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Tis paper presents a novel Ku wideband circularly polarized (CP) antenna array composed of crossed-dipole element (CDE) and
fed through sequential rotation (SR) feeding technique. Unlike the traditional CP-CDE fed by coaxial cable that usually works at
low frequencies, the proposed CDE consists of two orthogonal heart-shaped patch dipoles that can work at frequencies as high as
Ku-band, at the same time achieving a larger bandwidth. A feeding structure is proposed without welding, so potential errors in
the antenna assembly process can be mitigated. A 2× 2 CP antenna array with wideband SR feeding network is designed based on
the CDE to further expand the axial ratio (AR) bandwidth. Te designed antenna array is fabricated using the multilayer printed
circuit board (PCB) technology and measured in anechoic chamber using the planar near-feld measurement facility. Te
measured results show that − 10 dB impedance bandwidth of 44% (11.6–18.15GHz) along with 3 dB AR bandwidth of 38.7%
(12–17.65GHz) and 3 dB gain bandwidth of 34.6% (12.2–17.3 GHz) as well as 11.02 dBic peak gain have been achieved while
maintaining a lower profle.

1. Introduction

Circularly polarized (CP) antennas have many advantages
compared with linear polarization (LP) antennas in miti-
gating multipath interference, reducing Faraday rotation
efects, and suppressing polarization mismatch. Terefore,
they are widely used in satellite communication systems and
remote sensing [1–4]. Besides, the antenna array can achieve
higher gain with narrower beamwidth to compensate the
spatial attenuation for long-distance communication [5, 6].

Generally, a wideband CP antenna array highly depends
on the wideband CP element. However, the design of CP
elements with wide axial ratio (AR) bandwidth is usually
difcult [7–10]. Another way to design a wideband CP an-
tenna array is by using a sequential rotation (SR) technique
based on LP or CP elements with unique angular and phase
arrangements [11–14]. Up to now, many kinds of wideband
CP arrays have been proposed with various sequential ro-
tation (SR) feeding networks, such as series-feeding networks

[11], corporate-feeding networks [15–19], and series-parallel
feeding networks [20–23]. Despite these eforts, the achieved
CP bandwidths have not exceeded 29% due to limitations in
the bandwidth of the SR feeding network, or narrow band-
width in the elements themselves. On the other hand, crossed-
dipole antenna has been widely studied in recent years due to
their wideband radiation performances, compact size, and
ease of fabrication [24–29]. In [30], a wideband CP crossed-
dipole antenna with parasitic elements was designed, where
an AR bandwidth of 90.9% (2.2–6.4GHz) has been achieved.
However, it has a high profle (0.4λ0), which is not suitable for
space-constrained applications. Although the profle of the
crossed-dipole has been reduced to 0.14λ0 with an AR
bandwidth of 111.8% (1.75–6.19GHz) in [31], the coaxial
cable feeding structure of those antennas is not suitable for
high-frequency applications since the assembly of the coaxial
cable feeding structure is very challenging for avoiding the
infuence of solder joints on the radiation, which is especially
serious at high frequencies. Tat is why the most reported CP
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crossed-dipole antennas work at low frequencies. Terefore,
changing the feeding structure is an efective way for crossed-
dipole antennas for high-frequency applications. For in-
stance, a CP magneto-electric dipole antenna was presented
in [32] for K-band and Ka-band applications, which is fed
through a modifed cross-slot on the ground plane. In [33],
a CP crossed-dipole antenna fed by metallic via-holes was
designed for Ka-band application, and the reported band-
width is just about 15.7%.

In this paper, a Ku wideband CP microstrip antenna
array with low profle crossed-dipole element is proposed.
Te designed heart-shaped patch can efectively improve
impedance matching by reducing edge refections, and thus
broadband crossed-dipole element (CDE) can be realized. In
the design, a novel metal via feeding structure inspired by
SIW is proposed to overcome the problem of the coaxial
cable feeding structure adopted by conventional CDE
working at high frequencies. Te proposed feeding structure
not only can be easily integrated into the antenna without
solder joints using PCB technology, but also can avoid the
potential errors during the assembly process of the antenna.
Meanwhile, a wideband SR feeding network adapted to four
CDEs is designed by cascading the Wilkinson power divider
and the Schifman phase shifter, which helps for realizing
broadband CP array.

2. Antenna Element Design and Analysis

2.1. Structure of the Antenna Element. Figure 1 presents the
structure of the proposed CDE with dimensions given. As
can be seen, three substrates are used, and all of them are
F4BM220 with dielectric constant of 2.2 and loss tangent of
0.001, and they are connected by bonding flm with dielectric
constant of 2.5 and thickness of 0.1mm. Substrates I and III
have the same thickness of 0.254mm, while substrate II has
a thickness of 1.587mm. Two dipoles with a pair of heart-
shaped patches are placed orthogonally and etched on the
two top surfaces of substrates. Te adjacent patches on the
same surface are connected by a vacant-quarter-printed ring
with a circumference of about λg/4. Te optimized pa-
rameters of the CDE are summarized in Table 1.

A novel feeding structure is proposed as inspired by
substrate integrated waveguide (SIW) as shown in
Figure 1(c).Tere are six blind vias (BVs) enclosed in a circle
in substrate II, which are used to connect the patches at the
top surface of the substrate II to the middle ground. A metal
ring with a width ofWd acts as the pad of BVs and is placed
above the BVs. Meanwhile, the microstrip line at the bottom
of substrate III is connected to the patches on the top surface
of substrate I by the through via (TV). Te TV and the BVs
act as the inner and the outer conductor of coaxial cable,
respectively. According to the coaxial impedance formula
[34], the dimensions of dout and din are related to the
characteristic impedance Z0 of the coaxial cable as

Z0 �
1
2π

��
μ
ε

􏽲

ln
dout

din
, (1)

where dout represents the diameter of the circle formed by
the BVs and din represents the diameter of the TV.

2.2. Feeding Structure. Most of the reported CP single-feed
crossed-dipole antennas operate at low frequencies since the
coaxial cable feeding structure is not suitable for high fre-
quencies [29]. At high frequencies, the infuence of solder
joints of the coaxial cable on the radiation cannot be ignored.
In addition, the structure of the coaxial cable brings
a considerable challenge to the assembly of the antenna due
to welding requirements. In this subsection, a novel feed
structure is proposed without solder joints to overcome
aforementioned problems, and its principle is illustrated.

Figure 2 shows the electromagnetic feld distributions of
the proposed feeding structure and the usually used coaxial
cable, as can be seen from which, the strength of the elec-
tromagnetic feld is concentrated within the region enclosed
by the BVs, as same as coaxial cable. However, discrete BVs
may lead to discontinuities in the H-plane of the TEM wave,
thus leading to radiation leakage if not properly designed. A
transmission structure in Figure 3 is simulated to show the
efect of the numbers and diameters of BVs on transmission
performances. Te variations of transmission performance
corresponding to diferent numbers of the BVs are plotted in
Figure 4. As can be seen that as the number of the BVs
increases, the transmission performance of the proposed
feeding structure approaches to those of coaxial cable, and
the radiation leakage is correspondingly reduced. When the
number of BVs is greater than 6, the insertion loss caused by
the proposed feeding structure is close to that of the coaxial
cable structure; it is to say that the spurious radiation has
already been greatly reduced. However, it should be stressed
more than 6 BVs, which does not bring about signifcant
improvement in transmission performance but increases the
complexity of production.

Figure 5 shows the efect of the diameter of the BVs on
the transmission performance, from which one can see that
the diameter of the BVs has a signifcant impact on trans-
mission performance. Tis is because varying diameters of
the BVs cause a perturbation in the electromagnetic feld
distributions, and when they all have the same diameter, the
obtained electromagnetic distribution is similar to that of
coaxial cable.

2.3. Performance Simulation and Design Process. To dem-
onstrate the advantages of the proposed radiating patch, the
cross dipole with bow-tie patch [25] is compared in the fol-
lowing. Figure 6 presents the geometries of the proposed
CDE and that of [25], and these two CDEs have the same
dimensions but diferent shapes of edges. Figure 7 presents the
simulated |S11| and AR of our CDE and that of [25] over
frequencies, as can be seen that their AR bandwidths are al-
most the same, while their impedance bandwidths are quite
diferent; ours is obviously better because the edge refection is
reduced beneftting from the heart-shape. Finally, the im-
pedance bandwidth and the AR bandwidth of the proposed
CDE achieve 40% and 5.8%, respectively. Here, the impedance
bandwidth achieves the broadband performance, which is
a good precondition for achieving awider 3 dB gain bandwidth
of the array by adopting the SR technique, ultimately achieving
the overall wideband CP performance of the array.
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Te design procedure for the proposed antenna is given
as follows:

(1) To design a CP crossed-dipole antenna based on
three substrates: Te radiating patch of the antenna
was designed using a pair of simple bow-tie patches
on both surfaces of the top substrate. Te bow-tie
patches resonated at half the designed wavelength.
Te design principles and mechanism of the bow-tie
patches are detailed in [25].

(2) To design the shape of the radiating patch by in-
troducing circular arc at the edges of the patch to
improve the impedance performance of the antenna.

(3) To design the metal via feeding structure with its
dimensions calculated according to equation (1).

(4) To adjust the patch length (LS) and the width (WL) of
the phase-shift ring to meet the designed working
frequency band, adjust L1 and W2 of the patch to
make the two resonate frequencies fall within the
working frequency band, and adjust W1 to improve
the impedance matching within the working
frequency band.

3. CP Antenna Array

A wideband 2× 2 CP array with four CDEs is designed using
the SR feeding network. Te CP bandwidth of the array can
be further enhanced by exciting the four CDEs with the same
magnitude but a 90° phase diference in between. Te
confguration of the array is presented in Figure 8(a), where
the CDEs are placed in turn by rotating 90°, and the ad-
joining distance is 0.625λ0 (λ0 is free-space wavelength at
15GHz).

As shown in Figure 8(b), the feeding network is
printed on the bottom surface of substrate III, which
includes a Wilkinson power divider, a Schifman 180°
phase shifter, and two Schifman 90° phase shifters
[35, 36]. Figure 9(a) shows the equivalent circuit of the
feeding network, and Figure 9(b) presents the simulated
results of S-parameters, as it is shown that the variation of

Top side

(a)

Bottom side

(b)

Blind via

Sub1

Sub2

Sub3
Feed port

GND Bonding film

Crossed dipoleThrough via

(c)

Figure 1: Structure of the proposed wideband CP crossed-dipole antenna. (a) Top view. (b) Bottom view. (c) Front view.

Table 1: Dimensions of the antenna element (unit: mm).

Parameter Value
W 25
W1 1.33
W2 5.7
R0 1.1
WL 0.1
d out 1.3
Wd 0.3
d in 0.35
L 1 2.35
L 2 1.45
L 3 0.85
D 0.35
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the output power between diferent ports is less than
0.5 dB, and the phase diference between two adjacent
ports is less than 5°. Te results indicate that the designed
feeding network lays a good foundation for achieving
a wideband CP array.

4. Experimental Results and Discussion

A 2× 2 wideband CP antenna array is fabricated by using
multilayer-printed circuit board technology, as shown in
Figure 10(a); the three-dimensional sizes of which are
38mm× 34mm× 2.38mm. Figure 10(b) gives the photo
taken during the measurement. Te fabricated array was
measured in anechoic chamber by using the gain-
comparison method, and the facility is the NSI 2000 pla-
nar near-feld measurement system, where a standard horn
antenna of LP is used as the reference antenna, whose gain
has been accurately known, and the probe is also of LP. Te
measured gain can be calculated by [37]

GAUT � GSTD − ∆G + 20 log10 0.5 1 + 10− (AR/20)
􏼐 􏼑􏽨 􏽩 + 3, (2)

where GAUT is the gain of the array, GSTD is the gain of the
used standard LP horn, ΔG is the received power diference
between the standard LP horn and the array, and AR is the
axial ratio of the array.

Te simulated andmeasured |S11| of the array are plotted
in Figure 11(a) with good agreement. Te measured im-
pedance bandwidth with |S11|< − 10 dB is about 44% within
11.6–18.15GHz, which is slightly less than the simulated
result of 46.5%. Figure 11(b) depicts the measured and
simulated ARs along with the gains at broadside direction.
As can be seen, the simulated and measured 3 dB AR
bandwidths are over 38.9% and 38.7%, respectively, within
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Figure 2: Electromagnetic feld distribution of TEM wave. (a) Coaxial cable. (b) Proposed structure.
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Figure 3: Confguration of the transmission structure.
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Figure 4: Transmission performance of the metal via structure versus the number of BVHs. (a) |S11|. (b) |S21|.
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Figure 5: Transmission performance of the metal via structure versus the diameter of the BVHs. (a) |S11|. (b) |S21|.
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Figure 6: Structure of the (a) proposed element and (b) reference element [25].
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Figure 8: Proposed 2× 2 antenna array. (a) Layout. (b) Feeding network.
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12–17.8GHz, while the simulated 3 dB gain bandwidth is
33.3% (12.5–17.5GHz) with a peak gain of 12.06 dBic at
14GHz, and the measured one is 34.6% (12.2–17.3GHz)
with a peak gain of 11.02 dBic at 14GHz. Te corresponding
simulated and measured antenna efciencies are about
83.9% and 66.1%, respectively. Te above slight deviations
between the simulated and measured results are mainly due
to the following factors: (1) unexpected tolerances in the
fabrication process; (2) the variation of loss tangent and
dielectric constant of substrates and additional losses such as
the connector loss and the impedancemismatch loss; and (3)
measurement errors, such as alignment error between the
measured antenna and the probe of the near-feld mea-
surement system leads to receiving loss.

Figure 12 presents the simulated and measured radiation
patterns at 12GHz, 15GHz, and 17GHz, respectively, as can
be seen from which, they are in good agreement with each

other. However, if we compare the patterns in xoz-plane and
those in yoz-plane, we can see the accordance of the xoz-
plane patterns between the simulated, and the measured is
a little better than that in the yoz-plane. Te slight dis-
crepancy of patterns in yoz-plane is mainly caused by the
metal structures on the yoz-plane, as shown in Figure 10(b),
such as the L-type connector and metal frame; they have
been ignored in simulations.

Furthermore, a detailed performance comparison be-
tween our work and similar works on wideband CP antenna
is listed in Table 2. It is shown that our element achieves the
widest impedance bandwidth of 40% with the most compact
structure. Although [6, 19], respectively, achieved the largest
bandwidth and the largest gain; however, the designed arrays
have a highest profle. At the same time, our designed array
achieves the largest CP bandwidth while with the lowest
profle.

(a) (b)

Figure 10: Prototype of the array. (a) Top and bottom view. (b) Testing the array in microwave anechoic chamber.
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Figure 11: Simulated and measured results of the proposed 2× 2 array. (a) |S11|. (b) 3 dB AR and gain.
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5. Conclusions

In this paper, a 2× 2 wideband CP antenna array at Ku-band
based on the proposed crossed-dipole element with a novel
feeding structure has been designed, fabricated, and measured.
Te metal via feeding structure supports the CDE operation at
high frequencies, as well as simplifes the assembly process and
is easy to be integrated into the antenna because the welding is
avoided. Te measured results agree with the simulated results

very well, which shows the CP bandwidth of 34.6% and the
peak gain of 11.02 dBic, which have been achieved. Te latest
works on similar CP arrays have been compared showing the
better performance of our design.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.
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Figure 12: Simulated and measured radiation patterns of the proposed 2× 2 array. (a) f� 12GHz. (b) f� 15GHz. (c) f� 17GHz.

Table 2: Comparison of bandwidth and gains.

Ref Center freq.
(GHz)

Element Array

Type |S11| BW
(%) Scale Size (λ03)

|S11| BW
(%)∗

Peak gain
(dBic)

CP BW
(%)

[6] 17 Dielectric resonator with SIW excited 40 2× 2 4.13× 3.57×1.45 37.6 13.2 37
[9] 11.7 Stacked dielectric resonator 33 2× 2 2.79× 2.0× 0.3 25.1 15.1 24
[13] 12.7 Stacked patches 32 4× 4 3.0× 3.0×1.4 >27.9 17 27.9
[14] 10 Cavity-backed patches 17 2× 2 3.7× 3.7× 0.11 21 13.2 18
[15] 13.3 3D M-probe 22.2 2× 2 3.0× 3.0× 0.14 30 11.8 28.6
[19] 13 Waveguide 21 4× 4 3.6× 3.6× 3 27 22 23
Tis work 14.6 Heart-shaped dipole 40 2× 2 1.89×1.65× 0.11 44 11.02 34.6
∗ λ 0 is free-space wavelength at central frequency.
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