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Compared to interference mitigating precoding, interference exploiting symbol-level precoding (SLP) requires less transmit
power to guarantee the quality of service in a multibeam satellite system. However, due to the large roundtrip time (RTT), it is
impractical to obtain real-time channel state information on the satellite side. Te random channel state information (CSI) phase
error of outdated CSI could cause serious performance deterioration of SLP. To compensate the CSI phase error, we propose an
outdated CSI-based robust SLP (RSLP) method, which optimizes the transmit power under outage probability constraints. Te
central limit theorem (CLT) and second-order Taylor expansion are used to relax the outage probability constraints into convex
ones. In addition, because only outdated CSI-based robust block-level precoding exists, we present two comparative RSLP
methods accordingly. Without violating outrage probability constraints, the proposed RSLP method requires much lower
transmit power than comparative RSLP and existing robust block-level precoding methods.Te complexity of the proposed RSLP
method is also lower than that of two comparative RSLP methods.

1. Introduction

A multibeam satellite communication system, which has
wide coverage, high spectrum efciency, and low cost of
infrastructure in remote areas, is seen as an important
extension of a mobile communication system. By enabling
spatial multiplexing, wireless resources such as time and
frequency can be efectively reused among multiple
beams. However, because of a relatively small beam angle,
interbeam interference cannot be ignored; thus, in-
terference management is needed. Interference mitigating
block-level precoding (BLP) is a widely used interference
management technology to suppress downlink interbeam
interference which is treated as an adverse efect [1–3].
Recently, interference exploiting symbol-level precoding
(SLP) was proposed to further reduce transmit power or
improve the equivalent signal-to-noise ratio (SINR),
where channel state information (CSI) and data symbols
are taken into account to exploit constructive interference
[4–7].

Due to severe channel fading such as path loss, the high
transmit power efciency of precoding is very attractive for
satellite systems. Nevertheless, round-trip time (RTT) be-
tween a satellite and its user terminals is large, and it is
unrealistic for the satellite to obtain perfect CSI to perform
precoding. Hence, only outdated CSI can be obtained, where
the CSI error is usually modelled as a random phase error
[8, 9]. To reduce transmit power with only outdated CSI,
robust BLP was studied for unicast [10] and multicast [11].
Besides, the CSI phase error model was also used to design
a robust BLP matrix for an integrated satellite-terrestrial
system [12] and over line-of-sight channels in a mobile
communication system [13]. Besides robust BLP, existing
robust SLP (RSLP) methods mainly focused on CSI with an
additive error which is a classical model for mobile com-
munication systems.Worst case-based RSLP under bounded
channel errors was proposed for PSK constellations in [6]
and for generic constellations in [14]. In [15], a probabilistic
constructive interference constrained RSLP method was
proposed to tackle stochastic channel uncertainties.
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Compared with [15], Lyu et al. further improved the outage
probability performance [16]. Machine learning-based RSLP
was studied in [17, 18], where a Bayesian neural network or
a deep neural network was used to design the RSLP vector
with much lower execution time. Besides, the MMSE RSLP
method under perantenna power constraints was proposed
to compensate the CSI error with a more practical model
[19]. In [20], the efect of the phase error caused by an
oscillator is analyzed, where the phase errors of channels
between diferent beams and specifc user are the same.
Bounded CSI error-based RSLP is also used for IRS-aided
communication systems to reduce transmit power [21].
Although additive error-based RSLP has been studied,
further research on outdated CSI-based RSLP enjoys little
attention so far.

Consequently, in this paper, we propose a power min-
imization RSLP method which is under symbol-level outage
constraints for the downlink of a multibeam satellite system.
Te main contributions of the paper are summarized as
follows:

(i) We approximate the symbol-level received signals by
using both the second-order Taylor expansion and
central limit theorem (CLT) to analyze statistical
properties. By doing that, the received signal can be
seen as a normal distributed variable or a quadratic
form of a normal Gaussian distribution vector.

(ii) To solve the symbol-level outage probability con-
strained power minimization problem, we relax the
nonconvex probability constraints into second-
order cone (SOC) constraints to obtain the SLP
vector. Modifed by existing robust BLP methods,
two other relaxation methods of outage probability
constraints are also designed. Transmit power,
outage probabilities and invalid probabilities of three
RSLP methods are compared by computer simula-
tion. Numerical results show that our proposed
relaxation method is closer to the probabilistic
constraints.

1.1. Notation. R and C are sets of real and complex
numbers, respectively. IN is the N × N identity matrix. A
user set is denoted by K � 1, 2, ..., K{ }. 1M×N is the M × N

all-one matrix, and 0M×N is the all-zero matrix. Pr X{ } is the
probability of an event X. ⊙ is the Hadamard product
operation. Re x{ } is the real part of a vector x, and Im x{ } is the
imaginary part. E x{ } is the expectation of a random vector x.
Corr x{ } is the covariance of x. Var v{ } is the variance of
random variable v. N(a, b) is a real Gaussian distribution
with a mean vector a and a covariance matrix b. For any
vector a � [a1, a2, ..., an]T, we defne pow(a, k) � [ak

1, ak
2, ...,

ak
n]T.

2. Materials and Methods

2.1. SystemModel and Problem Formulation. In this section,
the multibeam satellite system model is introduced. Besides,
we present a brief explanation of constructive interference

(CI) to show the efect of interference. When only outdated
CSI is known on the satellite side, stochastic robust CI power
minimization (SR-CIPM) problem is formulated to com-
pensate the CSI error.

2.1.1. System Model. We consider downlink of a multibeam
satellite system with N beams, where full frequency reuse is
adopted. One resource block is reused by K users, where
K⩽N. Te vector of data symbols for K users is denoted by
s � [s1, s2, ...sK]. Each entry of s is from a normalized PSK
constellation with order M. Te normalized receiving signal
at the kth user side is denoted by the following equation:

yk � hkx + nk,∀k ∈K, (1)

where x ∈ CN×1 is the transmit signal vector on the satellite
side and the instant transmit power is defned as Pt � ‖x‖2.
nk ∼ CN(0, 1) is the normalized additive Gaussian noise of
the kth user. hk shown in (2) denotes the corresponding
block-fading channel vector from the satellite to the kth user
[8]. Lk is the normalized scale coefcient, which is modelled
as shown in (3), where c is the velocity of light, f0 is the
carrier frequency, dk is the distance between the satellite and
the kth user, κ is the Boltzmann constant, B is the signal
bandwidth, and T is the noise temperature at the user
terminal side. 􏽥ρk � pow(ρk, 0.5) ∈R1×N as well as
ln(ρk) ∼ N(μr,k11×N, σ2r,kIN) denotes the rain attenuation
vector for the kth user. φk ∈R

1×N is the channel phase
vector, whose elements are uniformly distributed between
0 and 2π. gk is the beam gain factor for kth UT, whose ith
entry is given in (4), where GT,i is the transmitting antenna
gain of beam i, Gr,k is the receiving antenna gain of user k,
and Jn(.) denotes the nth order Bessel function of the frst
kind. Te ratio parameter ui,k is set as ui,k �

2.07123 sin(ψi,k)/sin(ψ3dB), where ψi,k is the of-axis angle
between the kth user and the center of the ith beam and ψ3dB

is the 3 dB angle of each beam.

hk �
��
Lk

􏽰
􏽥ρk ⊙ exp jφk􏼈 􏼉⊙ gk ∈ C

1×N
, (2)

Lk �
c

4πf0dk

􏼠 􏼡

2 1
κBT

, (3)

gk􏼂 􏼃i �

��������������������������

GT,iGr,k

J1 ui,k􏼐 􏼑

2ui,k

+ 36
J3 ui,k􏼐 􏼑

u
3
i,k

⎛⎝ ⎞⎠

􏽶
􏽴

. (4)

Considering the signifcant distance between the
satellite and any user, the feedback of downlink CSI is
outdated. Terefore, a CSI error arises, and here, we
describe the error model. According to (2), CSI hk de-
pends on the rain attenuation vector 􏽥ρk, the antenna gain
vector gk, the free space path-loss factor Lk, and the
channel phase vector φk, where 􏽥ρk, gk, and Lk determine
the amplitude of hk and φk determines the phase. It is
noteworthy that Lk and 􏽥ρk are large-scale fading param-
eters which change relatively slowly. Furthermore, in
a short period of time, gk can also be regarded constant
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since the variation of the of-axis angle between any user
and the satellite is very slight. Tus, the amplitude of
outdated CSI is approximately equal to that of real CSI.
However, due to tropospheric fading, φk varies when the
feedback of CSI is outdated [8–11]. As a result, the large
RTT-based CSI error is mainly a phase error. Referring to
the widely used random phase error model, we defne
hk � hest,k ⊙ ek, where hest,k is the known outdated CSI and
ek � ejθT

e,k is the CSI error vector with θe,k ∼ N(0N×1,Σe,k).
􏽐e,k ∈R

N×N is assumed perfectly known in this paper,
and SINR is used as the quality of service (QoS) metric,
where the SINR threshold of the kth user is denoted by Γk.

2.1.2. CI and SR-CIPM Problem Formulation. Te efect of
interbeam interference on a specifc data symbol is not
necessarily adverse. Taking a PSK symbol as an example,
if the value of an interference has the similar phase as the
symbol, it is more possible for the receiver to correctly
demodulate receiving signals. In this case, the in-
terference is constructive and should not be mitigated.
Te defnition of nonstrict CI was proposed in [4] as the
interference that pushes the combination of the received
signals away from the detection boundary of the known
symbol. Based on the defnition of CI, the CI region
(CIR) was designed as the union of possible signals
whose left interference is constructive. To illustrate this,
we take a QPSK symbol as an example (as seen in Fig-
ure 1). Te shadow area in Figure 1 depicts the CI region
of a QPSK symbol s �

���
0.5

√
+ j

���
0.5

√
. A �

��
Γ

√
σ × s is the

scaled data point, Γ is the scaling factor based on SINR
threshold, and σ2 is the variance of noise. Refer to [5], let
OB
��→

� λs where λ is a complex multiplier, and point B is in
the CI region if

(Re(λ) − |OA
��→

|)tan(θ) ≥ |Im(λ)|, (5)

where θ � π/M and M is the modulation order.
Te defnition of CI tells that whether an interference is

constructive is relative with the value of the data symbol.
Tus, to ensure that only CI exists, symbol-level signal
processing is needed. Because SINR threshold Γk of the kth
user is an expectation concept of data symbols, to satisfy the
expectation SINR constraints, the nonstrict constructive
interference power minimization (CIPM) problem is pro-
posed by constrained instant SINR of the kth user not lower
than Γk, which is expressed as follows:

P1: min
x,λk

‖x‖
2
2,

s.t.
C1: hkx � λksk,∀k ∈K,

C2: Re λk( 􏼁 −
��
Γk

􏽰
( 􏼁tan ϕk( 􏼁⩾ Im λk( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,∀k ∈K,

(6)

where λk is the scale and rotation factor of sk, ϕk � π/M. C1
and C2 ensure that the left interference is constructive. P1 is
a linear constrained quadratic programming (LCQP)
problem, which can be efectively solved. By denoting

A � [IN, 0N×N; 0N×N, − IN], B � [0N×N, IN; IN, 0N×N],
􏽥x � 􏼂Re xT􏼈 􏼉, Im xT􏼈 􏼉􏼃

T, and 􏽥hk � 􏼂Re hk/sk􏼈 􏼉, Im hk/sk􏼈 􏼉􏼃 �

[rT

􏽥h,k
, IT

􏽥h,k
], we have

􏽥hkA􏽥x � Re
hkx
sk

􏼨 􏼩

� Re λk􏼈 􏼉,

􏽥hkB􏽥x � Im
hkx
sk

􏼨 􏼩

� Im λk􏼈 􏼉.

(7)

Hence, complex optimization problem P1 is equivalent
to the real one P2 as shown in the following equation:

P2: min 􏽥x‖􏽥x‖
2
,

s.t. 􏽥hkB􏽥x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⩽tanϕk 􏽥hkA􏽥x −
��
Γk

􏽰
􏼐 􏼑,∀k ∈K.

(8)

Te optimal transmit vector xopt of P1 is feasible only
when perfect CSI is known. However, perfect CSI is
impractical for a satellite to obtain. As shown in Figure 2,
because only imperfect CSI hest,k is known, although
hest,kxopt is located in CIR, the real received signal hkxopt
may not satisfy the CI constraint. Terefore, a robust SLP
method is needed, and SR-CIPM proposed in [16] is more
suitable for a satellite system, which is expressed as
follows:

P3: min
􏽥x

‖􏽥x‖
2
,

s.t. Pr
􏽥hkB􏽥x

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

tanϕk

⩽ 􏽥hkA􏽥x −
��
Γk

􏽰
􏼨 􏼩⩾1 − ηk,∀k ∈K,

(9)

A

O

B
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C

D

Re

Im

s

θ

Figure 1: CI region.
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where ηk is defned as a symbol-level robust outage prob-
ability hyperparameter. Te probability constraint for the
kth user of P3 is equivalent with

Pr 􏽥hkC􏽥x ⩾
��
Γk

􏽰
, 􏽥hkD􏽥x ⩾

��
Γk

􏽰
􏽮 􏽯⩾1 − ηk, (10)

where C � (A − B/tanϕk) and matrix D � (A + B/tanϕk).

By defning Ak(􏽥x) � 􏽥hk | 􏽥xTC􏽥hT

k ⩾
��
Γk

􏽰
􏼚 􏼛 and Bk(􏽥x) �

􏽥hk | 􏽥xTD􏽥hT

k ⩾
��
Γk

􏽰
􏼚 􏼛, P3 can be transformed into P4, which

is shown in the following equation:

P4: min 􏽥x‖􏽥x‖
2
,

s.t. Pr 􏽥hk ∈ Ak(􏽥x), 􏽥hk ∈Bk(􏽥x)􏽮 􏽯⩾1 − ηk,∀k ∈K.
(11)

Since the constraints of P4 are nonconvex probability
constraints which are difcult to solve, in Section 3, we will
solve P4 by approximating the probability constraints into
convex ones. Te diference between this paper and [16] lies
in the model of imperfect CSI, where in [16], the additive
error of CSI is assumed, whereas the phase error is supposed
in this paper.

2.2. Robust SLP Methods. In this section, by approximating
P4 into a convex problem, we propose a robust SLP method
with outdated CSI. Since previous researchers seldom
studied RSLP under imperfect CSI with a phase error, we
also propose two comparative RSLP methods accordingly.
Besides, the complexity comparison among three RSLP
methods is also presented to show that our proposed RSLP
method requires the lowest computational complexity.

2.2.1. Proposed RSLP Method. Since the probabilistic
constraints of P4 are not convex, it is necessary to
transform the probabilistic constraints into convex
constraints by approximation processing. Due to the fact
that 􏽥xTC􏽥hT

k and 􏽥xTD􏽥hT

k are correlated, the joint proba-
bility is difcult to analyze. To simplify the analysis, we
refer to the lower bound of joint probability shown in (12)
to relax probability constraints [22]. We fnd that (13) is
the sufcient condition of (12), so P4 can be relaxed into
P5 in (14). Since the distribution of 􏽥xTC􏽥hT

k and 􏽥xTD􏽥hT

k is
similar to each other, here we only analyze
Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯, whereas Pr 􏽥hk􏽮 ∉Bk(􏽥x)} follows the
same steps:

Pr 􏽥hk ∈ Ak(􏽥x), 􏽥hk ∈Bk(􏽥x)􏽮 􏽯

⩾ 1 − Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯 − Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯⩾ 1 − ηk

⇔Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯 + Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯⩽ ηk,

(12)

(10)⟶relax
Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯⩽

ηk

2
,

Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯⩽
ηk

2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

P5: min 􏽥x‖􏽥x‖
2
,

s.t. (11),∀k ∈K.
(14)

As 􏽥xTC􏽥hT

k is the linear combination of multiple random
variables, CLT could be used to approximately analyze the
distribution of 􏽥xTC􏽥hT

k (as a normal variable) [10]. Ac-
cordingly, 􏽥xTC􏽥hT

k can be approximately described by

E 􏽥xTC􏽥hT

k􏼚 􏼛 and Var 􏽥xTC􏽥hT

k􏼚 􏼛. When 􏽥x is fxed, both

E 􏽥xTC􏽥hT

k􏼚 􏼛 and Var 􏽥xTC􏽥hT

k􏼚 􏼛 are functions of the random

vector hk. Te relationship between hk and θe,k is shown as
follows:

􏽥hT

k �

r􏽥h,k

I􏽥h,k

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
r

ĥ,k
⊙ cos θe,k􏼐 􏼑 − I

ĥ,k
⊙ sin θe,k􏼐 􏼑

r
ĥ,k
⊙ sin θe,k􏼐 􏼑 + I

ĥ,k
⊙ cos θe,k􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

(15)

where both r􏽢h,k
� Re hT

est,k/sk􏽮 􏽯 and I􏽢h,k
� Im hT

est,k/sk􏽮 􏽯 are
known on the satellite side. Furthermore, it is easy to obtain
E(cos θe,k) � 􏽥Uk1N×1 and E(sin θe,k) � 0N×1, where
􏽥Uk � diag(e− uk/2) and uk is the vector of diagonal elements
of Σe,k. Hence, the mathematical expectation of 􏽥xTC􏽥hT

k can
be obtained as follows:

O

CIR

Re

Im

Γk sk

M
π

sk

hesi ,k xopt

hk xopt

Figure 2: Te efect of imperfect CSI.
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E 􏽥xTC􏽥hT

k􏼚 􏼛 � 􏽥xTCUk
􏽢h

T

k , (16)

where Uk �
􏽥Uk 0N×N

0N×N
􏽥Uk

􏼢 􏼣, 􏽢hk � 􏼔rT

􏽢h,k
, IT

􏽢h,k
􏼕. Ten, by de-

fning Ek as shown in (17), Var 􏽥xTC􏽥hT

k􏼚 􏼛 can be derived as

shown in (18):

Ek � E 􏽥hT

k
􏽥hk􏼚 􏼛

�
Ek,1 Ek,2

Ek,3 Ek,4
􏼢 􏼣

�

E r􏽥h,k
rT

􏽥h,k
􏼚 􏼛 E r􏽥h,k

IT

􏽥h,k
􏼚 􏼛

E I􏽥h,k
rT

􏽥h,k
􏼚 􏼛 E I􏽥h,k

IT

􏽥h,k
􏼚 􏼛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)

Var 􏽥xTC􏽥hT

k􏼚 􏼛 � 􏽥xTC Ek − Uk
􏽢h

T

k
􏽢hkUk􏼒 􏼓CT

􏽥x. (18)

To calculate the value of Ek, we need to calculate
E cos(θe,k) cos(θT

e,k)􏽮 􏽯, E cos(θe,k) sin(θT
e,k)􏽮 􏽯, E sin(θe,k)􏽮

cos(θT
e,k)}, and E sin(θe,k) sin(θT

e,k)􏽮 􏽯, which are difcult to
be directly calculated due to the nonindependent property of
random vector θe,k. Terefore, when each element of θe,k is
relatively small, second-order Taylor expansion can be used.
Some intermediate calculation equations are shown in (19),

where t � [t1, t2]
T ∼ N(02×1,Σt) and Σt �

σ2t1 σt1
σt2

σt1
σt2

σ2t2
⎡⎣ ⎤⎦.

In (19), it is worth mentioning that only E cos(t1) cos(t2)􏼈 􏼉

and E sin(t1) sin(t2)􏼈 􏼉 are approximated by Taylor expan-
sion. When σ2t1 and σ2t2 are relatively small, E t21t

2
2􏼈 􏼉 can be

ignored because it is infnitesimal of higher order of σ2t1 and
σ2t2 .

Tereby, each submatrix of Ek can be obtained as shown
in (20). By defning the symmetric matrix
􏽥Ek � (Ek − Uk

􏽢h
T

k
􏽢hkUk), there exists an orthogonal matrix

Qk ∈R
2N×2N, diagonal matrix Λk ∈R

2N×2N, and matrix
F ∈R2N×2N so that 􏽥Ek � FFT � QT

kΛ
1/2
k Λ1/2

k Qk. Tus,

Var 􏽥xTC􏽥hT

k􏼚 􏼛 � ‖FTCT􏽥x‖
2
2 can be obtained:

E cos2 t1􏽮 ( 􏼁􏽯 �
1
2

1 + e
− 2σ2t1􏼒 􏼓,

E sin2 t1􏽮 ( 􏼁􏽯 �
1
2

1 − e
− 2σ2t1􏼒 􏼓,

E cos t1( 􏼁 sin t1( 􏼁􏼈 􏼉 � 0,

E cos t1( 􏼁 cos t2( 􏼁􏼈 􏼉 ≈ 1 −
1
2
σ2t1 −

1
2
σ2t2 +

1
4

E t
2
1t

2
2􏽮 􏽯,

E t
2
1t

2
2􏽮 􏽯 � 3σ4t1σ

4
t1t2

+ 2σ8t1t2
+ 4σ2t1σ

4
t1t2

σ2t2 + 3σ4t1t2
σ4t2 ,

E sin t1( 􏼁 sin t2( 􏼁􏼈 􏼉 ≈ σ2t1 ,

E sin t1( 􏼁 cos t2( 􏼁􏼈 􏼉 � E cos t1( 􏼁 sin t2( 􏼁􏼈 􏼉 � 0,

(19)

Ek,1(i, j) ≈

1
2
r2􏽢h,k

(i) 1 + e
− 2Σe,k(i,i)

􏼐 􏼑 +
1
2
I2􏽢h,k

(i) 1 − e
− 2Σe,k(i,i)

􏼐 􏼑, if i � j,

1 −
1
2
Σe,k(i, i) −

1
2
Σe,k(j, j)􏼒 􏼓r􏽢h,k

(i)r􏽢h,k
(j) + Σe,k(i, j)I􏽢h,k

(i)I􏽢h,k
(j), if i≠ j,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ek,2(i, j) ≈
e

− 2Σe,k(i,i)r􏽢h,k
(i)I􏽢h,k

(i), , if i � j,

1 −
1
2
Σe,k(i, i) −

1
2
Σe,k(j, j)􏼒 􏼓r􏽢h,k

(i)I􏽢h,k
(j) − Σe,k(i, j)I􏽢h,k

(i)r􏽢h,k
(j), if i≠ j,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ek,3(i, j) ≈
e

− 2Σe,k(i,i)I􏽢h,k
(i)r􏽢h,k

(i), if i � j,

1 −
1
2
Σe,k(i, i) −

1
2
Σe,k(j, j)􏼒 􏼓I􏽢h,k

(i)r􏽢h,k
(j) − Σe,k(i, j)r􏽢h,k

(i)I􏽢h,k
(j), if i≠ j,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ek,4(i, j) ≈

1
2
I2􏽢h,k

(i) 1 + e
− 2Σe,k(i,i)

􏼐 􏼑 +
1
2
r2􏽢h,k

(i) 1 − e
− 2Σe,k(i,i)

􏼐 􏼑, if i � j,

1 −
1
2
Σe,k(i, i) −

1
2
Σe,k(j, j)􏼒 􏼓I􏽢h,k

(i)I􏽢h,k
(j) + Σe,k(i, j)r􏽢h,k

(i)r􏽢h,k
(j), if i≠ j.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)
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After the approximation of the mean and variance of
􏽥xTC􏽥hT

k and 􏽥xTD􏽥hT

k has been derived, the marginal proba-
bility Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯 and Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯 can be approx-
imated as follows:

Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯 ≈
1
2

1 − erf
􏽥xTCUk

􏽢h
T

k −
��
Γk

􏽰

�
2

√
FTCT

􏽥x
����

����
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯 ≈
1
2

1 − erf
􏽥xTDUk

􏽢h
T

k −
��
Γk

􏽰

�
2

√
FTDT

􏽥x
����

����
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(21)

Referring to [16], we could therefore transform the
probability optimization problem P5 into an SOC problem
(SOCP) P6 as shown in (22), where a0 � erf − 1(1 − ηk),
erf − 1(.) is the inverse error function. SOCP P6 is convex and
can be efectively solved using the CVX toolbox:

P6: min 􏽥x‖􏽥x‖
2

s.t.
C1:

�
2

√
a0 FTCT

􏽥x
����

����⩽ 􏽢hkUkC􏽥x −
��
Γk

􏽰
,∀k ∈K,

C2:
�
2

√
a0 FTDT

􏽥x
����

����⩽ 􏽢hkUkD􏽥x −
��
Γk

􏽰
,∀k ∈K.

(22)

2.2.2. Comparison RSLP Methods. Because the solution of
the proposed RSLP methods is not optimal for P5,
a benchmark is needed for performance comparison.
However, previous researchers seldom studied RSLP under
imperfect CSI with a phase error. Terefore, referring to
robust BLP, we present two comparative RSLP methods.

Referring to [10], if an outage condition can be for-
mulated as a quadratic inequality of a CSI phase error, the
outage probability constraint can be relaxed into a convex
one. Terefore, in following paragraphs, by employing two
diferent convex approximation methods, P5 can be trans-
formed into two separate convex problems, both of which
can be efectively solved.

We directly use the second-order Taylor expansion to
approximate 􏽥hk [9], which is shown in the following
equation:

􏽥hT

k ≈

Re 􏽢h
T

k􏼚 􏼛⊙ 1 −
θ2e,k

2
􏼠 􏼡 − Im 􏽢h

T

k􏼚 􏼛⊙ θe,k

Re 􏽢h
T

k􏼚 􏼛⊙ θe,k + Im 􏽢h
T

k􏼚 􏼛⊙ 1 −
θ2e,k

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Meanwhile, by defning 􏽥θe,k � 􏽐
− 1/2
e,k θe,k ∼ N(0N×1, IN),

􏽥xC � C􏽥x � [􏽥xT
C,1, 􏽥xT

C,2]
T and intermediate parameters Λ(C)

k,1 ,
Λ(C)

k,2 , L
(C)
k (􏽥x), and f(C)

k (􏽥x) shown in (24) and (25) can be
derived. Similarly, Λ(D)

k,1 , Λ
(D)
k,2 , L

(D)
k (􏽥x), f(D)

k (􏽥x), and 􏽥hk􏽥xD
can be obtained by defning 􏽥xD � D􏽥x � [􏽥xT

D,1, 􏽥xT
D,2]

T:

Λ(C)
k,1 � r􏽢h,k

⊙ 􏽥xC,1 + I􏽢h,k
⊙ 􏽥xC,2,

Λ(C)
k,2 � r􏽢h,k

⊙ 􏽥xC,2 − I􏽢h,k
⊙ 􏽥xC,1,

L(C)
k (􏽥x) � −

1
2
Σ1/2

e,kdi ag Λ(C)
k,1􏼐 􏼑Σ1/2

e,k ,

f(C)
k (􏽥x) � Σ1/2

e,kΛ
(C)
k,2 ,

(24)

􏽥hk􏽥xC ≈ 􏽥θT

e,kL
(C)
k (􏽥x)􏽥θe,k + f(C)

k (􏽥x)􏽥θe,k + 1TΛ(C)
k,1 . (25)

In (25), with given 􏽥x, the approximation of 􏽥hk􏽥xC is a qua-
dratic function of a standard normal random vector, and so
is 􏽥hk􏽥xD. With method III in [23] or Lemma 2 in [13], the
probability constraints Pr 􏽥hk ∉ Ak(􏽥x)􏽮 􏽯 and Pr 􏽥hk ∉Bk(􏽥x)􏽮 􏽯

can be transformed into convex constraints (25) or (26),
respectively. ak,C, ak,D, bk,C, and bk,D are new optimization
parameters, and vk⩾

�
2

√
is the solution of

(1/2 − 1/(v2k))vk �
������������
ln(1/(1 − ηk))

􏽰
. In this way, P5 can be

transformed into the SOCP problem P7 shown in (28) or
a semidefnite program (SDP) problem P8 shown in (29),
where aC � [a1,C, a2,C, ..., aK,C]T, bC � [b1,C, b2,C, ..., bK,C]T,
aD � [a1,D, a2,D, ..., aK,D]T, and bD � [b1,D, b2,D, ..., bK,D]T:

1TΛ(C)
k,1 −

��
Γk

􏽰
+ Tr L(C)

k (􏽥x)􏽮 􏽯⩽2
����������

− ln 1 − ηk( 􏼁

􏽱

ak,C + bk,C􏼐 􏼑,

1TΛ(D)
k,1 −

��
Γk

􏽰
+ Tr L(D)

k (􏽥x)􏽮 􏽯⩽2
����������

− ln 1 − ηk( 􏼁

􏽱

ak,D + bk,D􏼐 􏼑,

1
�
2

√ f(C)
k (􏽥x)

�����

�����2
⩽ak,C,

1
�
2

√ f(D)
k (􏽥x)

�����

�����2
⩽ak,D,

vk L(C)
k (􏽥x)

�����

�����F
⩽bk,C, vk L(D)

k (􏽥x)
�����

�����F
⩽bk,D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Tr L(C)
k (􏽥x)􏽮 􏽯 + 1TΛ(C)

k,1 ⩾ 2

�������

ln
1

1 − ηk

􏽳

ak,C − 2bk,C ln 1 − ηk( 􏼁,

Tr L(D)
k (􏽥x)􏽮 􏽯 + 1TΛ(D)

k,1 ⩾ 2

�������

ln
1

1 − ηk

􏽳

ak,D − 2bk,D ln 1 − ηk( 􏼁,

�������������������

L(C)
k (􏽥x)

�����

�����
2

F
+ 2 f(C)

k (􏽥x)
�����

�����

􏽲

⩽ ak,C,

��������������������

L(D)
k (􏽥x)

�����

�����
2

F
+ 2 f(D)

k (􏽥x)
�����

�����

􏽲

⩽ak,C,

bk,CIK + L(C)
k (􏽥x)≽0, bk,DIK + L(D)

k (􏽥x)≽0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

P7: min
􏽥x,aC,bC,aD,bD

‖􏽥x‖
2
,

s.t. (25),∀k ∈K.

(28)

P8: min
􏽥x,aC,bC,aD,bD

‖􏽥x‖
2
,

s.t. (26),∀k ∈K.

(29)

2.2.3. Complexity Analysis. Te computational complexity
of the proposed RSLP method is mainly dominated by
computing the orthogonal decomposition of each 􏽥Ek and by
solving the SOCP problem P6. O((2N)3) is usually used as
the complexity of orthogonal decomposition of the 2N ×

2N matrix 􏽥Ek. K matrices are needed to be decomposed per
symbol duration; thus, O(KN3) is the complexity of or-
thogonal decomposition. Te worst-case complexity
analysis is usually used to evaluate computational com-
plexity of solving the SOCP problem by using the interior
point method [15, 24], where the complexity of obtaining
an ε-solution is shown as follows:

CSOCP(ϵ) � n(2m + l)
1/2

n
2

+ l(n + 1) + 􏽘
m

i�1k
2
i􏼐 􏼑O(1) ln

1
ϵ
,

(30)

where n is the dimension of the optimization vector, m is the
number of SOCs, l is the number of linear constraints, ki is
the size of the ith second-order cone, and ϵ is the optimi-
zation accuracy variable.Te complexity of solving SOCP P6
is shown in (31). Terefore, the total complexity of the
proposed RSLP method is CP6

+ O(KN3):

CP6
(ϵ) � (2N + 1)

������
4K + 2

√
2(2N + 1)

2
+ 8KN2

􏼐 􏼑ln
1
ϵ

O(1).

(31)

It is worth noting that if Σe,k � σ2e,kIK from [8], four N ×

N submatrices of 􏽥Ek are all diagonal matrices. Accordingly,
􏽥Ek can be transformed into a block diagonal matrix by
exchanging rows and columns, where each diagonal sub-
block is a 2 × 2 matrix. Te complexity of orthogonal de-
composition of that block diagonal matrix is N × O(23);
thereby, the total complexity can be reduced:

CP7
� (2N + 4K + 1)

�������
10K + 2

√
(2N + 4K + 1)

2
+ 2K(2N + 4K + 2) +(4K + 1)(2N + 1)

2
􏼐 􏼑O(1) ln

1
ϵ
, (32)

CSDP(ϵ) � 2m + l + 􏽘

p

i�1
gi

⎛⎝ ⎞⎠

1/2

n n
2

+ l(n + 1) + 􏽘
m

i�1
k
2
i + n 􏽘

p

i�1
g
2
i + 􏽘

p

i�1
g
3
i

⎛⎝ ⎞⎠O(1) ln
1
ϵ
, (33)

CP8
(ε) � (2KN + 6K + 2)

1/2
(2N + 4K + 1)

(2N + 4K + 1)
2

+ 2K(2K + 4K + 2) + 2KN3
+

+(2K + 1)(2N + 1)
2

+(2N + 4K + 1)2KN2􏼠 􏼡O(1) ln
1
ϵ
. (34)

Te complexity of comparative RSLP methods is mainly
dominated by solving SOCP P7 or SDP P8, where the com-
plexity bound of P7 is shown in (32). Te complexity of P8 is
much higher than that of P6 and P7 due to the semidefnite
constraints. Te complexity of solving an SDP problem is

shown in (33), where gi is the dimension of the ith semi-
defnite constraint and p is the total number of semidefnite
constraints [24]. Te complexity of P8 is shown in (34). For
clarity, when N→∞(N⩾K), the complexity comparison
among three convex problems is shown in Table 1.

International Journal of Antennas and Propagation 7



3. Results and Discussion

In this section, numerical results of average transmit power,
outage probabilities (OPs), and invalid probabilities of the
proposed robust SLP method and two comparative SLP
methods are presented and analyzed by using Monte Carlo
simulations, where 200 samples of K � 6 user location pa-
rameters are randomly generated. L1 � 5 blocks are trans-
mitted for one sample, and L2 � 20 time slots are in one
block. RSLP is performed on N � 6 beams of the satellite.
Besides, we assume Σe,k � 0.5σeIN + 0.5σe1N×N,∀k ∈K,
and ek and ej are independent for ∀k≠ j. Te maximum
instant transmit power for any time slot is set as PdBWmax.
Other simulation factors are shown in Table 2.

It is crucial to highlight that the proposed SLP method
and two comparative SLP methods are not always feasible.
Namely, a feasible solution for P6, P7, or P8 does not
always exist. In those three problems, two main factors
afecting the existence of a feasible solution are the co-
variance matrices of the CSI error Σe,1,Σe,2, ...,Σe,K and
SINR thresholds Γ1, Γ2, ..., ΓK. Σe,k represents the channel
condition, where larger σe brings about more signifcant
phase uncertainty, making it more challenging for the
precoder to guarantee the QoS requirement. Γk refects the
QoS requirement of the kth user, and larger Γk also in-
creases the difculty of meeting QoS constraints. Besides,
given a maximum instant transmit power limit, if the
optimal transmit signal xopt obtained from P6, P7, or P8
has a large power (‖xopt‖

2 >Pmax), it is still not a feasible
solution. As a result, during simulation, if no feasible
solution exists for any time slot, we utilize nonrobust zero-
forcing transmit signals with a maximum instant transmit
power. Meanwhile, when the power of the optimal
transmit signal exceeds Pmax, we employ the scaled op-
timal transmit signal cxopt, ensuring that its power
matches Pmax.

Because there are few RSLP methods under phase error
for comparison, we also provide numerical results of block-
level outage probability constrained robust block precoding
methods with outdated CSI. For clarity, abbreviations used
in this section are shown as follows:

(1) “ZF”: the nonrobust zero-forcing (ZF) BLP
(2) “CIPM”: the nonrobust CI constrained power

minimization SLP [6]
(3) “LDI”: the large deviation inequality (LDI)-aided

robust BLP method [10]

(4) “OCRBP”: the outage constrained robust BLP
method based on S-procedure [11]

(5) “OSCI-SR-CIPM”: the proposed outdated CSI-based
SR-CIPM SLP P6

(6) “C-RSLP1”: the RSLP method P7 for comparison
(7) “C-RSLP2”: the RSLP method P8 for comparison

Te average transmit power is defned as follows:

Pave �
􏽐

L1
l1

􏽐
L2
l2

Pt l1, l2( 􏼁

L1L2
, (35)

where Pt(l1, l2) � ‖x(l1, l2)‖
2 is the instant power of the l2 th

time slot in the l1 th block. Figure 3 depicts the average
transmit power of proposed and comparative RSLPmethods
with diferent σe. In Figure 3, the OSCI-SR-CIPM method
has better power performance than C-RSLP1 and C-RSLP2.
Average transmit power is higher with smaller OP threshold.
Tat is because smaller OP threshold makes CI probability
constraints stricter. Although the transmit power of LDI is
smaller than that of proposed OSCI-SR-CIPM with small σe,
its symbol-level OP performance is not good, which can be
seen in Figure 4.

Figure 4 shows the statistical outage probabilities of
proposed and comparative precoding methods with dif-
ferent σe. In Figure 4, nonrobust ZF, CIPM, and two robust
BLP methods have unacceptable symbol-level OP perfor-
mance. Besides, although it seems that two comparative
methods have better OP performance than that of the
proposed RSLP method, it is worth noting that the OSCI-
SR-CIPM method satisfes the OP constraints with lower
transmit power in most cases, which means that the relaxed
constraints of the OSCI-SR-CIPM method match OP
constraints better.

From Figure 4, we can also fnd that with higher σe, the
OPs of three RSLP methods are all increased. Tere are two
reasons for that result, one of which is that all the three
methods use the Taylor expansion to approximate prob-
ability constraints, and with higher σe, the accuracy of the
Taylor expansion is deteriorated. Another reason is that
with higher σe, invalid probabilities of three methods are
higher. Moreover, OPs of C-RSLP1 and C-RSLP2 increase
much faster than those of OSCI-SR-CIPM. Tat is because

Table 1: Complexity comparison.

P6 P7 P8

n 2N + 1 2N + 4K + 1 2N + 4K + 1
l 0 2K 2K

m 2K + 1 4K + 1 4K + 1
k1 2N 2N + 1 2N + 1
ki,∀i≠ 1 2N + 1 2N + 1 2N + 1
p 0 0 2K

gi,∀i � 1, 2, ..., p 0 0 N

C(N→∞, N⩾K) O(K3/2N3) O(K3/2N3) O(K3/2N9/2)

Table 2: Simulation factor.

Parameters Value
Orbit altitude 35900 km
Carrier frequency (fc) 20GHz
Boltzmann’s constant (κ) 1.38×10− 23 Joule/K
Bandwidth (B) 100MHz
Satellite antenna gain 38 dBi
Receiver G/T 15 dB/K
ψ3dB 0.4°
Rain-fading mean − 2.6 dB
Rain-fading variance 1.63 dB
Γk 7 dB
Constellation type 8 PSK
Noise temperature 298K
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International Journal of Antennas and Propagation 9



invalid probabilities of two comparative methods increase
faster than those of OSCI-SR-CIPM, which is shown in
Figure 5. All of the three RSLP methods are designed to
solve the same nonconvex problem P5, where the diference
lies in the ways to relax nonconvex probability constraints
into convex ones. Te diference of invalid probability
performance in Figure 5 refects the efect of relaxation of
three methods, where the OSCI-SR-CIPM method has
better approximation, and the relaxation constraints of
C-RSLP1 and C-RSLP2 are stricter. Te reason is that to
relax probability constraints (12), both C-RSLP1 and C-
RSLP2 use the second-order Taylor expansion to approx-
imate 􏽥hk. Ten, based on that approximation, another
relaxation of the probability constraints of 􏽥xTC􏽥hT

k and
􏽥xTD􏽥hT

k is used; thus, two relaxation steps are needed. OSCI-
SR-CIPM directly analyzes the statistical property of 􏽥xTC􏽥hT

k

and 􏽥xTD􏽥hT

k , which can be seen as Gaussian distribution
variables, and then, we only use the second-order Taylor
expansion to approximate a few parts of Ek to obtain

Var 􏽥xTD􏽥hT

k􏼚 􏼛 and Var 􏽥xTD􏽥hT

k􏼚 􏼛; thus, fewer relaxation

steps are needed.

4. Conclusions

In this paper, we solved SR-CIPM for PSK constellations to
compensate the phase error of outdated CSI. CLT and
second-order Taylor expansion are used to relax the prob-
ability constraints into convex ones. Based on diferent
approximation methods, OSCI-SR-CIPM and two com-
parative RSLP methods are proposed. Simulation results
show that although all the three RSLP methods could satisfy
the OP constraints with relatively low phase error variance,
OSCI-SR-CIPM has the lowest average transmit power and
invalid probability.

For future work, because the proposed RSLP method is
only feasible for PSK constellations, the RSLP method for
other constellations such as QAM is also needed. But it is
more difcult to design RSLP over QAM constellations
because the CIRs of some QAM constellation points are
bounded and very small. Tus, it is impractical to constrain
the symbol-level outage probability. Due to the difculty of
directly designing RSLP over QAM constellations, we will
use symbol-level signal processing to improve the power
efciency of robust BLP. Moreover, besides outdated CSI,
which can be seen as multiplicative noise of channels, im-
perfect feedback CSI also exists in a practical satellite system.
In this case, both addictive and multiplicative errors of
a channel should be compensated.
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