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Tis paper proposes and demonstrates a novel fltering phase shifter with a compact size and good frequency selectivity using two
dual composite right/left-handed (D-CRLH) resonators. Firstly, the study analyzes the D-CRLH structure to gain insights into its
unique properties, providing a physical understanding for subsequent design procedures. Ten, an ad hoc systematic design
procedure for the D-CRLH phase shifter is discussed in detail. Diferent from the traditional phase shifter, the innovative
integration of D-CRLH structure in phase shifters enables its advantages in the fexible realization of good in-band frequency
selectivity and compact size.Tis advantageous utilization of the D-CRLH structure distinguishes our proposed phase shifter from
conventional implementations. Finally, to demonstrate the feasibility of the proposed structure, we design, fabricate, and measure
a prototype of the fltering phase shifter with a 90° phase shift. Te comparison between simulation and measurement results
shows good agreement, thereby confrming the efectiveness of both the new fltering phase shifter and the presented design
procedure.Trough this comprehensive investigation, our work showcases a promising solution for achieving compact size, good
frequency selectivity, and reliable performance in phase shifter design.

1. Introduction

Due to the rapid development of modern wireless com-
munication systems, particularly the emergence of the ffth-
generation (5G) communication technology, there is an
increasing demand for microwave components with small
size, high integration, and excellent performance. To meet
this growing demand, a crucial strategy is to design a class of
multi-function fltering phase shifters with both fltering and
phase-shifting functions. Tese components are widely used
in beamforming networks and phased array antenna systems
[1–3], making their design critically important. As a result,
the high-performance phase shifters have gained signifcant
attention over the last few decades, with many designs being
reported [4, 5]. Te Schifman phase shifter [6] has emerged
as one of the most classical phase shifters and has been
a popular research topic since its inception.

In [7–10], several types of Schifman phase shifters are
introduced. However, due to the increasingly complex
communication situation, this classical phase shifter sufers
from the disadvantage of poor frequency selectivity, ren-
dering it inadequate for meeting the practical performance
requirements. As an alternative method to overcome this
disadvantage, a fltering phase shifter is proposed, which
involves the codesign of a phase shifter and a flter as a single
component. Tis approach utilizes coupled substrate in-
tegrated waveguide (SIW) resonators, although it introduces
complexities in the manufacturing process and results in
higher insertion loss [11]. More recently, inspired by
a similar concept presented in [12–14], another method has
emerged that employs microstrip line (MSL) resonators for
implementing a new topology of fltering phase shifters in
antenna feeding networks. Te authors of [15–23] have
presented us with some phase shifter structures in recent
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years, greatly broadening our horizons and expanding our
knowledge in this feld.

However, many previously reported works employ λ/2
or λ/4 transmission line resonators as building blocks, which
result in a large physical size that is impractical for RF
applications. To address this limitation, a recent approach
presented in [24] introduces a dual-band 90° phase shifter
that leverages the advantageous properties of via-free
D-CRLH resonators to achieve miniaturization. Nonethe-
less, this design sufers from a high sensitivity to frequency
variation, and it only maintains a constant phase shift near
the center frequency. To overcome the aforementioned
challenges encountered in prior studies, this paper proposes
a novel phase shifter that ofers good frequency selectivity
and compact size by utilizing D-CRLH resonators. Tis
innovative design aims to mitigate the drawbacks identifed
in previous approaches.

2. Proposed Wideband Phase Shifter Structure

In Figure 1(a), the D-CRLH resonator is researched and
developed, which consists of a high impedance line (l1, w2),
parallel coupling lines (l2, w1, s1), and 50Ω feed lines as
ports. Te required performance can be achieved through
the size tuning of the resonator, which provides great design
fexibility.

Figure 1(b) presents the LC equivalent circuit of a π-type
D-CRLH resonator structure [25] which is composed of
a series of the parallel resonant circuit and two parallel series
resonant circuits. In the paper, we establish an accurate
equivalent circuit model and introduce a D-CRLH unit cell
for assisting in the design. C1 represents the capacitance of
the interdigital capacitor, L1 represents the inductance of the
shunt metal wire, C2/2 represents the coupling between the
resonator and the ground, and 2L2 represents the leakage
efect excited by the resonator to the ground. Based on the
admittance matrix of D-CRLH unit, the equivalent circuit
with L1, L2, C1, and C2 elements can be obtained by cal-
culation.Tis structure will produce two kinds of resonance,
corresponding to the right hand in the low-frequency band
and the left hand in the low-frequency band, and the left
hand in the high-frequency band [26] gives the derivation
process in detail about the relevant components in the
equivalent circuit. Terefore, these parameters can be de-
termined by formulas (1)–(5):

Kg � 0.57 − 0.145 ln
w2

h
􏼒 􏼓,

w2

h
> 0.05, (1)

L1 � 2 × 10− 4
l1 ln

l1

w2 + t
􏼠 􏼡 + 1.193 +

w2 + t

3l1
􏼢 􏼣 × Kg, (2)

L2 � 2τL1, (3)

C1 � 0.559 × 10− 5
l1 εr + 1( 􏼁, (4)

C2 �
εrε0Smetal

2h
, (5)

where εr is the dielectric constant of the substrate, Smetal is
the metal area of the D-CRLH resonator, h is the thickness of
the substrate, t is the thickness of the printed metallic layer,
and τ is the correlation index.

Trough the above theoretical formula analysis, we give
an example for verifcation. According to the theoretical
formula in [27] and (1)–(5), we get accurate calculation
results. Based on the above analysis and the equivalent
circuit model in Figure 1(b), the resonant frequency band of
RH and LH resonators fRH and fLH can be calculated by the
following formula:

fRH �
1

2π
����
L1C1

􏽰
􏼐 􏼑

,

fLH �
1

2π
����
L2C2

􏽰
􏼐 􏼑

.

(6)

Te frequency response of the equivalent circuit and
topology is shown in Figure 1(c), where, specifcally, the
right-hand response is near 1.6GHz, the left-hand response
is near 6GHz, and the spurious response is near 5GHz. Te
design of this paper is only in the lower right-hand
frequency band.

3. Design of D-CRLH Phase Shifter

3.1. Design of Bandpass Filter. In Figure 2(a), a second-order
BPF using the D-CRLH resonator is designed. Te coupling
gap between the twoD-CRLH resonators is s2. To achieve the
required external coupling, we connect both feed lines with
the resonator. In Figure 2(b), we give the equivalent circuit
of the proposed flter, where L11 represents the uncoupled
equivalent inductance of the transmission line, L12 repre-
sents the coupled equivalent inductance of the transmission
line, C1 and L13 represent the equivalent capacitance and
inductance of the interdigital capacitor, respectively, and Cq
represents the coupling between the port and each single-
mode resonator. In addition, the coupling between adjacent
resonators is a hybrid electromagnetic coupling, which is
further represented by the coupling coefcient M and the
capacitance Cm, and then M and Cm are constrained by gap
s2. For second-order BPF, the characteristics of passband are
constrained by the resonators and their external and internal
coupling. Te center frequency of the BPF is determined by
the RH response frequency of the D-CRLH unit cell, and we
give the corresponding S-parameters of the designed BPF in
Figure 2(c).

3.2. Design of Phase Shifter. In Figure 3, we give the topology
of the proposed phase shifter, which is composed of two
diferent D-CRLH BPFs, in which the BPFr branch is used as
the reference line and the BPFm branch is used as the phase
adjustment line. BPFr and BPFm are second-order BPFs
using the D-CRLH resonator. Compared with the traditional
phase shifter, our proposed diferential phase shifter pro-
vides both constant phase shift and narrowband fltering
functions.
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Figure 2: (a) Schematic layout of the D-CRLH bandpass flter. (b) Equivalent circuit of the D-CRLH BPF. (c) S-parameters of the D-CRLH
BPF.
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Figure 1: (a) D-CRLH unit cell schematic layout. (b) Proposed π-type D-CRLH circuit. (c) Unit cell schematic layout S-parameters.
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As for a bandpass flter, the higher cutof frequency of the
passband is defned as fH, and its lower cutof frequency is
defned as fL, from which the calculation formula for center
frequency can be obtained:

f0 �

�������

fH × fL

􏽱

. (7)

When designing the phase shifter (D-CRLH), we frst
design the reference branch shown in Figure 3. Based on the
designed reference portion, to realize any phase shift, the
electrical length θdelay0 of the delay line can be determined at
frst according to the phase shift ΔΦ0 at center frequency f0.

Terefore, we defne the phases of branch BPFm and
branch BPFr as Φm and Φr, and the calculation formula of
phase shift ΔΦ can be obtained:

ΔΦ � Φm −Φr � 2θdelay f0( 􏼁 � 2θdelay0. (8)

According to the microwave network theory, in the
symmetrical network, we can use an ABCD transmission
matrix to calculate the transmission coefcient S21 and the
insertion phase of BPF.

S21 can be represented by the ABCD matrix as

S21 �
2

A + B/Z0 + CZ0 + D( 􏼁
. (9)

Te insertion phase of BPF is

∠S21 � −tan− 1 B + CZ2
0

j(A + D)Z0
. (10)

Trough the above analysis, we fnd that the design
between the two branches has great fexibility and can be
optimized independently. Tis can not only reduce the
design difculty but also get better phase-shifting
performance.

4. Experiment Results and Discussion

In this section, we give the specifc design method of the
proposed phase shifter to verify the accuracy of our pro-
posed theory. Te designed phase shifter is constructed on
a single-layer substrate. Te design is implemented on the
Rogers 5880 structure (εr � 2.2, h� 0.787mm, and
tanδ � 0.0009). Te bandwidth range of phase shifter is
1.51–1.69GHz, the working center frequency is 1.6GHz, the
fractional bandwidth (FBW) is 11.32%, the minimum return
loss (RL) is less than 18.17 dB, and the insertion loss (IL) is
more than 0.46 dB. Te structural electric size of the pro-
posed phase shifter is 0.297 λg × 0.197 λg. Overall, these
parameters showcase the high performance of our proposed

design and its ability to achieve the desired outcomes with
limited IL and greater FBW.

Next, we have designed 45°, 90°, 135°, and 180° phase
shifters. Due to the principle of joint design of flter and
phase shifter, the four groups of phase shifter reference
branches in this design adopt the same structure, and only
the main branch is structurally optimized. Te structure of
the phase shifter is shown in Figure 3, and its practical
implementation requires high machining accuracy and low
fabrication tolerance. Te specifc physical sizes of the four
groups of main branches are shown in Table 1. By analyzing
the simulated results of four groups of phase shifters, their
center frequency can reach about 1.59 GHz and the pass-
band range is about 1.51–1.69 GHz, indicating that they
have well met our design expectations. In the study of
[28, 29], we have also learned that the larger the phase shift
value of the phase shifter pair, the narrower the bandwidth
of the phase shifter. Te S-parameters of the four groups of
the main branch are shown in Figure 4(a), their phase shift
results are shown in Figure 4(b), and the group delays are
shown in Figure 4(c). Within the passband range, the four
groups of phase shifters can achieve the phase shift range of
45 ± 2°, 90 ± 5°, 135± 4°, and 180 ± 7°. Tis result is also in
line with our expected value of phase shift performance of
phase shifter.

To verify the performance reliability of the phase shifter
we designed, we have fabricated a 90° phase shifter and
compared the measured results with the simulation results.
Figure 5(a) is the comparison of the reference branch S-
parameters of the 90° phase shifter, Figure 5(b) is the
comparison of the main branch S-parameters of the 90°
phase shifter, and Figure 5(c) is the comparison of the phase
shift of the 90° phase shifter around the center frequency.
Figure 6 shows the complete design process for proposing
a phase shifter. We also compare it with other phase shifter
structures in Table 2.Trough our analysis, we conclude that
the designed phase shifter satisfes the performance re-
quirements of modern communication systems, such as
Butler matrix or circularly polarized antenna structures. It
excels particularly in demanding working conditions that
necessitate high-performance RF components, demon-
strating excellent frequency selectivity and precise phase-
shifting capabilities.

Port 1 Port 2 Port 3 Port 4

The BPFm BranchThe BPFr Branch

L4L3
s2 s3

Figure 3: Schematic layout of the phase shifter.

Table 1: Size of the BPFm branch.

Branch 45° (mm) 90° (mm) 135° (mm) 180° (mm)
s3 0.11 0.11 0.085 0.10
l4 20 28.8 39.23 47.56
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Figure 5: Simulated and measured frequency responses of the proposed 90° phase shifter. (a) S-parameters of reference branch.
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Figure 6: Flowchart for design of the proposed D-CRLH phase shifter.

Table 2: Performance comparison with diferent phase shifters.

f0 (GHz) Phase shift±PD (°) IL (dB) RL (dB) Number of TZs FBW (%) Size (λ2g)

[6] 10.00 80± 5 4 13.00 0 7.40 0.86× 0.78
[8] 5.00 90@f0 N.A. 16.50 0 ≈7.07 ≈1.50×1.40
[9] 4.00 90@f0 N.A. 10.00 0 ≈8.80 ≈1.00× 0.90
[10] 1.62 91@f0 0.17 15.70 1 4.00 0.35× 0.33
[15] 2.00 180± 2 0.22 10.00 0 15.00 0.70× 0.19
[16] 8.50 90± 5 0.70 N.A. 0 35.00 0.84× 0.80
[17] 26.00 90± 5 1.30 15.00 0 39.30 2.18×1.31
Tis work 1.59 90± 5 0.46 18.17 2 11.32 0.297× 0.197
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5. Conclusions

In this paper, we have conducted a thorough investigation
into the characteristics of D-CRLH cells. By adopting a co-
design approach involving both the bandpass flter (BPF)
and the phase shifter, we have successfully obtained a phase
shifter structure that aligns with our desired design ex-
pectations. Tis proposed structure not only exhibits
a compact size but also ofers a diverse range of adjustable
parameters, greatly enhancing the design fexibility. Fur-
thermore, the excellent agreement observed between the
simulated and measured results serves as a strong validation
of the achieved goals in terms of size miniaturization, fre-
quency selectivity, and the ability to achieve arbitrary phase
shift values. Consequently, our study highlights the prom-
ising potential of utilizing the D-CRLH flter in various
applications in the future. Overall, this work demonstrates
the feasibility and efectiveness of our proposed design,
paving the way for further advancements and utilization of
the D-CRLH flter in diverse practical scenarios.
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