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In this paper, a high-gain fexible cylindrical antenna with rotatable curved frequency selective surface (FSS) is presented, which is
designed for the 2.4GHz industrial scientifc medical (ISM) band. Te array of 3× 3 optimized FSS unit cells (102×102mm2) is
applied to improve the gain of the antenna (50.4× 28× 0.1mm3). Trough the rotation of the FSS, omnidirectional gain en-
hancement is realized. Te simulation and measurement results demonstrate the feasibility of this work. Te measured antenna
with the FSS has omnidirectional high-gain in the operational band of 2.18–2.90GHz, and the gain can be increased by 5.31 dBi at
most.Te antenna can be used in cylindrical conformal devices, and the proposed design method provides a new solution for gain
enhancement of cylindrical omnidirectional antennas.

1. Introduction

With the rapid development of fexible electronic devices,
the research process of fexible antenna is accelerated. Te
fexible antenna can better adhere to the surface of the
carrier, which is more convenient for various special-shaped
electronic devices. For example, when an antenna is
designed for the compact self-powered devices, the fexible
antenna can be bent into a cylindrical shape to ft the dry
battery or button battery surface perfectly, which can im-
prove space utilization ratio of the devices.

Te microstrip antenna is widely used in the design of
a fexible antenna due to its advantages such as light
weight, small size and low cost. Te realization of fexible
antenna depends on the fexible dielectric substrate [1–6].
Common fexible dielectric substrates include polyimide
(PI), polydimethylsiloxane (PDMS), and other chemical
polymers. In 2022, Liu et al. [7] presented a PI-based
fexible monopole antenna, which exhibited excellent
deformation capability. Sayem et al. [8] chose the

transparent conductive fabric-PDMS composite to fabri-
cate a fexible antenna.

Antenna gain is very important to the operational quality
of the wireless communication system. To enhance the gain
of antennas, artifcial electromagnetic structures such as
artifcial magnetic conductor (AMC) [9, 10] and frequency
selective surface (FSS) [11–15] are proposed as refectors of
antennas. FSS as a spatial flter [16] exhibits diferent
scattering characteristics for electromagnetic waves with
diferent frequencies. Band-stop FSS has total refection
characteristics at resonant frequency, and it is widely used in
refectarray. Retnam et al. [13] used FSS as a back refector to
improve the antenna gain, and an improvement of 3 dBi gain
over the operational frequency range of 3.07–3.74GHz was
observed. Devarapalli et al. [14] presented a coplanar
waveguide fed elliptical-based second iterative antenna. Te
peak gain of the antenna was enhanced to 9.48 dBi in X-band
by loading a single-layer FSS. Moreover, several refectors
designed on the fexible dielectric substrate [17, 18] can be
used in various conformal applications.
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In this paper, a fexible cylindrical antenna with rotatable
curved FSS is proposed. Due to the use of the rotatable
curved FSS, the antenna has omnidirectional high-gain
characteristics. Tis method can be applied in the design
of high-gain antenna for cylindrical compact electronic
devices.

2. Antenna Design

Te antenna is intended to be applied in the 2.4GHz in-
dustrial scientifc medical (ISM) band (2.400–2.4835GHz).
Te proposed coplanar waveguide (CPW)-fed monopole
microstrip antenna is shown in Figure 1, and the parameters
are shown in Table 1. Te size of the antenna is
50.4mm× 28mm× 0.1mm. PI is chosen as the dielectric
substrate because it shows good fexibility with dielectric
constant 3.5 and loss tangent 0.004. Te antenna’s radiation
pattern in the H plane is omnidirectional.

Te design evolution of the antenna is illustrated in
Figure 2, and the corresponding simulated refection return
loss (S11) is shown in Figure 3. Firstly, as shown in
Figure 2(a), the initial antenna starts with a compact (CPW)-
fed antenna, which is named Antenna I. Te resonant fre-
quency of a monopole printed antenna can be approximated
by the formula (1) given in [19].

fr �
144

Lg + Lr + g + Ag/2πLg

��
εe

√
􏼐 􏼑 + Ar/2πLr

��
εe

√
( 􏼁

, (1)

where Lg and Lr are the lengths of the ground plane and
radiator, g is the gap between them, Ag and Ar are the areas
of the ground plane and radiator, and εe is the efective
dielectric constant.

Next, in Figure 2(b), two corners of the ground are cut
of to reduce the coupling efect between the ground and the
bottom of the rectangular patch. Finally, in Figure 2(c),
a trapezoidal structure is added between the rectangular
patch and the feeder line to make impedance matching
better. During the optimization process, the parameter
scanning method was used to search for the optimal pa-
rameter values. Simulation results show that the bandwidth
of S11<−10 dB is efectively expanded by the above opti-
mization methods. Te impedance bandwidth of Antenna
III is 1.96–3.61GHz and the percentage bandwidth is
59.25%.

Te proposed antenna is intended to be used in cylin-
drical conformal devices, and the corresponding simulated
conformal model is depicted in Figure 4. Te simulation
results at diferent bending radius (R) are shown in Figure 5.
When R is 8mm, the resonant frequency is 2.50GHz, the
bandwidth is 1.94–3.64GHz, and the percentage bandwidth
is 60.93%. For diferent bending radius, the resonant fre-
quency of the bending antenna is slightly shifted and the
impedance bandwidth is decreased. Te lowest operational
frequency remains stable, but the highest operational fre-
quency is afected by the bending radius. Te impedance
model of the antenna can be considered as a simple RLC
parallel equivalent circuit as illustrated in Figure 6. Te
diferent bending radius basically do not change the

equivalent circuit structure of the antenna but change the
value of equivalent capacitance and inductance. Naturally,
the resonant frequency is slightly diferent but the trend
remains basically constant.

3. FSS Design

Band-stop FSS is often used as a refector of an antenna
because of its excellent refection characteristics. When the
electromagnetic wave is incident on the FSS, the induced
current is generated by the electronic oscillation of the metal
layer, resulting in a secondary radiation feld. At the resonant
frequency, the incident radiation feld is cancelled out by the
secondary radiation feld, the electromagnetic wave cannot
pass through the FSS, thus the total refection occurs.

Te design evolution of the proposed FSS unit cell is
illustrated in Figure 7, and the corresponding parameters are
shown in Table 2. Te optimal structural parameters are
obtained through the parameter scanning method. A
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Figure 1: Geometry of the proposed antenna.

Table 1: Structural dimensions of the antenna.

Parameters Values (mm)
W 50.4
L1 30.1
L2 19.6
L3 4.9
L4 2.1
g 0.28
L 28
W1 4.2
W2 11.62
W3 4.9
W4 2.1
H 1
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semifexible dielectric substrate FR-4 with dielectric constant
4.3, thickness 0.25mm, and loss tangent 0.0025 is used.
Initially, as shown in Figure 6(a), the unit cell starts with

a traditional circular structure, which is named Unit cell
I. Te wavelength corresponding to the resonant frequency
is related to the efective length of the ring. For Unit cell I, the

(a) (b) (c)

Figure 2: Antenna design evolution. (a) Antenna I. (b) Antenna II. (c) Antenna III.
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Figure 5: Simulated S11 at diferent bending radii (R).
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Figure 7: Design evolution of the FSS unit cell. (a) Unit cell
I. (b) Unit cell II. (c) Unit cell III. (d) Unit cell IV.

Table 2: Structural dimensions of the FSS unit cells.

Parameters Values (mm)
R1 12.8
R2 17
R3 2.8
R4 2.8

1

2

Figure 8: Simulated model of the FSS unit cell.
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Figure 11: Planar integration schematic.
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Figure 12: Simulated model of the planar antenna with planar 3× 3
array FSS.
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Figure 13: Equivalent circuit model for the FSS with the antenna.
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Figure 15: Simulated radiation patterns for the antenna with and without FSS at 2.4GHz of (a) YZ plane and (b) XZ plane.
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equivalent length can be regarded as the circumference of
the ring [20], and the resonant frequency can be approxi-
mated by the following formula:

fr �
c

2πr
, (2)

where c is the free space light speed, the efective radius is
predicted as r � (R1 + R2)/2. Based on the parameters in
Table 2, fr is calculated as 3.21GHz.

Te fnal optimized unit cell (namely Unit cell IV) is
depicted in Figure 7(d). Te meandering technology is used
to achieve miniaturization. Te inside and outside of the

circular structure are cut of by several semicircles. Te
efective length of Unit cell IV can be approximated by the
arc length of these semicircles. So, a new formula for cal-
culating the resonant frequency is obtained as follows:

fr �
c

nπ R3 + R4( 􏼁 − 4n R3 + R4 − 2R1 sin(α/2)( 􏼁
, (3)

where n is the number of inner or outer semicircles. When α
is 22.5° and n is 8, fr is calculated to be 2.48GHz. Obviously,
the resonant frequency of Unit cell IV is lower than that of
Unit cell I.
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Figure 17: Simulation results for the planar antenna with the planar FSS at diferent heights (h). (a) S11. (b) Realized gain.
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Figure 20: Simulated model of the fexible cylindrical antenna with rotatable curved 3× 3 array FSS. (a) Front view. (b) Top view.
(c) Side view.
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Figure 22: Simulation results for the bending antenna with curved FSS at diferent heights (h). (a) S11. (b) Realized gain.
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Te simulated model is shown in Figure 8, and the
transmission coefcient (S21) of diferent structures is shown
in Figure 9. Unit cell IV has a lower resonant frequency,
which indicates the optimized structure is more miniatur-
ized than the traditional circular structure.

Te FSS presents a linearly decreasing refection phase
when it is used as the refector [21]. Te phase of the an-
tenna’s radiated wave toward FSS increases with the increase
of the frequency. So, the phase of the refected waves must
then decrease with the increase of the frequency to ensure
constructive interference at the antenna plane.

Te results of the proposed FSS unit cell are shown in
Figure 10.Te band-stop characteristics are observed in the
frequency range of 2.06–2.91GHz. Te refection phase
presents a linearly decreasing trend. Te proposed FSS is
well matched to compensate the phase of the refected
waves, so as to ensure the realization of the constructive
interference.

A reference plane is set with a height of h from FSS.
When a uniform plane electromagnetic wave from the
reference plane is vertically incident on the FSS, the electric
feld can be expressed as the following formula:

E � Aejβz
, (4)

where A is the amplitude of the electric feld and β is the
phase constant.

Te phase diference of the electromagnetic wave
transmitting from the FSS to the reference plane is −2βh.
φFSS presents the refection phase of the FSS. Te phase
diference of the electromagnetic wave transmitting back
and forth between the FSS and the reference plane can be
expressed as φFSS − 2βh. To ensure constructive interference
at the reference plane, formula (5) [21] needs to be satisfed.

φFSS − 2βh � 2nπ, n � · · · − 2, −1, 0, 1, 2 · · · . (5)
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λ is the wavelength corresponding to the frequency at
which the refection phase is zero. When h is set equal to λ/2,
then both sides of formula (5) becomes equal.

Te proposed planar antenna is applied to integrate with
the 3× 3 array FSS. Te planar integration schematic is
shown in Figure 11, and the simulated model is shown in

Figure 12. To maximize the efect of the FSS, the antenna is
placed at the center of the FSS in the Z-axis direction. After
using the FSS, the equivalent circuit model can be considered
as Figure 13.Te electromagnetic waves from the antenna to
the FSS have both oblique and normal incidence. Reference
[22] provided the calculation formulas for the lumped
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Figure 26:Te fabricated prototype of the antenna. (a) Planar view. (b) Bending view. (c) Flexible cylindrical conformal antenna with SMA
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parameters in diferent incidence cases, which indicated
these parameters inevitably change in intricate incidence. To
achieve the best performance, the optimal distance between
the two (h) is determined through simulation, h is initialized
to be 30mm. From the comparison in Figure 14, the im-
pedance matching becomes worse after using the FSS. It is
because part of the electromagnetic wave towards the FSS is
refected back to the feed instead of radiating outward. Te
impedance bandwidth of the antenna with the FSS is
2.03–3.38GHz, and the percentage bandwidth is 49.91%.

As shown in Figure 15, the radiation characteristics of
XZ plane change from omnidirectional to directional, and

the radiation in the downside of YZ plane is weakened. As
shown in Figure 16, the realized gain increases signifcantly
in the operational band by using the FSS, and the maximum
diference is 6.62 dBi at 2.2GHz.

Te simulation results at diferent h are shown in
Figure 17. With the increase of h, the results of antenna
gain and the S11 parameter seem to be opposite. As the
value of the S11 parameter is lower, the gain enhancement is
weakened. Te optimal h needs to be determined by bal-
ancing the impedance matching and gain enhancement. By
adjusting the value of h, a better S11 or higher gain can be
obtained.

(a)

Support 

(b)

Figure 27: Te fabricated prototype of the FSS. (a) Planar view. (b) Bending view.

FSS 

Antenna 

Figure 28: Te mechanism in measurement.

(a) (b)

Figure 29: Te measured environment. (a) Vector network analyzer. (b) Microwave anechoic chamber.
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4. Integration of Antenna with Rotatable FSS

Te operation of the fexible cylindrical antenna with ro-
tatable curved FSS is shown in Figure 18. Te FSS can rotate
around the center of the antenna with the rotation angle (θ)
of 0–360°.

Te bending of antenna and refector at the same time
inevitably afects the performance of the antenna. Tere are
two main reasons as follows: Firstly, a uniform plane wave
is applied in the simulation design of the FSS. However, the
electromagnetic wave from the antenna cannot be a stan-
dard uniform plane wave. Secondly, the characteristics of
the FSS show diference between the planar state and
bending state. Tis section described the design law of
a fexible cylindrical antenna and rotatable curved FSS
through simulation. Te bending integration schematic is
shown in Figure 19, and the simulated model is shown in

Figure 20. Te proposed fexible cylindrical antenna with
the bending radius R � 8mm is applied to integrate with
3 × 3 array FSS.

When the distance between the antenna and FSS (h) is
set to 40mm and the rotation angle (θ) is set to 270°, the
simulation results of S11 at diferent bending radius (Rs) are
shown in Figure 21. In the planar state as shown in Figure 12,
partial oblique incidence electromagnetic waves are refected
towards the outside of the antenna. However, in the bending
state as shown in Figure 19, these waves return to the an-
tenna and cannot be transmitted outward. With the increase
of Rs, the FSS shape is closer to the plane, which is more
benefcial for the radiation of the antenna. If the same
performance of the antenna is desired to be achieved in the
planar state and bending state, h in the bending state should
be set larger to compensate for the negative efects of FSS
bending.
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Figure 30: Te measured S11 of the antenna with FSS at (a) 0°, (b) 90°, (c) 180°, and (d) 270°.
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Te simulation results for the bending antenna with
curved FSS at diferent h are shown in Figure 22. As the value
of the S11 parameter is lower, the gain enhancement is
weakened, which is the same as in the plane state. Similarly,
the optimal h needs to be determined by balancing the
impedance matching and gain enhancement.

To meet the applications of 2.4GHz ISM band, h is set to
40mm and Rs is set to 80mm. As shown in Figure 18, the
curved FSS rotates around the center of the fexible cylin-
drical antenna, and the rotation angle is denoted by θ. Te
simulation results of S11 at diferent θs are shown in

Figure 23. With the rotation of the FSS, the resonant fre-
quency is slightly shifted. Te main reason is that the po-
sition of the rotation center is not the feed of the antenna,
which results in a diferent distance between the FSS and the
feed. Te maximum operational bandwidth is
2.00–2.82GHz, and the percentage bandwidth is 34.02%.

Te radiation patterns are shown in Figure 24. Te
electromagnetic wave can radiate towards 0–360° with high
gain at the XZ plane. For the YZ plane, when the FSS is
rotated to the downside (θ� 0°) and upside (θ�180°) of the
antenna, the patterns are obviously weakened on the
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Figure 31: Te comparison between the simulated and measured pattern at 2.4 GHz for (a) YZ plane and (b) XZ plane.
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Figure 32: Te measured patterns of the antenna with FSS at 2.4GHz for (a) YZ plane and (b) XZ plane.
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Table 3: Te comparison between this work and other relevant works.

References Feeding method Flexibility Operating band
(GHz)

Maximum enhanced
gain (dBi) Directivity

[23] CPW feed No 2.2–4.8 4 Directional
[24] Coaxial probe No 2.4/3.5/5.5 4.4 Directional
[25] Microstrip feed No 2.37–2.56/5.15–6.22 3.56 Directional
[26] Microstrip feed No 2.38–2.7/3.28–5.8 5 Directional
[27] Microstrip feed No 2.4 ∼5 Directional
[28] Microstrip feed No 2.3–2.62/4.9–6.45 4.6 Directional
[29] CPW feed Yes 2.4 4.81 Directional
[30] Microstrip feed Yes 2.24–2.76 6.3 Directional
Tis work CPW feed Yes 2.18–2.90 5.31 Omnidirectional
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opposite side of the FSS, and when the FSS is rotated to the
left side (θ� 90°) and the right side (θ� 270°), the patterns
are highly consistent.

Te simulation results of peak gain are shown in Fig-
ure 25. Te realized gain increases signifcantly in the op-
erational band, and the diference of realized gain with and
without the FSS at 2.4GHz is 5.77 dBi.

5. Measurement and Analysis

To verify performance of the proposed work, the mea-
surement was taken on the fabricated prototype. Te fab-
ricated prototype of the antenna and FSS is described in
Figures 26–28. As shown in Figure 26(c), the antenna is bent
into a cylindrical conformal shape with a radius of 8mm and
is secured by rings made of epoxy. Similarly, the FSS is bent
into an arc shape and secured by supports as shown in
Figure 27(b). Te rotating mechanism between the two is
temporarily replaced by foam support, and rotation is
achieved by manually changing the FSS rotation angle, as
shown in Figure 28.

Te measured environment is shown in the Figure 29. Te
KEYSIGHT PNA Network Analyzer N5224B was used to
measure the S11 parameter, and the radiation pattern and
realized gainweremeasured in amicrowave anechoic chamber.

Te comparison between the simulated and measured
S11 results at diferent rotation angles is shown in Figure 30.
Te antenna consistently exhibits a relative bandwidth
greater than 20%, covering an operational bandwidth of
2.18–2.90GHz. Tere are some discrepancies between the
simulated and measured results, mainly manifested in the
degradation of the S11 parameter at a low frequency. Tese
issues mainly arise from the welding of the antenna and
SMA connector. Te bending of the antenna increases the
difculty of welding, and the high temperature of the sol-
dering iron causes damage to the PI substrate, resulting in an
impact on the feeder of the antenna. Moreover, the supports
used in the experiment are made of the resin material, which
exhibits a high dielectric constant and has a certain impact
on the measured results.

Figure 31 shows that the measured XZ plane radiation
pattern of the antenna at 2.4 GHz is omnidirectional.
However, after loading the rotatable FSS, as shown in
Figure 32, its H plane shows signifcant directionality.
With the change of the rotation angle, the beam can be
scanned in the range of 0–360°. As shown in Figure 33, this
characteristic is also present at other frequency points
within the operational bandwidth. Te measured realized
gain comparison is shown in Figure 34.Te antenna’s gain
can be increased by up to 5.31 dBi. Te damage to the
feeder caused by the soldering also afects the measured
radiation pattern and gain, resulting in some discrep-
ancies between simulated and measured results, mainly
manifested in the splitting of the radiation pattern and
weakening of the realized gain.

Te above measured results demonstrated the feasi-
bility of this work. Te comparison between this work
and other relevant work is shown in Table 3. Te pro-
posed rotatable curved FSS addresses the issue of

the refector’s inability to realize omnidirectional high-
gain.

 . Conclusions

In this paper, a fexible cylindrical antenna with a rotatable
curved FSS is proposed. Te FSS unit cell is optimized based
on the traditional circular structure. With the rotatable
curved FSS, the antenna can realize omnidirectional high-
gain radiation in the operational band. Experimental results
demonstrate the feasibility of this work, and the measured
antenna gain can be increased by 5.31 dBi at most. Te
proposed antenna with the FSS can be applied to cylindrical
conformal devices operating in the 2.4GHz ISM band.
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