-22]. A pixelated CM is pro-
posed in [21] over a frequency band from 3.8 to 10.7 GHz;
however, the size of two cells is preassigned manually. A
CM composed of pixelated and no-element tiles on a 1.57-
mm-thick lossy FR-4 substrate (e, = 4.4, tano = 0.02)
backed by a 1-mm-thick aluminum plate with an h,-thick
air gap is designed, and the overall configuration is shown
in Figure 6.

From Figure 6(c), the square patch is discretized into
14 x 14 pixels, and each pixel is represented by a square with
a side length of 4 mm. To maintain the polarization in-
dependent, a four-fold symmetry is imposed into the patch,
and then, the patch can be represented by a 28-bit binary
string. Moreover, a circular patch with a radius of 0.2 mm is
attached to a diagonal connection point to avoid one-point
subpatch contacts. To realize the 10 dB RCS reduction over
the frequency band from 4 to 12 GHz, the cell configuration
represented by a vector consisting of a and h,, and a 28-bits
binary string is optimized using HDEy;,.

An approximated RCS reduction expression (5) in [23] is
used as the fitness function in this case because of the re-
flection magnitude varying versus working frequency on
a lossy substrate. The two real variables, which fluctuate in
0.1 mm steps, are optimized within a € [0.3,1], h, € [0, 5].

A (fi)e™ (1) + 4, (fi)e’* (7’

, (5
2

R(f;) = 10log

where A, (f;) and P, (f;) denote the reflection amplitude
and phase of the cell 1 at the ith operating frequency. The
fitness function for the CM optimization is defined as
follows:

a2

Circular patch

(c)
FIGURE 6: Configuration of the designed RCS reduction CM. (a) Top view, (b) side view, and (c) the layout of the pixelated unite cell.

1 n
Minimize, F == Y Q(f,),
nia

-10, ©

R(f3),

where f; denotes the ith sampling frequencies within the
given operating band 4-12 GHz. The stopping criterion is
F = -10 or the maximum NFFE reaching to 2000.

The reflection coeflicients of pixelated and no-element
unite cells are carried out using the CST MICROWAVE
STUDIO® [24]. The control parameters of HDE,, are same
with the setting of the design of the Yagi-Uda antenna. The
optimal result which is represented by a vector of
7:{0.8, 44,1,1,1,0,0,1,0,1,1,1,0,1,1,0,0, 1, 1, O,
1,1,0,0,0,0,0,0,0,0} is obtained after 265 fitness
function evaluations.

One period of a square CM that combines pixelated and
no-element tiles is depicted in Figure 6(a). Each tile consists
of 6 x6 cells to mimic the periodic boundary condition.
Figure 7 shows that 100% and almost 96% fractional
bandwidths of monostatic 10dB RCS reductions are ob-
tained by the simulated and approximate results, re-
spectively. The deviation occurs due to the lack of mutual
coupling consideration of the predicted expression (5). The
total thickness of our proposed metasurface is 5.97 mm,
which is lower than case 3 of [22], and a wider RCS reduction
band is obtained, as listed in Table 12.

The simulated 3D bistatic scattered fields at 4.5, 6.5, 8.5,
and 11.5 GHz under the normal incidence of our proposed
CM are depicted in Figure 8. It is clear that the energy
is mainly redirected in the diagonal planes:
¢ = 45°,135°,225°,315° and dramatically reduced along the
xz and yz planes. The RCSs of the proposed metasurface and

R(f;)= - 10,
Q(f:) =

s.t.,
otherwise,
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FIGUure 7: Simulated and predicted RCS reduction of the optimal CM.

TaBLE 12: Comparisons of the simulated —10 dB RCS reduction band, fractional bandwidth, and total thickness of metasurface.

Simulated —10dB RCS

. . o .
Ref reduction band (GHz) Fractional bandwidth (%) Total thickness (mm)
Case 3/[22] 4.2-11.6 94 6.57
This work 4.2-11.9 96 5.97

dB (m'2)
10
7.27
4.55
1.82
-0.909
-3.64
-6.36
-9.09
-11.8
-14.5
-17.3
-20

‘ -
X
(@) (b) (© CY

FiGure 8: Simulated 3D bistatic scattered fields at (a) 4.5 GHz, (b) 6.5 GHz, (c) 8.5GHz, and (d) 11.5 GHz of the optimal design.
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FiGgure 9: Simulated RCS of the proposed metasurface and equal-sized PEC plane at 8.5 GHz versus elevation angle 8 at (a) ¢ = 0° or 90°
plane and (b) ¢ = 45" or 135" planes.
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equal-sized PEC plane versus 6 at ¢ = 0°,45°,90°, 135" are
shown in Figure 9 that the maximum RCS of the proposed
metasurface at ¢ = 0° or 90° plane is 20.5 dB lower than that
of the PEC plane and 5.6dB at ¢ =45 or 135° plane,
respectively.

4. Conclusions

In this paper, the Taguchi method is used to determine the
CPs of HDE by averaging the performance ranks of 23
benchmark functions for the universality of multimodal and
unimodal problems. The overall performance of HDE with
newly identified CPs, named HDEy;,, is superior to HDE by
benchmark comparisons, which demonstrates the effec-
tiveness of the proposed method. The contribution per-
centages of each CP are calculated, and the results reveal that
crossover probability for the binary part, population size,
and mutation strategy are three factors that have the most
influence on HDE performance. The mutation strategy DE/
rand/1 in HDEy;, improves the exploration ability of HDE
but is short at the exploitation. As a result, a novel mutation
strategy selection method is proposed to enhance its search
performance, named HDE,. The results of two classic EOPs
indicate that the HDE,, has more power to handle real-
binary EOPs. In addition, we employ HDEy, to design
a lower profile and wider RCS reduction bandwidth pixe-
lated checkboard metasurface than the reference one. All
results indicate that our proposed method for identifying the
CPs of HDE and improving the search ability of HDE is
successful.

Furthermore, this method can be used to identify the
CPs of other algorithms as well. For the result of an ex-
periment using the Taguchi method, not only the mean value
but also the linear combination of the average rank values of
minimum value, mean value, and standard deviation might
be an acceptable alternative. Meanwhile, the analysis of
variance can give the percent contribution of each CP,
allowing us to propose new methods to the most relevant
CPs in order to improve the optimization performance of
the algorithm.
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