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We propose bandpass flters (BPFs) with mixed electromagnetic coupling paths (MEMCPs) that comprise two coupled vertical
split-ring resonators (VSRRs) and present the equivalent circuit models of the coupled VSRRs.We demonstrate that the dominant
coupling modes for the top and bottom layers of the VSRRs are magnetic (M) and electric (E), respectively, and that M-dominant
coupling is required for high-selectivity BPFs. BPFs with narrow and wide bandwidths were designed based on the generalized
coupling matrix. Te proposed BPFs were fabricated and measured, and it is verifed that the proposed BPFs have high selectivity
due to the transmission zeros and a small circuit footprint due to the vertical structure of resonators. Te fabricated narrow- and
wide-band BPFs have the fractional bandwidths of 3.62% and 5.81%, respectively, with the overall size of 0.29λg × 0.043λg.

1. Introduction

Planar-type metamaterials, such as split-ring resonators
(SRRs) and complementary SRRs, are widely used in planar
microwave devices, including bandstop flters (BSFs) and
bandpass flters (BPFs), as they are simple to fabricate.
However, these resonators are too large for use in modern
communication systems and many studies have focused on
reducing their electrical footprint [1–4], resulting in the
introduction of spiral resonators (SRs) [1], broad-side
coupling [2, 3], and hexagonal SRR [4]. Fundamental
limits apply to the electrical size of resonators designed on
a single plane. Terefore, geometries such as the vertical
SRRs (VSRRs) were proposed [5–7], but flters constructed
in this form have low selectivity.

Filter selectivity can be improved by introducing
transmission zeros (TZs). In [8–13], high-selectivity BPFs
were realized that utilized electromagnetic coupling paths

(EMCPs) between resonators. Tese can either be mixed
electromagnetic coupling paths (MEMCPs) [8–10, 13] or
separated electromagnetic coupling paths (SEMCPs)
[11, 12]. In [13], the triple mode resonator was used to design
compact triple band BPFs, and their selectivity was im-
proved by transmission zeros through MEMCPs. In [14],
MEMCPs were applied to a dual-band fltering power di-
vider to enhance its selectivity.

Here, we propose highly selective BPFs with coupling
paths between two coupled VSRRs and derive the equivalent
circuit. We show that the dominant coupling paths between
the top and bottom layers of the VSRRs are magnetic (M)
and electric (E), respectively. In order to adjust the amount
of E-coupling and M-coupling, the distances between two
VSRRs on the top and bottom layers were adjusted. Ad-
ditional TZs are generated because of the mixed electro-
magnetic coupling paths (MEMCPs) between the coupled
VSRRs, enabling the design of a BPF with high selectivity.
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2. Highly Selective Bandpass Filter Designs
Using Two Coupled Vertical
Split-Ring Resonators

2.1. Analysis of Coupling Paths between Two Coupled VSRRs.
Figure 1 shows the proposed BPF, which comprises two
coupled VSRRs and I/O lines; the top layer of the VSRR was
defned using a microstrip line, and the bottom layer of the
VSRRwas defned using coplanar waveguides.Trough-hole
vias (radius� 0.25mm) were used to connect the trans-
mission lines on the top and bottom layers. As shown in
Figure 2, the E- and H-feld distributions of the proposed
BPF were calculated at the resonant frequency (fr � 2.9GHz)
for the given dimensions (w0 � 2.347mm,
wt � wb � wp � 1mm, lt1 � 18mm, lt2 � 0mm,
gb � a � 0.15mm, p � 1.8mm, wf � 0.4mm, gf � 0.3mm,
and lf � 15.2mm, lb � 8.9mm) including the properties of
the Rogers 5880 substrate (εr � 2.2, height� 0.784mm, loss
tangent δ � 0.0009) using ANSYS HFSS. Te dimensional
parameters of the single VSRR determine its resonant fre-
quency [6]. As shown in Figure 2(a), the E-feld was
dominant in the bottom layer coplanar waveguides, and the
H-feld was dominant in the top layer microstrip line, as
shown in Figure 2(b). As argued in [15], E-coupling and M-
coupling are dominant for coplanar and microstrip wave-
guides, respectively; therefore, novel mixed electromagnetic
coupling paths (MEMCPs) between two VSRRs are more
easily realized compared to the previous methods [8–12],
and MEMCP can be used to design BPFs with high selec-
tivity. To control the levels of E-coupling and M-coupling,
we adjusted the distances between the two VSRRs on the top
and bottom layers. Specifcally, the distance between the two
VSRRs on the bottom layer was determined solely by the
parameter p, whereas the distance between the two VSRRs
on the top layer was modifed by both p and lt2.

Figure 3(a) shows the equivalent circuit model of the
coupled VSRRs; Lr and Cr represent the inductance and
capacitance of the VSRRs, respectively, and the resonant
frequency of the VSRRs is fr � 1/2π

����
LrCr


. Lm and Cm are

the mutual inductance and capacitance generated by M-
coupling and E-coupling between the VSRRs, respectively.

In Figure 3(b), the circuit is expressed in terms of the M-
coupling impedances Z11 and Z12, and the E-coupling ad-
mittances Y11 and Y12, with respect to the reference plane.
According to [15], Z11 and Z12 can be expressed as

Z11 � jωLr, Z12 � jωLm. (1)

Similarly, Y11 and Y12 can be expressed as

Y11 � jωCr, Y12 � −jωCm. (2)

As shown in Figure 3(c), it follows that the even- and
odd-mode resonance frequencies fe and fo can be obtained by
the following equation:

fe �
1

�����������������
Lr + Lm(  Cr − Cm( 

 ,

fo �
1

�����������������
Lr − Lm(  Cr + Cm( 

 .

(3)

By incorporating (1) and (2), the coupling coefcient k
can be expressed as

k �
fo

2
− fe

2

fo
2

+ fe
2 ≈

Lm

Lr

−
Cm

Cr

, (4)

when LmCm≪LrCr. Finally, it follows that k> 0 when M-
coupling is dominant (fo> fe) and k< 0 when E-coupling is
dominant (fo< fe).

Te dominant coupling mode of the proposed BPF
(Figure 1) can be controlled by selection of lt2. ANSYS HFSS
was used to simulate the S-parameter S21 as a function of
length lt2, with weak coupling conditions (wf � 0.4mm,
gf � 0.8mm, lf � 9mm); the results are plotted in Figure 4.
Te parameter lt2 represents the distance between the two
VSRRs on the top layer, where the H-feld is dominant. As
a result, lt2 has a greater impact on M-coupling than on E-
coupling and can be used to control the odd-mode resonant
frequency while keeping the even-mode resonant frequency,
as shown in Figures 4(a) and 4(b). As lt2 was increased, the
value of Lm decreased, the values of Lr and Cr increased,
therefore, fo decreased. Te fe was 3.2GHz and was

Top layer Bottom layer

wf

wt wb

wp

w0

lf

lb

lt2

lt1gf

gb

p

I/O line I/O line

a

Figure 1: Top and bottom views of the proposed bandpass flter (BPF) comprising coupled vertical split-ring resonators (VSRRs).
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independent of the changes in lt2; therefore, it can be de-
duced that the decrease of (Lr+ Lm) was similar to the in-
crease of (Cr −Cm).

As shown in Figure 4(a), two TZs are generated whenM-
coupling is dominant (fo> fe); one TZ is located at a fre-
quency smaller than fe, and the second TZ is greater than fo
by canceling the efects of E- and M-coupling [11]. Tere are
no TZs when E-coupling is dominant (fo< fe), as illustrated
in Figure 4(b). Terefore, it is critical to maintain M-

dominant coupling between the VSRRs when designing
a highly selective BPF.

2.2. Filter Design. Coupled VSRRs were used to design
narrow- and wide-band second-order Chebyshev BPFs with
a passband return loss (RL) less than 20 dB and a center-
frequency of fc � 2.9GHz. Te N+ 2 general coupling matrix
for a Chebyshev circuit model is

Min Max
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Top Bottom
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Figure 2: Field distributions E- and H-felds around the proposed BPF at the resonant frequency of 2.9GHz (lt2 � 0mm). (a) E-feld
distribution. (b) H-feld distribution.
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Figure 3: (a) Equivalent circuit model of coupled VSRRs, (b) equivalent circuit model with the M-coupling impedances and the E-coupling
admittances, and (c) alternative circuit model of coupled VSRRs.
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Figure 4: Simulated S21 in the weak coupling condition for (a) lt2 � 0mm, 0.3mm, 0.5mm (M dominant coupling), (b) lt2 �1mm, 1.2mm,
1.5mm (E dominant coupling).
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Figure 5: Continued.
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(5)

and the denormalized elements of the general coupling
matrix can be obtained by the following equation:

k � FBW ∙m12, Qe �
1

FBW ∙mS1
2 , (6)

where FBW is the fractional bandwidth and Qe is the external
quality factor. A highly selective BPF with M-dominant cou-
pling was designed by setting lt2 to 0mm. Te simulations
shown in Figure 5(a) were executed with weak coupling
conditions (wf � 0.4mm, gf � 0.8mm, lf � 10mm) with re-
spect to p. M-coupling in the top layer was more sensitive than
E-coupling in the bottom layer with respect to the value of p.
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Figure 5: (a) Simulated S21 in the weak coupling condition for p � 0.8mm, 1.2mm, and 1.6mm. (b) Te extracted k with respect to p

(lt2 � 0mm). (c) Te extracted Qe with wf, lf (gf � 0.2mm). (d) Te extracted Qe with gf, lf (wf � 0.4mm).
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Figure 6: Simulated and measured S-parameters for (a) the narrow- and (b) wide-band BPFs.
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As p was increased, the value of Lm decreased. Terefore, the
separation between fe and fo decreased accordingly as p was
increased, and k can be adjusted as a function of p, as shown in
Figure 5(b). Qe was extracted with respect to wf, lf and gf, as
presented in Figures 5(c) and 5(d). From the analysis, the
dimensions of the proposed narrow-band BPF (FBW� 3.6%)
were calculated (p �1.8mm, wf � 0.4mm, gf � 0.3mm,
lf � 15.2mm). Similarly, the proposed wide-band BPF
(FBW� 5.8%) was calculated (p �1.0mm, wf � 0.4mm,
gf � 0.2mm, lf � 16.3mm).

To validate these calculations, the narrow- and wide-
band BPFs were fabricated and the measured results were
compared to the simulations, as shown in Figure 6. Te
narrow-band BPF passband RL was measured at less than
20 dB, and the insertion losses (IL) in the simulated and
measured flters were 0.99 dB with fc � 2.89 GHz
(FBW � 3.63%) and 0.98 dB with fc � 2.93 GHz
(FBW � 3.62%), respectively. Te simulated and measured
wide-band BPF passband RL and IL were 0.72 dB with
fc � 2.89 GHz (FBW � 5.87%) and 0.72 dB with
fc � 2.92 GHz (FBW � 5.81%), respectively. Tere was
a good agreement between the measured and simulated
results.

In addition, TZs were generated on both sides of fc by
both BPFs, as shown in Figures 6(a) and 6(b); the frst two
TZs were generated by cancelling efects, and the third TZ
was generated by the harmonic efects of the distributed
transmission line [11]. Te locations of TZs are dependent
on the amount of coupling between source and VSRR,
between two VSRRs, between VSRR and load, and between
source and load.

In Table 1, the proposed BPF is compared to other works.
Te size of the proposed BPF is 0.29λg × 0.043λg, which is
smaller than other planar resonators. It is also clear that the
selectivity of the proposed BPF is greater than BPFs using
VSRR as the TZs generated from MEMCP.

3. Conclusion

We have introduced two highly selective BPFs, based on
VSRRs coupled with MEMCPs. It was shown that E- and
M-coupling were dominant in coplanar and microstrip
waveguides, respectively, and that M-dominant coupling
should be maintained for high selectivity. As a result,
narrow- and wide-band BPFs were designed and measured.
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