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Beamforming is a technique commonly used in wireless communication systems to enhance the signal quality of a receiver. In this
study, we compare the performance of an encoder-based beamformer with convolutional neural network (CNN) and minimum
variance distortionless response (MVDR) approaches in terms of signal-to-interference-plus-noise ratio (SINR). Our results show
that the encoder-based approach achieved an average SINR of 25.82 dB, while the CNN approach achieved an average SINR of
22.40 dB and the MVDR approach achieved an average SINR of 17.64 dB. Te performance of the encoder-based approach was
found to be superior to that of the CNN approach but much superior to that of theMVDR approach.Te encoder-based approach
outperformed the CNN approach by 3.42 dB and MVDR approach by 8.18 dB on average. In addition, the unique contribution of
our encoder-based approach is presenting a new perspective on beamforming in mmWave communication.We further discuss its
potential impact on addressing challenges related to LEO satellite systems.

1. Introduction

Beamforming is a well-established signal processing tech-
nique that has become ubiquitous in wireless communica-
tion systems, particularly in 5G cellular networks and low
earth orbit (LEO) satellites. Due to the rapid movement of
LEO satellites around the earth, there is little time for data
transfer, and steering the beam into the earth station can be
challenging. Conventional mechanical solutions for beam
steering require electrical energy, which is scarce on satel-
lites, thus making beamforming techniques the preferred
alternative. With recent advancements in deep learning,
a growing number of beamforming applications have started
using deep learning-based approaches to leverage their
ability to learn complex features from large datasets [1].

LEO satellites, characterized by their relatively close
proximity to the Earth’s surface, ofer distinct advantages in
terms of reduced signal propagation delays and increased
capacity. Tese satellites are employed for a wide range of
applications, including global broadband internet coverage,

Earth observation, and communication services in remote
regions. However, LEO satellites present unique challenges
that necessitate efcient data transfer and beam steering
mechanisms. Due to their fast orbital movement, LEO
satellites have limited time windows for establishing com-
munication links and transmitting data to and from Earth
stations. Additionally, steering the satellite’s communication
beam precisely towards the Earth station poses signifcant
technical hurdles [2].

Previous studies have extensively explored various
beamforming techniques for antenna arrays. Traditional
approaches, such as delay-and-sum (DS) beamforming, have
been widely employed for their simplicity and real-time
processing capabilities. DS beamforming forms a beam by
applying a linear combination of the received signals from
the array elements. However, DS beamforming sufers from
reduced performance in the presence of interference and
spatially correlated noise [3].

To address these limitations, more advanced beam-
forming algorithms have been developed. Minimum
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variance distortionless response (MVDR) beamforming,
also known as Capon beamforming, is a well-established
technique that aims to minimize the output power while
preserving the desired signal. MVDR computes the optimal
weights that minimize the total power subject to the con-
straint of unit gain at the desired signal direction.Tis results
in a beamforming solution that efectively suppresses in-
terference and enhances the signal of interest [4, 5].

In recent years, deep learning-based approaches have
gained signifcant attention in the feld of beamforming.
Convolutional neural networks (CNNs) have shown
promising results in learning complex spatial patterns and
extracting meaningful features from antenna array re-
sponses. CNN-based beamforming models leverage the
power of deep learning to automatically learn the optimal
antenna weights for beamforming, eliminating the need for
explicit mathematical models [6, 7].

Another emerging approach in beamforming is the use
of encoder-based models. Tese models employ an encoder-
decoder architecture to learn the mapping between the
received antenna array responses and the corresponding
optimal beamforming weights. By leveraging the encoding
and decoding process, these models can efectively capture
and utilize spatial information for accurate
beamforming [8].

While previous works have made signifcant contribu-
tions to the feld of beamforming, there is still room for
improvement. Many existing techniques rely on simplifed
assumptions or require extensive manual parameter tuning.
Te introduction of deep learning and encoder-based ap-
proaches provides new opportunities for enhancing beam-
forming performance through automated learning and
optimization [9–11].

Channel state information (CSI) is a critical factor in
beamforming applications. It provides valuable insights into
the characteristics of the communication channel, allowing
beamforming algorithms to adapt and optimize signal
transmission. However, for the purpose of our comparison
with other models, we have omitted a detailed discussion of
CSI, as it is a common factor that remains consistent across
all models [12].

Te primary objective of this study is to assess the ef-
fectiveness of the encoder-based approach in beamforming
applications, an area that has not been extensively explored
in prior research. By introducing the encoder-based ap-
proach and conducting a comprehensive performance
evaluation, we aim to shed light on its potential benefts and
limitations. Trough a rigorous performance evaluation of
the encoder-based approach, alongside the CNN andMVDR
methods, we aim to shed light on its potential advantages
and limitations in beamforming applications. By enhancing
our understanding of deep learning-based beamforming
techniques, we can contribute to the ongoing research and
development of efcient wireless communication systems,
particularly in the context of LEO satellites. Te fndings of
this study have the potential to advance the feld of
beamforming, paving the way for improved communication
capabilities and network performance in LEO satellite sys-
tems and beyond.

In summary, the main contributions of this study are as
follows:

(i) Proposing a novel supervised AutoEncoder-based
beamforming approach for satellite mmWave
communication

(ii) Demonstrating through simulations that our ap-
proach can achieve superior performance compared
to existing methods

(iii) Introducing the impact of the proposed method on
addressing challenges related to LEO

Te remainder of this paper is structured as follows.
Section 2 provides a comprehensive exposition of the CNN,
MVDR, and AutoEncoder methodologies for beamforming,
elucidating their theoretical underpinnings. Section 3 is
devoted to a rigorous comparative analysis of the perfor-
mance of these methodologies in various scenarios. Finally,
Section 4 concludes the paper.

2. Methods

In our research, we utilized an antenna consisting of N
arrays, which were assumed to be isotropic as we were
examining the diferences between three models, which
would remain consistent across all three. Te antenna array
was tested with various numbers of arrays, but due to the
weight limitations on the satellite, we opted to compromise
some gain and keep the antenna light. Tis decision was
made to ensure the satellite remains commercially viable. To
create a gain diference of 25 dB between the primary lobe
and the largest side lobe, we employed the Chebyshev al-
gorithm. Additionally, we employed a simulated wireless
communication dataset to train and assess our beamforming
models. Using Keras with TensorFlow backend, we trained
three models—an AutoEncoder-based model, a CNN-based
model, and a MVDR-based model. We evaluated the per-
formance of each model by measuring the SINR over a range
of test scenarios.

2.1. CNN Model. Convolutional neural networks (CNNs)
are a type of deep learning algorithm that can automatically
learn to recognize patterns in data. In this study, a CNN was
trained to predict the antenna weights required to form
a beam towards a desired signal direction. Te CNN was
trained using a dataset of simulated antenna array responses
and was evaluated based on its ability to accurately predict
the antenna weights for a given signal direction [13].

Te 2D CNN’s prediction can be represented by the
following formula:

S(i, j) � (X∗K)(i, j)

� 􏽘
m

􏽘
n

X(i − m, j − n)K(m, n).
(1)

To summarize, the formula accurately represents the
convolution operation performed by a 2D CNN, where the
input data are convolved with the kernel to produce the
predicted output [14].
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Te CNN architecture used in this study, Table 1,
consisted of multiple layers designed to extract and process
features from the input antenna array responses. Te fol-
lowing is a description of the diferent layers employed in
the CNN.

2.1.1. Conv2D Layer. Te frst layer in the CNN architecture
was a Conv2D layer, denoted as “conv2d.” Tis layer per-
formed convolutional operations on the input data, utilizing
a set of flters to extract relevant spatial features. Te output
shape of this layer was (none, (N/2) + 1, (N/2) + 1, 2),
indicating a feature map of size ((N/2) + 1)× ((N/2) + 1)
with 2 channels. Te layer had 122 trainable parameters.

2.1.2. Flatten Layer. Following the Conv2D layer, a fatten
layer, denoted as “fatten,” was utilized. Tis layer trans-
formed the multidimensional feature maps into a one-
dimensional vector, preparing the data for subsequent
fully connected layers. Te output shape of this layer was
(none, 72).

2.1.3. Dense Layers. Te CNN architecture included two
dense layers, denoted as “dense” and “dense_1.”Tese layers
were responsible for learning and capturing the complex
relationships between the fattened input features and the
desired antenna weights. Te frst dense layer had 40 neu-
rons, while the second dense layer had 20 neurons. Both
layers utilized a combination of nonlinear activation func-
tions to introduce nonlinearity into the network and en-
hance its learning capacity.

Te total number of parameters in the CNN model was
3,862, all of which were trainable. Tese parameters rep-
resented the learnable weights and biases associated with the
convolutional and dense layers, enabling the network to
adapt and optimize its performance during the training
process.

2.2. MVDR Model. Minimum variance distortionless re-
sponse (MVDR) is a widely recognized beamforming al-
gorithm that aims to minimize the noise and interference
while preserving the desired signal in antenna array systems.
Te MVDR algorithm serves as a valuable benchmark for
evaluating the performance of alternative approaches such as
the CNN and encoder-based models in this study [15].

Te MVDR beamforming technique relies on the esti-
mation of the spatial covariance matrix, denoted as R, which
captures the statistical characteristics of the received signals.
Te covariance matrix R is estimated based on the antenna
array responses and serves as a key input for the MVDR
beamformer.

Te MVDR weight vector, w, is computed using the
following formula:

w �
R

− 1
× p

p
T

× R
−1

× p
, (2)

where R− 1 represents the inverse of the covariance matrix R,
p is the desired signal steering vector, and × denotes matrix
multiplication [16].

2.3. Te Proposed AutoEncoder Model. An AutoEncoder is
a type of neural network architecture that can be used for
unsupervised learning. In this study, an encoder was trained
to learn a low-dimensional representation of the antenna
weights required to form a beam towards a desired signal
direction. Te encoder was trained using a dataset of sim-
ulated antenna array responses and was evaluated based on
its ability to accurately predict the antenna weights for
a given signal direction [17, 18].

Te proposed AutoEncoder model utilized a similar
architecture to the CNN model for the encoder part. Te
encoder layers consisted of Conv2D, fatten, and dense
layers, which were responsible for extracting and encoding
the relevant features from the input data.Te primary reason
for using a similar architecture in the encoder is to maintain
consistency and enable a meaningful performance com-
parison between the encoder-based approach and the tra-
ditional CNN model. By aligning the architecture up to
a certain point, we can confdently attribute performance
diferences to the novel encoder-based approach rather than
architectural disparities.

For the decoder part of the AutoEncoder, as shown in
Table 2, a diferent architecture was employed. It comprised
two dense layers.Te frst dense layer had an output shape of
(none, 40), while the second dense layer had an output shape
of (none, 220). Te fnal layer in the decoder was a reshape
layer, which transformed the output of the previous dense
layer into a shape of (none, N+ 1, N, 2). In total, the decoder
model of the AutoEncoder consisted of 9,860 trainable
parameters. Tese parameters represented the learnable
weights and biases associated with the dense layers. By
combining the encoder and decoder components, the
proposed AutoEncoder model efectively learned the un-
derlying relationships between the antenna array responses
and the optimal antenna weights for beamforming, leading
to enhanced performance and accurate predictions.

In this study, we meticulously crafted a spatial dataset
comprising 10,000 distinct samples to evaluate our encoder-
based approach for beamforming in satellite mmWave
communication. Each sample featured an (N+ 1)×N grid,
yielding two-dimensional spatial data. Tis spatial dataset
manifested as a structure of dimensions (10,000, N+ 1, N, 2).
For a comprehensive evaluation, we thoughtfully generated
array beam factor (ABF) weights for every sample within this

Table 1: Te CNN model.

Layer (type) Output shape Pram #
conv2d (None, 6, 6, 2) 122
Flatten (None, 72) 0
Dense (dense) (None, 40) 2,920
Dense_1 (dense) (None, 20) 820

Total params: 3,862
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spatial dataset, resulting in a confguration of dimensions
(10,000, 2N).

We meticulously calculated the training and prediction
ABF weights for each sample. Te training dataset, a res-
ervoir of 9,000 samples, took the form of (9,000, N + 1, N,
2), and we painstakingly calculated the training ABF
weights, delineating them in a matrix with dimensions
(9,000, 2N). Similarly, within the prediction dataset,
holding 1,000 samples, we precisely deduced prediction
ABF weights, presented in a structure of dimensions (1,000,
2N). Tis approach enabled us to comprehensively evaluate
and compare the performance of our encoder-based model
against other benchmark methods. In our dataset, we
systematically varied the frequency and direction for
a thorough examination of beamforming scenarios in
satellite mmWave communication. Tese variations are
essential to assess the model’s adaptability and perfor-
mance across diferent conditions. Te dataset encom-
passes a broad spectrum of simulated antenna array
responses, taking into account diverse carrier frequencies
and angles, ensuring its relevance and efectiveness in
evaluating beamforming techniques. Tis dataset provided
the backbone for training and evaluating our encoder-
based model. Te training dataset nurtured the model’s
capabilities, while the prediction dataset served as an in-
dispensable tool for assessing its predictive accuracy
concerning ABF weights and angles across novel, pre-
viously unseen samples.

Te SINR is a crucial metric used to evaluate the quality
of a desired signal relative to the interference and noise
present in the received signal. It provides a quantitative
measure of the signal’s strength in relation to the unwanted
components.

To calculate the SINR in this study, we employed the
following formula:

SINR �
w

H
× M × w

w
H

× N × w
. (3)

In this formula, the weight vector (w) represents the
beamforming weights used to spatially flter the received
signals. Te covariance matrix (M) characterizes the sta-
tistical properties of the received signals, capturing the
spatial correlations between diferent elements of the array.
Te noise covariance matrix (n) represents the statistical
properties of the noise present in the received signals.

By evaluating the numerator (wH × M × w), we obtain
the power of the desired signal component, which is de-
termined by multiplying the weight vector with the co-
variance matrix. Te denominator (wH × N × w) represents
the sum of the powers of the interference and noise

components. Using this formula, we calculate the SINR,
enabling us to compare the strengths of the desired signal,
interference, and noise components. Higher SINR values
indicate a stronger desired signal relative to interference and
noise, signifying better signal quality.

In order to improve the SINR performance of our
system, we implemented an AutoEncoder by adding a re-
verse model of the CNN as the decoder part. However, we
faced a dilemma in deciding the best approach for learning
the new model. We had two options: frst, we could use the
already learned CNN model and add the decoder part and
then retrain the system with fresh data.

However, this approach could potentially worsen the
system’s performance since the learning step would not only
update the decoder weights but also the encoder weights,
leading to undesired changes in the overall system.

Terefore, we opted for the second approach, which
involved training a new AutoEncoder system from scratch.
First, as shown in Figure 1, we trained the entire AutoEn-
coder system with a mean squared error (MSE) loss func-
tion, minimizing the diference between the input data and
the output data: min( 􏽢X − X). Ten, we extracted the en-
coder layer and retrained it using the test dataset with the
MSE of the least diference between the desired ABF created
by MVDR and the layer output: min(Y − ABF). Tis ap-
proach allowed us to improve the SINR performance of our
system while avoiding any negative impact on the overall
system’s learning process.

3. Results

Te performance evaluation of the various beamforming
approaches yielded notable distinctions in their efective-
ness. Figure 2 presents a sample comparison illustrating
a signifcant divergence in the SINR among the three models
for N� 10 and a desired angle of 85.49 degrees, representing
the maximum angle at which the satellite and earth station
maintain visibility and an interference angle of −46.71 de-
grees which was generated randomly.Troughout this study,
the average SINR served as a crucial metric to gauge the
efcacy of each approach.

Over the test data, the encoder-based approach dem-
onstrated superior performance, achieving an average SINR
of 25.82 dB. In comparison, the CNN approach achieved an
average SINR of 22.40 dB, while the MVDR approach lagged
behind with an average SINR of 17.64 dB. Tese results
indicate the efectiveness of the encoder-based approach in
improving the overall signal quality and mitigating in-
terference and noise. To provide a clearer comparison,
Figure 3 and Table 3 present the average SINR values ob-
tained from the evaluation of the three approaches over the
test scenarios.

Table 3 clearly demonstrates the superiority of the
encoder-based approach over both the CNN and MVDR
approaches. Te encoder-based approach outperforms the
CNN approach by an average improvement of 3.42 dB in
SINR. Furthermore, it signifcantly surpasses the perfor-
mance of the MVDR approach, achieving an average im-
provement of 8.18 dB in SINR. Tese fndings highlight the

Table 2: Te decoder part of the AutoEncoder.

Layer (type) Output shape Pram #
Dense_2 (dense) (None, 40) 840
Dense_3 (dense) (None, 220) 9,020
Reshape (reshape) (None, 11, 10, 2) 0

Total params: 9,860
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Figure 1: Te AutoEncoder MSE model.

θc
θinf

Azimuth Cut: Encoder ML encoder Predicted
Weight Response in Sine Space

M
ag

ni
tu

de
 (d

B)

–10

–20

–30

–40

–50

–60

–70

–80
–0.4 –0.2

Normalized Angle, d sin (θ)
λ

0.0 0.2 0.4

(a)

θc
θinf

Azimuth Cut: CNN ML encoder Predicted
Weight Response in Sine Space

M
ag

ni
tu

de
 (d

B)

–10

–20

–30

–40

–50

–60

–70

–80
–0.4 –0.2

Normalized Angle, d sin (θ)
λ

0.0 0.2 0.4

(b)

θc
θinf

Azimuth Cut: MVDR Calculated
Weight Response in Sine Space

M
ag

ni
tu

de
 (d

B)

–10

–20

–30

–40

–50

–60

–70

–80
–0.4 –0.2

Normalized Angle, d sin (θ)
λ

0.0 0.2 0.4

(c)

Figure 2: Te comparison of all three developed models for the same desired and interference angels. Te output SINR for encoder, CNN,
and MVDR are 40.76, 26.02, and 12.33, respectively. (a) Encoder-based beamforming output. (b) CNN-based beamforming output. (c)
MVDR beamforming output.
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potential of the encoder-based approach as a promising
alternative in beamforming applications.

Te ability of the encoder to capture relevant spatial
features and optimize the beamforming process contributes
to its superior performance compared to the traditional
CNN and MVDR methods. It is worth noting that the
performance of the encoder-based approach may vary
depending on various factors, such as the dataset used for
training and the complexity of the beamforming scenario.
Further investigations and optimizations can be conducted
to enhance the performance and fne-tune the parameters of
the encoder-based approach or using other methods such as
generative adversarial networks (GANs) [19].

Overall, our results demonstrate the efcacy of the
encoder-based approach in improving beamforming per-
formance, surpassing both the CNN and MVDR ap-
proaches. Tis highlights the potential of deep learning-
based techniques in advancing beamforming applications
and facilitating the development of more efcient wireless
communication systems, particularly in the context of LEO
satellites.

4. Conclusion

In this study, we investigated and compared the perfor-
mance of an encoder-based beamformer utilizing the
CNN and the MVDR approach. Our objective was to
evaluate the efectiveness of the encoder-based approach as
an alternative to the traditional CNN and MVDR methods.
Trough extensive experimentation and analysis, we ob-
served that the encoder-based beamformer exhibited su-
perior performance compared to both the MVDR and CNN
approaches. Te encoder-based approach leveraged the

power of AutoEncoders to learn and extract relevant features
from the input data, enabling efcient beamforming and
noise reduction. Tis approach demonstrated enhanced
accuracy and robustness in various scenarios, making it
a promising solution for beamforming applications. Fur-
thermore, our fndings suggest that the performance of the
encoder-based beamformer can be further enhanced
through exploring modifcations to the architecture, such as
GANs, which could also lead to improved performance by
enhancing the encoder’s feature extraction capabilities.
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