
Research Article
Evaluation of the Inductive Coupling between Coplanar
Concentric Coils in the Presence of the Ground

Mauro Parise

Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy

Correspondence should be addressed to Mauro Parise; m.parise@unicampus.it

Received 19 June 2023; Revised 13 July 2023; Accepted 23 February 2024; Published 8 March 2024

Academic Editor: Rajkishor Kumar

Copyright © 2024 Mauro Parise. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An analytical approach is presented that allows deriving an exact series-form representation for the fux linkage between two
physically large concentric circular coils located on a lossy soil.Te expression comes from a three-step analytical procedure. First,
the integral expression for the fux linkage is converted into a double integral consisting of a fnite and a semi-infnite integral.
Next, the semi-infnite integral is recognized to be a well-known tabulated Sommerfeld integral, which may be analytically
evaluated straightforwardly. Finally, applying Lommel’s expansion allows rewriting the remaining fnite integral as a sum of
elementary integrals amenable to analytical evaluation. As a result, the fux linkage between the two coils is given as a sum of
spherical Hankel functions of the wavenumber in the air and in the ground, multiplied by a coefcient depending on the
geometrical dimensions of the coils.Te accuracy and robustness of the proposed formulation is tested by comparing its outcomes
with those generated by numerical integration of the complete integral representation for the fux linkage and with the results
provided by previous analytical approaches to the same problem. It is found that the use of the derived expression for the
inductance makes it possible to obtain signifcant time savings as compared to numerical quadrature schemes.

1. Introduction

In recent years, current-carrying coils of wire have been
extensively used in a number of felds of scientifc and
technological interest, including electromagnetic sounding
for earth exploration [1, 2], magnetic resonance imaging
[3–5], radio direction fnding [6–9], diathermy [10, 11], and
wireless power transfer (WPT) [12]. In several engineering
applications, coil antennas are arranged in pairs or organized
within an array structure, with the scope of transmitting
electric power, measuring the direction of arrival of a radio
signal, or acquiring information about the subsurface
structure of a terrestrial area and detecting shallow buried
objects. For instance, with the growing demand for battery
electric vehicles (BEVs), two-coil WPT systems capable of
efcient energy transfer are increasingly requested. Basically,
WPTsystems for battery electric vehicles are used to transfer
electrical energy from a source coil to a receiving coil
connected to a charging system. Te peculiarity of this
process lies in the fact that the energy transfer is performed

via magnetic induction, without wires and cables [13–17]. It
turns out that the magnetic coupling between the coils plays
a fundamental role in the efciency of the energy transfer,
and the determination of the mutual inductance between the
emitter and the receiver becomes necessary to get helpful
knowledge about the coupling strength.

In literature, many works have addressed the problem of
rigorously calculating the mutual inductance in a free-space
environment [18–27]. Unfortunately, such solutions cannot
be used every time that the coils are located in close
proximity to or on the top surface of a terrestrial area, which
happens, for instance, in applications like WPT systems for
BEV, where the coils operate close to the bottom part of the
vehicle. Here, the presence of the soil has a considerable
impact on the mutual coupling and, hence, on the perfor-
mance of the energy transfer.

Despite the importance of evaluating the fux linkage
between coaxial coils located in proximity to terrestrial areas,
there is scarcity of analytical solutions that allow accom-
plishing this task. An attempt in this direction has been
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made in [28], where the problem of two coils placed at the
air-ground interface is considered. Unfortunately, the de-
rived solution for the mutual impedance is valid only for
equally sized coils separated by a non-negligible radial
distance and when taking the limit as the distance ap-
proaches zero (that is, when the coils share the same axis),
the obtained formula diverges. To author’s knowledge, the
sole analytical approaches that efciently treat this problem
are the well-established quasistatic explicit expression for the
inductance [29] or the improved analytical solution derived
in [30], valid in a wider frequency range. Yet, both these
solutions have the disadvantage of being subject to the
condition that the receiving coil is physically and electrically
small (small-loop assumption) and, as a consequence, they
cannot be used for arbitrarily sized coils.

Tus, the computation of the mutual inductance of
coaxial coils located above an earth structure is usually
carried out by using three-dimensional simulation tech-
niques such as the boundary element method (BEM) and
the fnite element method (FEM) or via numerical in-
tegration of its integral expression. However, especially if
the coil system is supposed to operate very close to or on
the top surface of the ground, these methods involve
signifcant computational eforts, which, in turn, imply
non-negligible time costs.

Te scope of the present work is to derive an exact
explicit expression for the fux linkage between two physi-
cally large concentric circular coils positioned on the top
surface of a homogeneousmaterial medium, which responds
to the following two requirements. First, it must be valid in
the quasistatic as well as nonquasistatic frequency regions
and regardless of the coils size. Second, it must exhibit
advantages in terms of time cost with respect to numerical
techniques. Starting from the infnite integral representation
for the fux linkage, the expression is obtained by converting
the product of the two Bessel functions contained in the
integrand into the fnite integral of one Bessel function.
Ten, the infnite and the fnite integral signs are inter-
changed, and the infnite integration is recognized to be
a well-known tabulated Sommerfeld integral, whose ana-
lytical evaluation is straightforward. Finally, applying
Lommel’s expansion permits to turn the remaining fnite
integral into a sum of simpler integrals amenable to ana-
lytical evaluation. As a result of the developed theory, the
mutual inductance is expressed as a sum of spherical Hankel
functions of the wavenumber in the air and in the con-
ducting medium, multiplied by a coefcient depending on
geometrical parameters. Te derived formula holds under
the thin-wire assumption, which prescribes that the radii of
the coils must be far greater than the wire radius.Te validity
of the proposed approach is tested through comparison with
the data provided by numerical integration of the integral
representation for the mutual inductance, as well as with the
outcomes from the previously published quasistatic solution
to the same problem. What emerges is that the derived exact
expression for the inductance is advantageous over nu-
merical quadrature schemes as, accuracy being equal, its
usage ensures considerable time savings with respect to
numerical integration. On the other hand, the proposed

expression allows relaxing the quasistatic assumption and
the hypothesis of small receiving coil, both underlying the
previous solution to the problem.

2. Theory

Te geometric confguration of the problem is shown in
Figure 1. Two concentric large circular loops, with radii a

and (a> b), are placed on the surface of a homogeneous
medium. Te wire that constitutes each coil is assumed to
be thin, which implies that the wire radius r0 is much
smaller than the external radius of the coil (r0≪ a, b). Te
magnetic permeability is taken to be everywhere that of
free space μ0, while the dielectric constant and electric
conductivity of the material medium are denoted by ϵ1
and σ1, respectively.

Our scope is to determine an exact explicit expression for
the mutual inductance M of the two loops, which is not
subject to any restrictive assumption. Tis will be done by
introducing an efcient method that allows to evaluate the
integral representation for M. If, for the purposes of the
derivation, the primary coil is taken to be the larger loop of
Figure 1, the mutual inductance is defned as the fux
encompassed by the receiving coil per unit current fowing
in the source coil. Tus, after setting I � 1 A, with the time
factor ejωt assumed and suppressed for notational simplicity,
it reads

M � μ0 
b

0

2π

0
Hz(r)r dr dϑ, (1)

where r and ϑ are, as depicted in Figure 1(b), the polar
coordinates of the generic feld point, while Hz is the vertical
magnetic feld generated by the source loop, given by [[29],
4.88]
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where σ0 � 0 and μ1 � μ0.Te use of (2) into (1) provides the
following expression for M:
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and after introducing the well-known identity [[31], 5.52.1],


b
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b

kρ
J1 kρb , (5)

and expression (4) is turned into
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M � 2πμ0ab 
∞

0

1
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which is the exact integral representation for the fux linkage
between the coils. Since it holds [[32], 11.41.17]
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formula (6) may be expressed as
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π

0
cos ϑ dϑ

∞

0

1
u0 + u1

J0 kρR kρ dkρ, (9)
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√
. Te semi-infnite integral in

(9) may be evaluated by multiplying the numerator and
denominator of the integrand by u0 − u1 and then making
use of the identity [33]
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where the integral on the right-hand side is well-known and
given by [[34], p. 677, no. 13]
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function of the second kind. Te use of (12) together with
(13) into (9) provides
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and since it is not difcult to prove that
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where it has been set

gl(ξ) �
h

(2)
l (ξ)

ξl
. (17)

Te fnite integral may be analytically evaluated once g1
is replaced with its Maclaurin expansion with respect to
cos ϑ. If we let τ � −2ab cos ϑ, the expansion is given by
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Figure 1: (a) Isometric and (b) top views of the geometry under study.
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and since from the diferentiation properties of the spherical
Bessel functions [[33], 10.1.24], it is easily deduced that
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and for l � 1, the following expansion is found:
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which, substituted for g1 in (16), leads to
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Te integral on the right-hand side is tabulated and given
by [[31], 2.512.2−2.512.3]
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It should be noted that the obtained representation (26)
for the fux linkage may be also used to obtain the self-loop
inductance of each coil. In fact, for a loop with external
radius a and wire radius rw, the self-inductance under the
thin-wire assumption (that is, rw≪ a) is given by

L a, rw(  � M a, a − rw( . (29)

Finally, the expression for the mutual inductance of
a pair of circular loops may be applied to the computation of
the fux linkage between multiturn coils. If, as an example,
the emitter is a single-turn coil with radius a, while the
receiver is a pancake coil composed of Nb turns, with radii
denoted by bi(i � 1, 2, . . . , Nb), the mutual inductance
between them reads [26]

Mtot � 

Nb

i�1
M a, bi( , (30)

while the overall self-inductance of the receiver is given by

Ltot � 

Nb

i�1
L bi, rw(  + 2

Nb

i�1


Nb

l�i+1
M bi, bl( . (31)

It should be observed that (26) may be used provided that
the source loop supports a uniform current. In fact, expression
(2), underlying the proposed approach, is based on the uniform
current assumption which, in principle, holds if the length of
the wire that constitutes the source loop is less than or equal to
0.3 times the free-space wavelength λ [36]. For electrically
larger antennas, the variations of the current along the loop
become large and (2) cannot be used any longer, unless
a uniform current is forced by the feeding system. As explained
in [37, 38], this may be done by dividing the source coil into
electrically short segments and then by driving them in parallel
by means of radial transmission lines.

3. Results and Discussion

Te validity and robustness of the proposed approach is
tested by applying the derived expression (26) to the
computation of the fux linkage between two coaxial coils
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placed on a clay soil. Te electrical conductivity and di-
electric permittivity of the soil are taken to be equal to
σ1 � σ � 10mS/m and ϵ1 � 10 ϵ0, respectively [39]. At frst,
the real and imaginary parts of M are computed against
the operating frequency, with b � 0.5 m and a � 5 m. Te
obtained results, illustrated in Figure 2, are compared with
the data provided by both numerical integration of (6) and
the fnite diference time domain (FDTD) method. In
particular, numerical integration is carried out by using
an adaptive Gauss–Kronrod G7-K15 scheme, arising from
the combination of a 7-point Gauss rule with a 15-point
Kronrod rule. On the other hand, the FDTD lattice is
confgured with 300 × 300× 20 cubic cells with side lengths
of 5 cm, spanning a computational domain of 15 × 15× 1m
enclosing the coils. Te mesh is terminated with PML ab-
sorbing boundary conditions in the three Cartesian
directions.

In addition, for the sake of comparison, the results are
also compared with those obtained by using the quasistatic
approximation for the produced magnetic feld, derived
under the further assumption that the receiver is both
electrically and physically small. In this situation, the mutual
inductance is simply given by the vertical magnetic feld H0

z

generated by the emitter at its center, multiplied by the
magnetic permeability in free space and the area of the
receiving coil. It reads M � μ0πb2H0

z, where the quasistatic
approximation for H0

z is given by [29]

H
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2
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2
 e
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As is shown by Figure 2, the curves arising from (26)
approach the data originating from the numerical in-
tegration of the complete representation (6) as L is in-
creased, with L being the index of truncation of the sum in
(26). In particular, excellent agreement is observed for L �

3 all over the considered frequency range, which implies
that these trends may be referred to as exact curves.
Conversely, the profles of the real and imaginary parts of
M arising from the quasistatic solution (32) are in
agreement with the respective exact curves only in the
low-frequency range, up to about 10MHz (real part of M )
and 3MHz (imaginary part of M ). Tese frequency limits
are consistent with the theoretical upper limit of validity
of the quasistatic assumption. To convince on this point, it
sufces to consider that the quasistatic assumption is valid
as long as the largest dimension D of the considered
system is electrically small, that is, for λ≫D, with λ being
the free-space wavelength. Tis ensures that the overall
size of the two-loop system is sufciently small for
electromagnetic retardation to have negligible impact on
the feld distribution. Since, in the present confguration,
D coincides with the diagonal of the square bounding box
enclosing the loops, which is 2a

�
2

√
long, the quasistatic

feld assumption implies that

λ≥ 10D � 20a
�
2

√
, (33)

and, as a consequence, it holds as long as the operating
frequency f obeys the inequality

f≤fmax �
c

20a
�
2

√

�
3 · 108

102
�
2

√ � 2.12MHz,

(34)

with c being the speed of light in vacuum. Tus, fmax is the
frequency below which (32) must provide exact results, and
this is confrmed by the curves plotted in Figure 1. Tere-
inafter, the profles of the real and the imaginary parts of (32)
will deviate from the corresponding exact curves, and this
may happen at about fmax, as in the case of the trend of the
imaginary part, or at a higher frequency.

While (26) and numerical integration schemes have been
shown to be comparable to each other as far as the exhibited
accuracy is concerned, the same cannot be said when it
comes to computation time. In fact, the proposed formu-
lation allows achieving signifcant time savings with respect
to purely numerical procedures. Tis aspect is clarifed by
Table 1, which shows the average CPU time taken by the
proposed approach and Gaussian integration to calculate the
profles depicted in Figure 2.Te entries of Table 1 tell us that
the speedup ofered by (26) is equal to about 376 when L � 3,
that is, when the curves arising from the two methods co-
incide. Tis confrms that the proposed method is signif-
cantly faster than Gaussian integration.

On the other hand, investigation of the time cost of (32)
would not be useful since this expression cannot provide the
same accurate results as the other two methods. In partic-
ular, the loss of accuracy of (32) as frequency is increased
may be further analyzed by taking a glance at Figure 3, which
depicts the relative errors resulting from calculating the real
and imaginary parts of M by using (32) instead of numerical
integration of (6). From the analysis of the curves plotted in
Figure 3(a), it is clearly seen that the relative error of the real
part of (32) is less than 1% at frequencies smaller than 1MHz
and is equal to 2% at 3MHz. Tereinafter, the error rapidly
increases as frequency grows up, and beyond 10MHz, it
ranges from 10% to 100% and over. Similar conclusions may
be deduced from the analysis of the results depicted in
Figure 3(b). Here, the error generated by the imaginary part
of (32) is slightly smaller than 0.2% up to 1MHz. Beyond
that frequency, it rapidly grows up, and at 10MHz, it exceeds
10%.

Additional information on the limitations implied by
(32) may be acquired from the investigation of the behavior
of the fux linkage between the coils as the radius b of the
receiver is changed. Tis point is illustrated in Figure 4,
which depicts the trends of the real and imaginary parts of
the mutual inductance against b, calculated by using the
same methods as in the previous example. Te radius of the
emitter and the ground conductivity are taken to be a � 5 m
and σ1 � 10 mS/m, respectively, while the operating fre-
quency is assumed to be f � 10 MHz. Te received radius is
assumed to span the 0.05m≤ b≤ 2 m interval. On one hand,
the trends shown in Figure 4 confrm that the data provided
by (26) converge to the exact results as L is increased. On the
other hand, the plotted data clearly point out that the small-
loop approximation (32) cannot entirely capture the exact
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trend of the inductance, and that, in particular, it fails as soon as
b becomes large enough to be comparable to the radius of the
emitter. In fact, at the frequency of 10MHz, the receiver ceases
to be physically small well before its size becomes comparable

to the free-space wavelength, which event occurs when the
length of the wire constituting the receiver, that is, 2πb, is at
least equal to λ/3 [36]. Tis latter condition implies that the
receiver is no longer electrically small when

Table 1: CPU time comparisons for the calculation of M against frequency.

Approaches Average CPU time (s) Speedup
Gaussian integration 0.05 —
(26) with L � 1 6.64 · 10− 5 753.01
(26) with L � 2 1.04 · 10− 4 480.8
(26) with L � 3 1.33 · 10− 4 375.9
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Figure 3: Relative errors of the real and imaginary parts of (32) as compared to the numerical integration of (6) plotted against the operating
frequency. (a) Relative error of the real part of (32) against frequency. (b) Relative error of the imaginary part of (32) against frequency.
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Figure 2: Frequency spectra of the fux linkage between two coils placed on a conducting soil. (a) Frequency spectrum of the real part of the
fux linkage. (b) Frequency spectrum of the imaginary part of the fux linkage.
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b≥
λ
6π

� 1.6m, (35)

while it ceases to be physically small for smaller values of b,
that is, when b becomes larger than a/10 � 50 cm. As shown
by the curves plotted in Figure 4, the 50-cm limit is ap-
proximately where the trends for the real and imaginary
parts of M arising from (32) start to deviate from the
exact data.

Te curves of Figure 4 also allow to conclude that at
intermediate or high frequencies, the real and the imaginary
parts of the fux linkage have diferent behaviors with in-
creasing b. In particular, while the imaginary part is always
negative in sign and monotonically decreases (i.e., increases
in absolute value), the real part of M does the same only if
the radius of the receiver is sufciently small with respect to
that of the emitter. When this is no longer true, the slope of
the curve starts to diminish in absolute value as b is in-
creased, with the result that the real part of M soon reaches
its minimum value. Tereinafter, the real part starts to in-
crease and, after zero-crossing, becomes positive in sign.

Finally, one would ask to what extent changing the soil
properties afects the magnetic coupling between concentric
coils. Tis point is clarifed by Figure 5, which depicts b−

profles of the amplitude of the mutual inductance of two
single-turn coils, with the ground conductivity σ taken as
a parameter. Te calculation has been performed by using
(26), and the index at which the infnite sum is truncated is
taken to be L � 9. Te source loop, with radius a � 20 m, is
assumed to operate at the frequency of 10MHz, and three
diferent values for σ are considered, while the relative di-
electric permittivity of the ground is still assumed to be equal
to 10.Te obtained trends are compared to that arising from
neglecting the presence of the ground, which comes from
applying the well-known analytical expression [26]
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��
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√ 2
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− κ K(κ) −
2
κ

E(κ) , (36)

where
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2

��
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, (37)

and with K(κ) and E(κ) being the complete elliptic integrals
of the frst and second kind, respectively. Te curves plotted
in Figure 5 point out how increasing the conductivity of the
medium leads to reduce the mutual inductance of the loops.
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Figure 4: Flux linkage between two coils on a conducting soil plotted against the receiver radius b. (a) Real part of the fux linkage vs. b.
(b) Imaginary part of the fux linkage vs. b.
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Tis means that the amplitude of the mutual inductance
reaches its maximum value when the two loops are em-
bedded in free space.

Te efect of changing the ground conductivity on the
real and imaginary parts of the mutual inductance is il-
lustrated by Figure 6. In this example, it is assumed that
a � 5 m and b � 2 m, and the operating frequency is still
taken to be equal to 10MHz. Te ground is characterized by
relative dielectric permittivity equal to 10, while the electrical
conductivity σ is comprised between 1mS/m and 1 S/m.
Again, the σ− profles of M arising from (26) and (32) and
numerical integration of (6) are computed and plotted. From
the analysis of the curves depicted in Figure 6, it is evident
that at the frequency of 10MHz, the impact of changing σ on
the magnetic coupling is not negligible up to about 100 mS/
m. Tis is true for both the components of M. In particular,
for σ ≤ 100 mS/m, the real part may assume positive as well
as negative values, and its absolute value decreases almost
everywhere as σ is increased. Conversely, the imaginary part
of M is negative in sign all over the considered range of σ,
and its absolute value monotonically decreases as σ
grows up.

4. Conclusions

Te purpose of the present work has been to derive an exact
explicit analytical solution describing the fux linkage be-
tween two concentric coils positioned on a conducting
terrestrial area. Te solution has been derived through
a purely analytical approach based on converting the
complete single-integral expression for the fux linkage into
a double integral consisting of a fnite and a semi-infnite
integral. Ten, the semi-infnite integral is recognized to be
a well-known tabulated Sommerfeld integral, which may be
evaluated straightforwardly. Finally, Lommel’s expansion is
applied to convert the remaining fnite integral into

a combination of simpler integrals amenable to analytical
evaluation. As a result, the fux linkage between the two coils
is given as a sum of spherical Hankel functions of the
wavenumber in the air and in the ground, multiplied by
a coefcient depending on the geometrical dimensions of the
coils. Numerical tests have been performed to test the
validity of the proposed expression. It has been shown that
with accuracy being equal, the time cost of the proposed
approach is signifcantly smaller than that implied by nu-
merical integration schemes.
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