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Due to the existence of multipath propagation, the array will receive the multipath propagation signals at the same time while
receiving the target signal and the performance of directional of arrival (DOA) estimation will be infuenced. In this paper, an of-
grid DOA estimation technique based on compressed sensing (CS) on multipath environment is proposed. To deal with the of-
grid problem and the multipath propagation problem, we present a compressed sensing based method. Tis method regards the
multipath propagation coefcients vector as a superparameter and the grid as an adjustable parameter. Ten, the problem of
multipath propagation coefcients estimation is converted to the estimation of an error matrix and the grid is refned iteratively.
Te simulation results show that the method can achieve of-grid DOA estimation in the presence of the multipath propagation
signals.

1. Introduction

In radar signal processing, direction of arrival (DOA) es-
timation has wide applications and many algorithms were
proposed [1, 2]. MUSIC algorithm [3] is one of the classical
algorithms, which has high resolution and can efectively
distinguish adjacent targets. However, it is difcult to ef-
fectively estimate the DOA of coherent signals. According to
the paper [4, 5], compressed sensing (CS) theory based
methods are proposed. Tese methods make use of the
sparsity of the signal in the spatial domain and use the
steering vector corresponding to the spatial angle grid points
of the array as the atoms of the dictionary matrix to con-
struct the sparse representation model of the received signal.
One limitation of compressed sensing based DOA estima-
tion is that the angle of the target must lie on the predivided
grid.Te probability of target DOA falling on the predivided
grid is very low. When the target is not on the grid, the
recovered signal will have energy leakage and grid mismatch,
which is not conducive to the detection of the targets. Tis
problem is called of-grid problem. In order to solve this
problem, many methods are proposed. In [6], researchers
carried out the frst-order Taylor expansion of the steering

vector at the grid point closest to the target and proposed
a l1 norm method, which reduced the error of DOA esti-
mation. An of-grid DOA estimation method based on
sparse Bayesian learning (SBL) is proposed by combining the
frst-order Taylor expansion model and SBL theory in [7].
Tis method reduces the grid size of the model through the
Taylor expansion of grid points near the target. Te mis-
match error is divided to improve the accuracy of DOA
estimation, but this method increases the amount of com-
putation due to the introduction of new estimation
parameters.

In real array signal processing, due to the complexity of
the actual environment, the array will also receive multipath
signals from the same transmitting source while receiving
signals of interest. Tese signals are strongly coherent with
the signals that we are interested in, and the azimuth is very
close. Te DOAs of the signals may not be estimated ac-
curately. In order to eliminate the infuence of the multipath
propagation signals on the accuracy of DOAs estimation,
many algorithms have been proposed for the calibration of
the gain/phase uncertainties. Te most common multipath
suppression methods are based on parameter estimation.
Tis kind of methods uses the multipath signal as the
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amount to be estimated to estimate the amplitude, delay, and
phase of the multipath signal, and then in the subsequent
processing according to the estimation result, the multipath
error is extracted from the receiver and culled from the
signal. One of the most conventional methods is the
forward-backward spatial smoothing (FBSS) method [8].
Tis method can efectively realize DOA estimation of co-
herent signals, but it also sacrifces the degree of freedom. In
[9], maximum likelihood (ML) method is proposed. Tis
method performs well in the case of less snapshots and low
signal-to-noise ratio. However, this method needs multi-
dimensional scanning, and the amount of computation is
huge, so it is not suitable for real-time processing. In ad-
dition, many improved methods based on maximum like-
lihood estimation were also proposed. Reference [10]
directly performs maximum likelihood estimation on the
received signal, which is called the sequential maximum
likelihood estimation method (sequential maximum likeli-
hood, SML). Te method is based on the maximum like-
lihood estimation of the received signal itself during the
iterative initialization and iterative process of each path.
Reference [11] uses the sequential importance sampling
(sequential importance sampling, SIS) technique, that is, the
method of particle fltering, to estimate the multipath pa-
rameters. Tis method can utilize the prior information of
the channel, but it also limits its use without prior in-
formation. In [12], CS based method is proposed and
performs well, but the of-grid problem was not considered.

In this paper, in order to reduce the infuence of multipath
propagation and accurately estimate the DOA of the signal, an
of-grid DOA estimation method based on compressed
sensing is proposed. Firstly, the multipath signal receiving
model with the of-grid problem is converted to an error in
variables (EIVs) model based on the CS theory. At this point,
the estimation of multipath coefcients is transformed into
the estimation of an error matrix which is related to the
multipath coefcients. Ten, an efcient sparse least square
(TLS) framework-based method for the estimation of the
DOAs and the error matrix is proposed. And, a grid updating
method for the of-grid refnement is presented.

Te rest of this paper is organized as follows. In Section
2, the sparse array signal receiving model with the of-grid
problem is presented. In Section 3, the TLS basedmethod for
sparse coefcients estimation and a grid updating method
for the grid refnement are presented. Te simulation results
are shown to prove the correctness of the proposed algo-
rithms in Section 4. Finally, conclusions are drawn.

2. Array Model

2.1. Signal Model. Supposing that a uniform linear array
(ULA) with M array elements receives K far feld narrow-
band signals from K directions of θ � [θ1, θ2, · · · , θK]T. t

denotes the tth snapshot, the output of this ULA X(t) �

[x1(t), x2(t), · · · , xM(t)] can be expressed as

X(t) � 
K

k�1
sk(t) a0 θk(  � A(θ)s(t), (1)

where A(θ) � [a0(θ1), a0(θ2), · · · , a0(θK)] is the array
manifold matrix, θ � [θ1, θ2, · · · , θK] and a0(θk) is the array
steering vector of the k th signal

a0 θk(  � 1, ej2πd/λ sin θk , · · · , ej2π(M− 1)d/λ sin θk 
T
, (2)

where λ is the wavelength, k � 1, 2, · · · , K, d is the array
spacing and d/λ � 1/2.

Te whole space is discretized into N(N≫K) equal
parts and θ � [ϑ1, ϑ2, · · · , ϑN] denotes the grid we dis-
cretized. We get a new array manifold matrix:

A(θ) � a ϑ1( , a ϑ2( , · · · , a ϑN(  . (3)

Te observation vector can be rewritten as follows [13]:

X(t) � A(θ)S(t). (4)

Obviously, only K elements in S are nonzero, and the
values of other elements are all zero. Terefore, S is sparse.

Considering the received white Gaussian noise N(t) can
be rewritten as

X(t) � A(θ)S(t) + N(t). (5)

2.2. Multipath Propagation Model. When the radar detects
a low elevation target, the transmitted signal and the mul-
tipath signal refected from the ground will form an in-
terference efect in the airspace. If the transmitted direct
signal at the elevation of the target is exactly in phase with
the multipath signals, the radar power will be efectively
improved. On the contrary, if the transmitted direct signal is
reversed from the multipath signals, the radar power will be
weakened.

Under the condition of multipath propagation, the signal
received by radar consists of two parts: one part is the direct
signal, which is directly received by the array, and the other
part is the multipath signal, which is received by the array
after being refected by the ground. Te spatial angle of the
two kinds of signals is relatively close and they are coherent
signals.

Assuming that the signal with an angle of θ1 in (1) is the
direct signal, and other signals are multipath signals. Te
direct signal can be expressed as

Xd(t) � A(t)S(t) + N(t). (6)

And, the multipath signals can be expressed as

Xi(t) � ΓiXd(t),

Γi � ρie
jφi ,

(7)

where Γi is the multipath coefcient of ith multipath signal,
ρi is the refection coefcient, and φi is the phase diference.
Te array receives the composite signal of direct signal and
multipath signals, which is expressed as

Xr(t) � Xd(t) + 
K

i�2
Xi(t) + N(t) � AΓS(t) + N(t), (8)
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where Γ � diag[1, Γ2, · · · , ΓK] is the multipath coefcients
matrix.

2.3. Of-Grid Model. Compressed sensing theory uses the
sparsity of signals in the spatial domain to divide the spatial
domain at equal intervals. However, the possibility that the
target in the actual environment just falls on the divided grid
point is very low, which will lead to the of-grid problem.
∆θi represents the deviation between the angle of the ith

signal and the nearest grid point. ∆θ represents the vector
composed of deviation values. θ0 denotes meshing points. At
this time, the angles of the signals can be expressed as

θ � θ0 + ∆θ. (9)

Te observation vector can be rewritten as

X(t) � A(θ)ΓS(t) + N(t). (10)

Tis paper focuses on achieving the estimation of sparse
coefcients S(t) and grid division deviation ∆θ in the
multipath environment Γ and obtaining the accurate esti-
mation of the target angle.

3. Proposed Methods

In order to efectively estimate the target DOA in the
multipath environment, the multipath coefcients matrix is
frstly assumed to be a disturbance related to the array
manifold matrix. At this time, the observation vector can be
rewritten as

X � AΓS + N,

� AS + A(Γ − I)S + N,

� (A + E)S + N,

(11)

where E � A(Γ − I) is an error matrix which is related to the
multipath coefcients matrix.

Using CS data reconstruction algorithm, the sparse
coefcients in (3) can be estimated. However, due to the
existence of the unknown multipath signals, the RIP of the
observation matrix has changed. If the infuence of the
multipath signals is ignored and the signal is reconstructed
directly, the estimation accuracy of the sparse coefcients
will be afected.

Te problem in (11) can be estimated using a sparse least
squares framework. Tis sparse least squares framework can
be described as follows [13]:

argmin
S,∆θ,E,N

E N 
����

����
2
F

+ λ‖S‖1,

s.t. X � (A(θ) + E)S + N.

(12)

Eliminating the noise and the problem is transformed
into an unconstrained optimization problem:

min
S,∆θ,E

‖E‖
2
2 +‖X − [A(θ) + E]S‖

2
F + λ‖S‖1,2. (13)

It can be seen that this problem is a nonconvex opti-
mization problem, and a very efective method is to use
gradient descent algorithm. Te characteristic of this algo-
rithm is to estimate the parameters in an iterative way.
Firstly, assuming that one of the parameters is known, then
using the known parameter to estimate the other parameter,
and then using the estimated parameter to estimate the other
parameter until the iteration converges.

Firstly, assuming that the error matrix E and the angle θ
are known, i denotes the ith iteration, the problem of es-
timating the sparse coefcient matrix S in (13) can be
expressed as

min
Si ,θ

i
Si

����
����1,2 s.t. X − A θ

i
  + Ei− 1

 Si
������

������
F
≤ ε . (14)

Te sparsity coefcient can be solved by the following
equation:

Si
� argmin

Si

X − A θ
i− 1

  + Ei− 1
 Si− 1

������

������2
. (15)

Te problem in (11) can be solved by common com-
pressed sensing signal reconstruction algorithms, including
the greedy algorithm and the convex optimization algo-
rithm. Tis paper chooses greedy algorithm to solve this
problem, which is characterized by low computational
complexity and simple operation. Getting the sparse co-
efcients Si, the grid needs to be updated with the estimated
Si. At this time, the grid updating problem is

min
θ

i
X − A θ

i− 1
  + Ei− 1

 Si
������

������2
. (16)

Tis problem is also a constrained nonlinear optimi-
zation problem, which can be solved by gradient descent
method. At this point, the solution of the problem (15) can
be transformed into the following equation [14]:

argmin
Ψ

r − BlΨ
����

����
2
2, (17)

where r � X − [A(θ
i− 1

) + Ei− 1]Si, Bl � [A′(θ
i− 1

)], and
A′(θ

i− 1
) means A(θ

i− 1
) taking the frst-order derivative

w.r.t. θ. Ψ � [θ
i
− θ

i− 1
]T.

At this point, the solution of the grid updating problem
can be transformed into the following equation:

θ
i

� θ
i− 1

+ c · ∆u · p(1: N), (18)

where c is the step size parameter,∆u is themeshing interval,
and p � real(Bl · r).

Using the estimated sparse coefcients Si and grid θ
i
, the

error matrix is estimated:

Ei
� X − A θ

i
 Si

  Si
 

T
I + Si Si

 
T

 
− 1

. (19)

Te estimation of multipath coefcient matrix can be
obtained from the estimation results of error matrix:

Γi � A θ
i

  
+

Ei
+ I. (20)
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When the iteration process satisfes the iteration ter-
mination condition, the iteration terminates. Trough the
estimated sparse coefcients and the updated grid, we can
get the DOA estimation in multipath environment.

4. Simulation

In the sections above, the problem of of-grid DOA esti-
mation in multipath environment was analyzed, the basic
model was established, and TLS based methods were
proposed to solve the problem. In this section, simulation
experiments are conducted and the results are shown. First,
the simulation results show the DOA estimation results in
multipath environment with diferent methods. Ten, the
Monte Carlo analysis on the root mean square error
(RMSE) of the DOA estimation results are given. In order
to verify the efectiveness of the proposed method, the
method in this paper is compared with several other
methods, including the TLS based algorithm proposed in
this paper, the FBSS method in [6], and the CS based
method in [8].

Firstly, consider a ULA with M (M� 80) array antennas
which is spaced with half wavelength. Te center frequency
of the signal is 9 GHz. Tree (K � 3) coherent far feld
narrow-band signals are received from diferent directions
and the DOAs are θ1 � − 0.58∘, θ2 � 1.66∘, and θ3 � 5.64∘.
Te second signal is the target signal, and the other two
signals are multipath signals that are coherent with the target
signal. Te multipath coefcients of the two multipath
signals are 0.91ej0.8π and 0.82ej1.5π . Te space is divided at
0.1° intervals from − 10° to 10°.

Te frst simulation shows the single DOA estimation
results of several diferent methods in multipath environ-
ment. Te SNR is 25 dB. 10 snapshots are collected. And, the
results are shown in Figure 1.

It can be seen from the results in Figure 1 that although
the FBSS method can achieve DOA estimation of coherent
signals, there is still a large error comparing with the actual

angle. Because the CS based method does not consider the
of-grid problem, the estimated DOAs falls on the grid point
closest to the actual angle of the target.Temethod proposed
in this paper can solve the of-grid problem and achieve
DOA estimation of adjacent targets at the same time.

In order to further verify the algorithm proposed in this
paper, a Monte Carlo test on the RMSE is conducted in the
following simulation。Te derivation of the CRLB can be
seen in [15].

In simulation 2, Monte Carlo is analyzed 500 times on
the RMSE. Figure 2 shows the RMSE vs. diferent SNR, the
SNR changes from − 15 dB to 25 dB at 5 dB intervals, the
number of snapshots is 10.

Figure 2 shows that under the condition of low SNR, the
DOA estimation errors of these methods are large due to the
infuence of noise. With the change of SNR, the RMSE of the
method proposed in this paper is lower than other methods,
thus verifying the efectiveness of this method under the
condition of diferent SNR.

In simulation 3, Monte Carlo is analyzed 500 times again
on the RMSE. Figure 3 presents the RMSE vs. diferent
number of snapshots; the number of snapshots changes from
10 to 100 at 10 intervals, the SNR is 25 dB.

Te simulation results in Figure 3 illustrate that the
RMSE of these methods changes slightly with the change of
snapshot number, but decreases to a certain extent with the
increase of snapshot number and sample number. At the
same time, the RMSE of themethod proposed in this paper is
smaller under diferent snapshot numbers comparing with
other methods,.

In simulation 4, we still do Monte Carlo analysis
500 times on the RMSE. Figure 4 presents the RMSE vs
diferent angular intervals. Considering two signals, one is
the target signal, the other is the multipath signal, and the
angle of the target signal is, 1.66∘ the angle of the multipath
signal is (1.66 + d)∘, d changes from 1.2 degrees to 3 degrees
in 0.2 degree interval, the SNR is 25 dB and the number of
snapshots is 50.
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It can be seen from the simulation results in Figure 4 that
when the angles of the multipath signal and the target signal
are very close, the angle estimation deviation of the target is
relatively large. Compared with the method proposed in this
paper, the error is smaller.

5. Conclusions

In this paper, a compressed sensing based method is pro-
posed for the of-grid DOA estimation in the multipath
environment. Te most important step in the method is
transforming the signal receiving model into an EIV model
and then estimating the sparse coefcients by total least
square method. Te estimated sparse coefcients are used to
update the grid, and then the updated grid and the estimated
sparse coefcients are used to estimate the multipath

coefcients. Since the problem to be solved is a nonconvex
optimization problem, this paper estimates multiple position
parameters by iteration. When the iteration ends, the esti-
mation of parameters is obtained. Te simulation results
show that it has a better performance under diferent
conditions. In addition, only the most commonly greedy
algorithm is used in the reconstruction of sparse coefcients
in this paper, and there are many compressed sensing signal
reconstruction algorithms. How to use the compressed
sensing algorithm to achieve more accurate signal re-
construction under diferent conditions is worthy of
further study.
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