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In this work, a dual-port antenna system is simulated and fabricated for cognitive radio (CR) application. Te proposed system
comprises a tapered-fed monopole ultra-wideband (UWB) sensing antenna and a dual-narrowband (NB) communicating
antenna. For miniaturization, the UWB sensing antenna is placed on the front side of the communicating antenna. Te sensing
operation takes place over 2.1–12GHz. Te E-shaped dual-band antenna operates at 3.9GHz and 6.04GHz. Te envelope
correlation coefcient (ECC) and isolation are measured to be lower than 0.12 and greater than 18 dB, respectively, within the
range of acceptable values for both parameters. Te antenna prototype was fabricated and tested experimentally to confrm the
simulation’s fndings. Te outcomes of both the simulation and the testing revealed a defnite consistency. Tis work gives
a miniaturized model and good isolation, which is appropriate for C-band applications.

1. Introduction

As per the FCC (Federal Communication Commission),
about 70% of allocated electromagnetic spectrums still need
to be fully utilized. Cognitive radio (CR) technology
appeared as a viable option for optimal utilization of the
electromagnetic spectrum [1, 2]. After interacting with the
radio environment, the CR automatically modifes the radio
transmitter parameters. Efective spectrum management is
only conceivable for CR with its antenna system. Te
cognitive radio antenna module consists of an ultra-
wideband (UWB) spectrum sensing antenna and a nar-
rowband (NB) communication antenna [3–6]. However,
designing an efcient antennamodule for deployment inside
CR satisfying key requirements such as good isolation,

reduced physical dimensions, and multiband characteristics
is challenging [7, 8].

In the last decade, multiport-based antenna systems have
been adopted for designing the CR antenna system. Multiport-
based models can be used for continuous and instantaneous
spectrum sensing and communication within the accessible
frequency spectrum. Te consideration of isolation is a crucial
aspect in the design of a multiport system [9, 10]. Several
methodologies have been introduced and published in the
literature [11–16].Te techniques that are adopted for obtaining
good isolation are (1) antenna placement and orientation [12],
(2) defected ground structures (DGSs) [13], (3) slots/slits-
etching [14], (4) protruding ground stub structures [15], and (5)
parasitic elements/structures [16]. In addition to this, other
popular techniques are discussed in [17–25], as follows: (1)
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metamaterials (MTMs)-split-ring-resonator (SRR) [18]; com-
plementary-split-ring-resonator (CSRR) [19](2) electromag-
netic band gap (EBG) structure [20], (3) decoupling and
matching network [21], neutralization line [22], (4) cloaking
structures [23], (5) shorting vias and pins [24], and (6) inherent
or no isolation techniques [25]. To minimize the dimension of
the CR antenna, the radiating patch of one antenna acts as the
ground plane of the other [26]. Various reconfguration
mechanisms using a stepper motor, PIN diode, LASER, etc. are
incorporated into the communication antenna for communi-
cating in the entire band recognized by the sensing antenna.
Tese confgurations sufer from bulkiness, slow tuning, neg-
ative efect of biasing lines, power consumption, and non-
linearity efects [27–29]. Nowadays, combining patches in
a small space without interrupting surface current distribution
and ensuring sufcient isolation between the antennas are
factors to consider. In addition, in the current scenario [30],
there is a great demand for compact and portable antenna
systems for specifc applications in the C-band.

To address the above challenges, a two-port antenna system
(UWB sensing+multiband (E-shaped) communication) is
designed for cognitive radio applications to increase spectrum
utilization efciency, which is the primary goal of our research.
Tis paper proposes a new CR antenna consisting of a tapered-
fed UWBmonopole as the sensing antenna and a dual-band E-
shaped patch as the communicating antenna. For the minia-
turization of the module, we put the UWB sensing antenna on
the top side of the dual-band antenna. In addition, good
isolation is obtained between the antennas because of the
feeding diversity of both antennas; one is a microstrip line, and
the other is co-axial feeding. Performance optimization of the
whole structure is done using CST microwave studio.

2. Antenna Structure Design and Configuration

Figure 1 depicts aerial views of the CR antenna. It has a FR-4
substrate (εr= 4.4, σ � 0.02). Te overall size is 40mm
(Ws)× 50mm (Ls), and thickness of the substrate is
h= 1.6mm. For the dual-band antenna, the radiator portion
of the UWB sensing antenna acts as a ground plane. Te E-
shaped patch (Port-2) is placed on the backside of the
substrate. Table 1 shows the proposed model geometry. Te
methodology is algorithmically represented in Figure 2,
which indicates a transparent explanation of the design
process.

2.1. UWB (Sensing) Antenna. A triangularly tapered feeding
mechanism is used for designing the UWB antenna
(Figure 1(a): Front side). For good impedance matching, the
ground is a partial ground plane. Te lower band-edge
frequency fL of the proposed UWB monopole is defned
using the following equation (1) [31]:

fL �
C

λ
�

7.2
(L + r + g) × k􏼈 􏼉

GHz, (1)

where L, r, and g are the length, radius, and gap between the
radiating patch and ground plane, respectively, and fLis the
lower cut-edge frequency for the proposed antenna. For
εr= 4.4, the optimum value of k= 1.2 is chosen empirically.

Te optimal value of feed line length Lf is found using
Riccati equation [32] as shown in the following equation:

Γ(θ) �
1
2

e
− jβLf ln

ZLf

Z0
􏼠 􏼡

sin βLf/2􏼐 􏼑

βLf/2􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

2

, (2)

where ZLf
, β, Z0 and Γ (θ), are the load impendence, phase

constant, characteristic impedance, and refection coefcient,
respectively. Iterative optimization is used to determine the
feed line widths Wf1 and Wf2. Tis factor (i.e., the width of
feed line) is independent of the resonance frequency.

2.2. Narrow-band Communicating Antenna. Figure 1(b)
shows the dual-band E-shaped communicating antenna.
Te E-shaped antenna has two identical notches made
symmetrically on both sides of the feed location. Its dual-
band property depends on the symmetrical notch, which
increases the length of the current path and consequently
changes the values of C and L [33]. Due to the change in L
and C values, another frequency band is created in addition
to the fundamental frequency band. Te dimensions of the
E-shaped antenna are calculated using [34, 35].

3. Results and Discussion

Figure 3 shows the CR antenna module fabricated using an
MITS PCB prototyping machine. Te return loss performances
and the radiation characteristics of the CR antenna were
measured using a VNA and observed in the anechoic chamber,
respectively. In a triangularly tapered-fed antenna, instead of
using a full ground plane, a partial ground plane yields better
impedance matching (Figure 4). Figures 5 and 6 show the
parametric study (by varying “Lg” and feed-gap “g”) of the
UWB antenna. Tese two factors signifcantly afect impedance
matching and bandwidth [31]. Figures 7 and 8 show the sim-
ulated and measured return loss performances. Te sensing
UWB antenna at Port-1 gives a wider bandwidth from 2.1 to
12GHz (Figure 7).Te communicating (NB) E-shaped antenna
at Port-2 operates at two diferent frequencies.Te 1st resonating
mode is at 3.9GHz, and the 2nd mode is at 6.04GHz (Figure 8).
Te discrepancies between simulated andmeasured plots can be
seen due to fabrication errors, surrounding cable losses, and
spurious radiation from the coaxial probe mounted on the
monopole during measurement [28]. Figure 9 shows the sim-
ulatedVSWRplot (<2 in the operating band) of the CR antenna.

3.1. Group Delay and Phase Response. Te time domain
performance is assessed using group delays (GDs), the
magnitude of S21, and phase response. CST microwave
studio is used to perform the time domain analysis. It is
based on the fnite integration approach (FIT). Te study
analyzes the time domain performance on two identical
ultra-wideband (UWB) antennas. Tese antennas are po-
sitioned 100mm from each other in the far-feld region [36].
Te investigation is undertaken in two orientations: face-
to-face (FTF) and side-by-side (SBS). Te calculation of
group delay (τ) quantifes the temporal discrepancy (time
delay) incurred by a signal throughout its propagation from

2 International Journal of Antennas and Propagation



the point of transmission to the point of reception. Te
calculation for the group delay is as follows:
τ � − (dθ(ω)/ dω)

where θ is the signal phase (in rad) and ω is the
frequency (in rad/s). In order to plot GDs in CST, we
must go through the following 6 crucial procedures in
sequential order: (1) postprocessing (template post-
processing), (2) time signals, (3) group delay, (5) de-
termine the receiver and transmitter ports as well as
relevant modes, and (6) evaluate. Figure 10 shows that the
group delay response appears consistent and fat across
the frequency range (an acceptable value is less than 3 ns
[37]). It implies that the proposed antenna is non-
dispersive. Similarly, to plot the magnitude and phase
response (S21), we follow the steps: (1) 1D results, (2)
S-parameters (S21: magnitude (dB)), and (3) S-parameters
(S21: phase (degrees)) in sequential order. Figures 11 and
12 show that, up to 10.6 GHz, the magnitude remains
almost constant (better than − 20 dB), and the phase re-
sponse is linear (in both the FTF and SBS confgurations).
Nonlinearities in phase response and magnitude response
become detectable at frequencies over 10.6 GHz [38]. Tis

is because the substrate and antenna geometry can indeed
infuence an antenna system’s group delay and phase
response.

3.2. Gain and Radiation Patterns. Te 2D radiation patterns
of both the sensing and communicating antenna are illustrated
in Figures 13 and 14. In both planes, the UWB antenna exhibits
an omnidirectional pattern in the H-plane and a directive
pattern in the E-plane (Figure 13). Te partial ground plane
deteriorates the polarization purity at higher frequencies. Also,
some discrepancies were observed mainly due to fabrication
errors and surrounding cable losses during antenna mea-
surement. It clearly shows that the simulated results of both
UWB/NB antennas agree well with the measured values. Te
simulated gains are 2.27dBi, 4.7 dBi, and 6.16 dBi at 3.85GHz,
5.98GHz, and 10.02GHz for a sensing antenna, respectively.
Te simulated and measured gain of the UWB antenna is
shown in Figure 15. Similarly, for the communicating antenna,
they are 1.9 dBi, 4.81 dBi at 3.9GHz and 6.04GHz, respectively.
Te radiation efciency of the CR antenna is shown in Fig-
ure 16. Due to the absence of higher-ordermodes, the radiation
efciency is maximum at the lowest matching frequency and
deteriorates marginally to 70% as higher-order modes appear
with increasing frequencies. Terefore, the efciency gradually
degraded at higher frequencies due to increased losses. Te
copper and substrate losses are frequency-dependent and in-
crease with frequency [39–41]. Figure 17 depicts the E-feld and
H-feld radiation pattern measurement setup.

3.3. Isolation Mechanism and Surface Current Distribution
(SCD). Figure 18(a) depicts the SCD of the UWB sensing
antenna without the communicating antenna at 3.85 GHz,
5.98 GHz, and 10.02 GHz. Te current distribution plots
show that the maximum current lies at the edge of the
radiating patch and the edge of the partial ground plane.
Terefore, the center part of the radiating patch is an
appropriate position to integrate the NB antenna to pro-
duce better isolation due to minimal surface current

Ws

Ls
Rp

Wf1

Wf2

Port 1

g

Lp

Lf

(a)

Lg

Lp
Port 2

Wm

WpLm Lc

(b)

Figure 1: Proposed antenna (a) top view and (b) rear view.

Table 1: Design parameters of the proposed CR antenna.

Parameters Size (mm)
Ws (sub. width) 40
Ls (sub. length) 50
Rp 12
Lp 14
Lf 16.5
Wf1 1.5
Wf2 3
Lg (ground length) 16
Lc 1
g 0.5
Wp 11.5
Lp 15
Wm 8
Lm 8.5
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density. Figure 18(b) shows the SCD of antenna-1 (sensing
UWB antenna: Port-1 excited) while the E-shaped NB
antenna (Port-2) is terminated. In such cases, minimum
current fows in the NB antenna while maximum current
fows at the edge of the UWB antenna when Port-1 is
excited. Similarly, Figure 18(c) indicates the SCD of
antenna-2 (E-shaped NB antenna: Port-2 excited) while the
sensing antenna (Port-1) is terminated [42]. In this case,

the maximum current fows in the NB antenna compared
to those in the UWB antenna when Port-2 is excited. Tis is
observed both at 3.9 GHz and 6.04 GHz, as the UWB ra-
diator acts as a ground plane for NB antenna. A minor
surface current magnitude seems to exist in the UWB
structure. Tis minor surface current magnitude does not
afect the radiation behavior of the NB antenna, which was
validated by observing the ECC (below 0.5).

NO

NO

START

Tapered fed
UWB Monopole Antenna

Parametric Analysis to
obtain wider impedance

bandwidth

UWB:
3.1-10.6 GHz

Achieved

YES

YES

E-shaped NB Antenna Design

Parametric Analysis to obtain
dual-band

Corresponding
bands Achieved

Fabricate Prototype

STOP

Figure 2: Flowchart of antenna design methodology.

(a) (b)

Figure 3: Fabricated prototype (a) bottom view and (b) top view.
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Te measured and simulated isolation curves are
depicted in Figure 19. It reveals that both antennas have
minimal mutual coupling, below 18 dB, throughout the

desired sensing bandwidth. It is an appropriate value to
reduce the crosstalk between the two antennas. In both
simulated and measurement results, some discrepancy is
observed. Tis is due to the approximation of boundary
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conditions used in the computational package. Radio
frequency (RF) cables from VNA slightly bias the mea-
surement of miniaturized antennas [43].

3.4. ECC (Envelope Correlation Coefcient). Te ECC mea-
sures the extent to which the radiation patterns are un-
correlated. It can be calculated using the following relation [10]:
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Figure 13: Simulated and measured radiation patterns (monopole sensing antenna) at (a) 3.85GHz, (b) 5.98GHz, and (c) 10.02GHz.
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Figure 14: 2D-polar plot of the communicating antenna (NB) at (a) 3.9 GHz and (b) 6.04GHz.
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Figure 18: SCD of the proposed CR antenna.
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ρ �
S∗  S 2 + S∗2 S22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

 − S  
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− S2 
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑  − S22
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− S 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑
, (3)

whenρ is greater than or equal to 0.5, it means a signifcant
degradation of the radiation pattern. From Figure 20 it can
be observed that the ECC exhibits very small values between
0 and 0.12. It reveals that the radiation patterns of the in-
tegrated structure are not correlated.

4. ComparisonwithPreviouslyReportedWorks

Table 2 represents the comparative study between recently
reported multi-port antennas with diferent functionalities
[46–51]. For a fair comparison, here, CR antennas with
similar objectives are considered. Te proposed integrated
structure has a compact and low profle, providing wider
impedance bandwidth and good isolation. Hence, the overall
performance of the proposed design is satisfactory.

5. Conclusions

Te designed two-port antenna structure for C-band applica-
tions ofers a simple and efcient design that eliminates the need
for complex and advanced production devices. Te sensing
antenna is designed to exhibit an omnidirectional radiation
pattern. Tis characteristic is desirable for applications where
the antenna needs to communicate with multiple devices or
receive signals from various angles without the need for precise
pointing. Furthermore, the sensing antenna operates within
a wide bandwidth ranging from 2.1GHz to 12GHz. Tis wide
frequency range accommodates a broad spectrum of signals,
making it versatile for various C-band communication appli-
cations. Operating at a wide bandwidth ensures compatibility
with diferent communication standards and frequencies. In
addition to the sensing antenna, the antenna structure includes
an E-shaped dual-band antenna. Tis antenna operates at two
specifc frequencies: 3.9GHz and 6.04GHz, providing dual-
band functionality. Te design of the E-shaped antenna allows
for efcient signal transmission and reception at these fre-
quencies, catering to specifc communication requirements.
One important aspect of the antenna structure is the isolation
between the two antennas.Te isolation is greater than 18dB in
the desired operating band, indicating that the two antennas are
well-separated and do not interferewith each other signifcantly.
Tis isolation is crucial to ensuring minimal cross-talk and
interference between the sensing antenna and the E-shaped
dual-band antenna, enabling both antennas to perform opti-
mally. Due to the compact nature of our E-shaped antenna, the
gain is marginally small. Tis will be enhanced by employing
various approaches for enhancing gain, which will be benefcial
when a high-gain E-shaped antenna is necessary. Overall, the
two-port antenna structure ofers a well-designed, straightfor-
ward solution for C-band applications.
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