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A simple phase error criterion (PEC-)-based adaptive algorithm for estimating the frequency of a complex sinusoidal signal in
additive white Gaussian and impulsive noises is proposed.Te proposed techniquemakes use of the instantaneous phase response
of a frst-order complex linear predictor (CLP) as a driving function to update the frequency parameter of the CLP.Te proposed
PEC is attractive due to its simplicity and high impulsive noise robustness.Teoretical analysis for the mean value of the estimated
frequency and the steady-state mean square error (MSE) of the frequency estimate are derived in closed forms. Computer
simulations are drawn to show the performance of the proposed frequency estimator.

1. Introduction

Adaptive method-based frequency estimation can be found
in many areas of digital signal processing applications [1, 2],
such as Doppler efect estimation of radar and sonar systems
[3–5], clock and carrier synchronization in communication
systems, angle of arrival estimation in smart antenna sys-
tems, frequency estimation in global navigation satellite
systems (GNSS) [6], angle and frequency estimation in
cognitive wireless systems [7–9], and so on. Depending on
the statistical properties of the input signal frequency, say,
deterministic or random, the frequency estimation can be
classifed into two categories: block-based and sequential-
based estimation techniques. Te multiple signal classif-
cation (MUSIC) [9], the modifed covariance (MC) [10], the
Pisarenko harmonic decomposition (PHD) [11], the re-
formed PHD [12], and the maximum likelihood estimation
(ML) [13] are examples of block estimation that are used for
estimating an unknown constant sinusoidal signal fre-
quency. However, since the required computational cost of
those techniques is high, many methods have been adopted

to overcome this drawback [14, 15]. For the time-varying
sinusoidal signal frequency estimation, sequential-based
estimation techniques such as the three recursive least-
squares (RLS) algorithms [16] and the least-mean-square
(LMS) family algorithm [17] is required. In [17], So and
Ching proposed the real direct frequency estimation (RDFE)
adaptive algorithm for a real tone in noise. Te RDFE is
based on the linear prediction of real sinusoidal signals [18].
Te RDFE is computationally efcient, and it provides
unbiased and direct frequency measurements on a sequen-
tial basis. In the case of a complex sinusoidal signal fre-
quency estimation, the block-based estimations [19–22] and
the complex adaptive notch flter (CANF)-based adaptive
algorithms [23–26] can be applied. In [23], the modifed
complex plain gradient (MCPG) adaptive algorithm was
adopted. It was found that the MCPG can improve con-
vergence speed as compared with those of the Regalia
method (Regalia) [24] and the complex plain gradient (CPG)
algorithm [26] without increasing any computations.
However, due to the pole contraction factor of the CANF,
the performance of an adaptive algorithm-based adaptive
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ANF may be poor if the selected value of the pole factor is
inappropriate. In [27], the linear prediction-based adaptive
algorithm [17] is adopted for the general case of a complex
sinusoidal signal, namely, a complex direct frequency esti-
mation (CDFE). Te CDFE is an interesting algorithm
because of its simplicity and efciency. However, it provides
slow convergence speeds when the signal amplitude is low
and is not robust to high impulsive noise.

In this work, we propose a very simple sequential phase
error criterion (PEC-)-based adaptive algorithm to estimate
the frequency of a complex sinusoid. An instantaneous
phase of a complex linear predictor is evaluated at each time
instant and used to be the driving function of the algorithm.
Te proposed PEC does not require any external or internal
signals; only the input and output signals of the system are
required. In some conditions, the PEC gives a similar
convergence time andMSE to those of the CDFE but is more
robust to impulsive noise. In close form, convergence
analysis for convergence in the mean of the estimated fre-
quency and steady-state MSE under white Gaussian noise is
derived. Extensive simulations under Gaussian and impul-
sive noise scenarios are evaluated to demonstrate the su-
periority of the proposed PEC.

2. Algorithm Derivation

It is assumed that the observation signal of the proposed
algorithm takes the form of the following equation:

x(n) � d(n) + v(n), (1)

where d(n) � Aej(ω0n+φ), A> 0, ω0 ∈ (− π, π), and φ ∈
[− π, π] are, respectively, unknown amplitude, frequency,
and phase. A and ω0 can be constant or time varying whereas
φ is uniformly distributed. v(n) � vr(n) + jvi(n) is a zero-
mean complex white Gaussian noise with variance σ2 where
vr(n) and vi(n) are uncorrelated real white processes with
zero mean and identical variance of σ2/2. Te input signal to
noise ratio (SNRi) can be computed by SNRi � A2/σ2.

Te objective of this work is to estimate ω0 from the
observation time series x(n), according to the following
adaptive rule:

ω̂0(n + 1) � ω̂0(n) + μD(n), (2)

where ω̂0(n) is the estimate at time n of ω0, μ> 0 is the step-
size parameter controlling the speed of convergence; and
D(n) is an instantaneous driving function that must satisfy
the following criteria:

D ≡

E[D(n)] > 0, ω̂0(n)<ω0,

E[D(n)] < 0, ω̂0(n)>ω0,

E[D(n)] � 0, ω̂0(n) � ω0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where E[·] is an expectation operator. To explore the aspect
of D that satisfes equation (3), we consider the linear
prediction of the signal [27]

s(n) � − e
jω0s(n − 1), (4)

where the prediction error is defned by

e(n) � x(n) − ŝ(n), (5)

and

ŝ(n) � − e
jω̂0x(n − 1), (6)

is the estimate of s(n) and ω̂0 is adjusted using equation (2).
Note that the signal s(n) in equation (4) and its estimated
version ŝ(n) in equation (6) are defned as a negative value to
obtain a linear phase prediction error signal e(n). Now let us
defne a new phase error criterion (PEC) as follows:

D ≡ E[D(n)] � ∠E x(n)e
∗
(n)􏼂 􏼃, (7)

where

D(n) � ∠x(n)e
∗
(n), (8)

the symbol ∠ is the phase operator, and the asterisk (∗)
stands for the complex conjugation. In practice the in-
stantaneous linear phase D(n) can be calculated by

D(n) � arctan
Im x(n)e

∗
(n)( 􏼁

Re x(n)e
∗
(n)( 􏼁

, (9)

where Im(·) is the imaginary part and Re(·) is the real part.
To study the behavior of D(n), we put x(n), e(n), and ŝ(n)

into equation (7), yielding (see Appendix A)

D � ∠ E x(n)x
∗
(n) − x(n)̂s

∗
(n)􏽨 􏽩􏼐 􏼑

� − arctan
A
2 sin δω

A
2 1 + cos δω( 􏼁 + σ2

,

(10)

where δω � ω̂0 − ω0 is an estimation error. It is obvious that
ω̂0 � ω0 is a stationary point of equation (10). To assert the
validity of equation (10), the estimate of D based on Monte
Carlo simulation is studied by using computer simulations.
Te parameters used in simulations include ω0 � 0.5π,
φ � 0.2π, and the data length of L � 104. Te driving
function D as a function of frequency parameter ω̂0 for
diferent values of SNRi are depicted in Figure 1. It is ob-
served that the analytical and simulated results are well
consistent for both low and high values of SNRi and they
satisfy the desired criteria in equation (3). As a result, the
convergence of equation (2) is ensured if the proposed
driving function in equation (8) is employed. Moreover, the
closed form expression for D in equation (10) can be used to
study the convergence behaviour of equation (2) because it is
consistent with the simulations. Finally, by substituting
equation (8) into (2) the proposed PEC adaptive algorithm is
ultimately derived as follows:

ω̂0(n + 1) � ω̂0(n) + μ∠x(n)e
∗
(n). (11)
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As has been observed, the proposed PEC algorithm is
very simple and attractive because no internal and external
additional signals are required to update the frequency
parameter ω̂0 of the CLP; only x(n), e(n), and a phase
evaluator ∠ are required. Figure 2 shows the block diagram
of the proposed estimator. In the next section, the con-
vergence properties of the proposed PEC is addressed.

3. Mean Analysis

At steady-state ω̂0 ≈ ω0 the terms sin a|a⟶0 ≈ a and
cos a|a⟶0 ≈ 1, equation (10) can be approximated to be

D ≈ − arctan
A
2δω

2A
2

+ σ2
. (12)

At a stationary point, the term δω ≈ 0, therefore,
arctan u|u⟶0 ≈ u, equation (12) can be simplifed to be

D ≈ −
A
2δω

2A
2

+ σ2
. (13)

In order to study the mean value of equation (11), the
steady-state expression for D in equation (13) is substituted
into equation (11). After taking the expectation operator and
using δω � ω̂0 − ω0, then equation (11) becomes

�ω0(n + 1) � 1 − μη0( 􏼁�ω0(n) + μη0ω0, (14)

where �ω0(n) ≡ E[ω̂0(n)] is an expected value of ω̂0(n) and

η0 �
A
2

2A
2

+ σ2
. (15)

Equation (14) is in the form of a frst-order time-
invariant diference equation in variable �ω0(n) whose so-
lution is given by (see Appendix B)

�ω0(n) � �ω0(0) − ω0􏼐 􏼑 1 − μη0( 􏼁
n

+ ω0, (16)

where �ω0(0) ≡ ω̂0(0) is an initial value of the frequency
parameter ω̂0(n). Since μη0 must be less than one, the term
(1 − μη0)⟶ 0 as n⟶∞, and equation (16) becomes

�ω0(n)|n⟶∞ � ω0. (17)
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Figure 1: Expected value of the PEC driving function D as a function of frequency parameter for (a) SNRi � 0 dB; (b) SNRi � 10 dB.
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Figure 2: Block diagram of the proposed PEC.
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It is revealed from equation (17) that the proposed PEC
algorithm converges to the desired solution and is unbiased.
In addition, the convergence time of equation (11) can be
predicted by using the fact that the term (1 − μη0) will
exponentially decrease in time, which can indicate that

1 − μη0( 􏼁 � e
− (1/τ)

, (18)

where τ is defned as a time constant. Solving equation (18)
for τ yields

τ � −
1

loge 1 − μη0( 􏼁
. (19)

According to equation (19), the approximate conver-
gence time of the proposed PEC will be

Li ≈ 5τ(samples). (20)

Moreover, the stability bound of step-size in the mean
sense can be easily obtained from equation (14) as follows:

0< μ<
2
η0

. (21)

Te upper bound of step-size in equation (21) guarantees
monotonic convergence in the mean sense. Te validity of
equations (16), (17), and (20) is tested by using the Monte
Carlo simulation technique. A random experiment of 1000
trials for a random phase signal and a random noise se-
quence with a particular variance is carried out. Te ob-
tained 1000 frequency estimates are ensemble averaged to
obtain the mean estimated frequency �ω0(n). Figure 3 shows
the learning curves of �ω0(n) obtainable by equation (16) and
simulations for SNRi � 0 and 10 dB, ω0 � 0.5π, data length
L � 1000, and μ � 0.05. Note that all samples of the selected
parameters used in simulating are defned based on the trial-
and-error technique to obtain the best results. Te step-size
μ is confned within the range of equation (21). It is seen that
the analytical result for �ω0(n) shown in equation (16) can
track those of the simulations very well in both low (0 dB)
and high (10 dB) values of SNRi and converge to solution as
desired. By using equation (20), the convergence time is
Li ≈ 298 samples at SNRi � 0 dB and Li ≈ 208 samples at
SNRi � 10 dB which are close to those obtained from the
simulations.

4. Steady-State MSE Analysis

In this section, MSE of the frequency estimate ω̂0(n) is
analyzed. To do this task, the steady-state expression for the
prediction error e(n) is required. Te input x(n) to the
prediction error e(n) can be modelled by the following
transfer function:

H(z) � 1 + e
jω0z

− 1
. (22)

Substituting z � ejω, ω ∈ [− π, π] in equation (22) yields

H(ω) � 1 + e
− j ω− ω0( ). (23)

If we replace ω⇒ ω̂0, equation (23) becomes

H(ω) � 1 + e
− jδω

� 1 + cos δω − j sin δω.
(24)

At steady-state ω̂0 ≈ ω0, the magnitude and phase re-
sponses of H(z) can be, respectively, approximated to be

BH � |H(ω)| ≈ 2, (25)

and

φH ≈ −
δω
2

. (26)

Terefore, the steady-state expression for the prediction
error will be

es(n) � ABHe
j ω0n+φ+φH( ) + v1(n), (27)

where smeans steady-state and v1(n) is the noise component
due to the input noise v(n). Now let us consider the learning
increment

Q � E x(n)e
∗
s (n)􏼂 􏼃 � A

2
BHe

− jφH + Rvv∗1
, (28)

where

Rvv∗1
� E v(n)v

∗
1(n)􏼂 􏼃 � σ2, (29)

is the correlation between v(n) and v∗1(n) (see Appendix C).
Note that the derivation of equation (28) is obtained by
assuming that the input complex sinusoids and noise
components are uncorrelated with each other [28]. Now, let
us consider the SNR of Q, which is

SNRQ � BHSNRi. (30)

For a high value of SNRQ equation (28) can be approximated
as [29]

Q(n) ≈ A
2
BHe

− j φH+v2(n)( ), (31)

where Q(n) is the estimate of Q and v2(n) is defned as
a phase noise of Q with zero mean and variance of [29]

σ22 ≈
1

2SNRQ

�
1

2BHSNRi

. (32)

Te phase of Q(n) that is equivalent to the driving
function D in equation (13) can be defned by

Dq(n) � ∠Q(n) � − φH + v2(n)( 􏼁. (33)

Using equations (33) in (11) results in

ω̂0(n + 1) � ω̂0(n) − μ φH + v2(n)( 􏼁. (34)

Subtracting ω0 from both sides of equation (34) and
using equation (26) yields

δω(n + 1) � δω(n) − μ
δω(n)

2
+ v2(n)􏼠 􏼡. (35)

Squaring on both sides of equation (35) and averaging
the result gives
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δ
2
ω(n + 1) � 1 − μ +

μ2

4
􏼠 􏼡δ

2
ω(n) + μ2σ22, (36)

where δ
2
ω(n) � E[δ2ω(n)] is the estimation MSE at time n.

Assuming that

δ2ω(n + 1)|n⟶∞ � δ2ω(n)|n⟶∞ � δ2ω(∞), (37)

then equation (36) becomes

δ
2
ω(∞) �

μσ22
1 − (μ/4)

� MSE. (38)

For slow convergence speed when μ⟶ 0, equation (38)
can be simplifed to be

MSE ≈ μσ22. (39)

It is apparent that the MSE approximation in equation
(39) is valid for a wide range of system parameters, including
input frequency, SNRi and step-size as demonstrated in
Figures 4–6, respectively. It is observed that the analytical
MSE shown in equation (39) can well predict the simulated
MSE. It is observed that the MSE is independent of the signal
frequency, as shown Figure 4, decreased as SNRi increased,
as shown in Figure 5, and increased as step-size increased, as
shown in Figure 6.

5. Numerical Examples

In this section, the performances of the proposed PEC have
been revealed and compared with those of the MCPG [23],
Regalia [24], CPG [26], and CDFE [27].

5.1. Simulation MSE and Estimated Frequency. To fairly
compare the MSE and the estimated frequency by using
computer simulation, all examined algorithms are forced to
converge at the same time. Tis is done by individually
tuning the step-size parameter of each algorithm. In addi-
tion, the 1000 complex sinusoids with a specifc frequency
and random phase plus noise sequences having the same
SNRi are evaluated by using an ensemble average.Te results
are shown in Figures 7–10. Figure 7 is an estimation MSE
comparison for SNRi = 10 dB (high SNRi). It is revealed that
the proposed PEC and CDFE converge at the same time, and

they provide an identical MSE of the estimated frequency,
whereas the MCPG converges the fastest and the Regalia
shows the slowest. Te CPG speed of convergence is slightly
better than that of the Regalia but worse than those of the
PEC, CDFE, and MCPG. Figure 8 demonstrates the esti-
mation frequency at the sameMSE. As can be seen, the PEC,
CDFE, and MCPG provide almost the same convergence
speed, whereas the CPG and Regalia show slow convergence
speeds. Figure 9 is an estimation MSE comparison for
SNRi = − 5 dB (low SNRi). It is shown that the convergence
speed of the proposed PEC is between those of the CDFE and
MCPG and the CPG and Regalia. Figure 10 shows the es-
timation frequency at the same MSE. As has been observed,
the PEC provides slower speed than CDFE and MCPG but
yields faster speed than the CPG and Regalia. Note that the
MCPG, CPG, and Regalia are used with a complex frst-
order adaptive IIR notch flter (CANF) [26], which has
a zero-pole contraction factor α. In this section, we let
α � 0.9. Although the convergence speed of the PEC in the
additive complex white Gaussian noise scenario is slow as
compared with the MCPG and CDFE, as shown in Figures 9
or 10, it performs well when exposed to a high-impulsive
noise environment, as shown in Section 5.2. In addition, the
deterioration of convergence speed due to the signal am-
plitude A does not afect the PEC, as shown in Section 5.3.
Moreover, in the comparison of the calculation re-
quirements of all algorithms, the computational complexity
is concluded in Table 1. It is found that the proposed PEC
requires only 3L multiplications, 2L additions, and L phase
evaluations. Te added phase calculation makes PEC tol-
erant to impulsive noise and insensitive to signal amplitude
A, surpassing CDFE, MCPG, CPG, and Regalia. Now let us
consider the computational time required for all examined
algorithms. Since each algorithm has only one parameter
(weight) to be adjusted, for the PEC, it requires six oper-
ations per iteration.Tis indicates that the PEC is considered
to have a temporal complexity of order O(6L) when its it-
eration has an input size of L. Because runtime is dependent
on input size L, it is said that the time complexity of the PEC
has an order of O(L), meaning that it is linear. Similarly for
the CDFE, MCPG, CPG, and Regalia, their computation
times are also linear and are shown in Table 1. Although the
runtime of each comparative algorithms has the same order
as that of the PEC, the proposed PEC outperforms all
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Figure 3: Leaning curves of ω0(0) for (a) SNRi � 0 dB; (b) SNRi � 10 dB.
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comparative techniques in terms of impulsive noise ro-
bustness, and its convergence time is not sensitive to the
input signal amplitude (see Figure 11).

5.2. Impulsive Noise Robustness. In this section, the im-
pulsive noise robustness of the proposed PEC algorithm is
addressed. It is well known that impulsive noise has two
main characteristics: random amplitudes and places of oc-
currence. When impulsive noise is present, the noise power
is equal to the strength of the impulse. Tis illustrates the
nonstationary character of impulsive noise by looking at the

power spectrum of a noise process with a few impulses per
second. Impulsive noise is therefore a binary-state, time-
varying process, and as a result, its power spectrum and
autocorrelation are also binary-state processes. Te ex-
pression for an amplitude-modulated binary-state sequence
that models an impulsive noise sequence is [30].

I(n) � u(n)b(n), (40)

where u(n) is a random noise amplitude and b(n) is a bi-
nary-state sequence of ones and zeros. Since the binary-state
sequence b(n) takes a value of “1” with a probability of p and
a value of “0” with a probability of 1 − p, its probability mass
function (PMF) can be expressed as follows:

f(b) �
p, b(n) � 1,

1 − p, b(n) � 0,
􏼨 (41)

which is in the form of a Bernoulli distribution whose mean
is p and variance is p(1 − p) whereas the probability density
function (PDF ) of u(n) can be modelled as a Gaussian
distribution with a zero mean and variance of σ2u and is of the
form

f(u) �
1

σu

���
2π

√ e
− u2(n)/2σ2u . (42)

Since u(n) and b(n) are independent random variables,
the variance of I(n) can then be defned by (see Appendix D)

σ2I � pσ2u. (43)

It is noted that the mean of I(n) is equal to zero because
u(n) has a zero mean. Terefore, equation (43) is also the
impulsive noise power. Under the impulsive noise scenario,
the observation signal in equation (1) can then be rewritten
as follows:

Simulation
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0.2 0.4 0.6 0.8 10
ω0/π

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

M
SE

 (d
B)

Figure 4: MSE as a function of frequency for SNRi � 0 dB,
μ � 0.01, L � 10000 and 100 runs.
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L � 10000 and 100 runs.

6 International Journal of Antennas and Propagation



x(n) � d(n) + I(n). (44)

Te signal to impulsive noise ratio (SINR) is defned by

SINR �
Psignal

Pimpulse

�
A
2

pσ2u
.

(45)

From equation (45), there are many pairs of p and σ2u
that yield the same SINR. For a fxed value of σ2u, the lower
the probability p is, the higher the SINR is achieved. Since
the impulsive noise is nonstationary, it is difcult to theo-
retically study the proposed PEC algorithm under this noise.
Terefore, experimentation by means of computer simula-
tion is used to study the PEC performance under impulsive
noise instead. Extensive simulations for low/high p and large
σ2u will be carried out to demonstrate the impulsive noise
robustness of the proposed PEC adaptive algorithm. Te
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Figure 7: MSE of the estimated frequency for SNRi � 10 dB, ω0 � 0.5π, μpec � 0.05, μcdfe � 0.025, μmcpg � 0.0175, μcpg � 0.02,
μregalia � 0.004, data length L � 1000 and 1000 runs.
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μregalia � 0.004 and data length L � 1000 and single run.
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μregalia � 0.016, data length L � 1000 and 5000 runs.
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Figure 10: Learning curves of the estimated frequency SNRi � − 5 dB, ω0 � 0.5π, μpec � 0.05, μcdfe � 0.032, μmcpg � 0.035, μcpg � 0.071,
μregalia � 0.016, data length L � 1000 and 5000 runs.

Table 1: Te computational complexity and computational time.

Algorithm
Computational complexity

Phase evaluation Computational time
Multiplication Addition

PEC 3L 2L L O (6L)
CDFE 4L 2L — O (6L)
MCPG 6L 3L — O (9L)
CPG 7L 4L — O (11L)
Regalia 10L 3L — O (13L)
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Figure 11: Deteriorating convergence speed due to the signal amplitude: (a) PEC; (b) CDFE; (c) MCPG; (d) CPG; and (e) Regalia.
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Figure 12: (a) Low probability large variance impulsive noise with SINR� − 20 dB; (b) evolutions of the estimated frequency obtainable by
the PEC, MCPG, CPG and Regalia for ω0 � 0.8π, μcdfe � 0.05 and μmcpg � 0.05 μcpg � 0.35 and μregalia � 0.1.
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simulations are addressed by considering the following
cases: (note that the step-size parameter μ of each algorithm
is individually adjusted to obtain the same convergence
speed).

5.2.1. C1 Low Probability of Occurrence and Large Noise
Amplitude Variance. For this case, we let p � 0.001 and
σ2u � 105 (SINR= − 20 dB). Te results of the estimation are
shown in Figures 12(a) and 12(b). An impulsive noise
waveform is shown in Figure 12(a). Te estimated frequency
obtained from the PEC, CDFE,MCPG, CPG, and Regalia are
shown in Figure 12(b). It is evident that the proposed PEC is
robust to very high impulsive noise, whereas the CDFE,
MCPG, CPG, and Regalia sufer from impulsive noise;
namely, they are not robust.

5.2.2. C2 High Probability and Large Noise Amplitude
Variance. For this case we let p � 0.1 and σ2u � 105
(SINR= − 40 dB). Te results of the estimation are shown in
Figure 13(a) and 13(b). An impulsive noise waveform is
shown in Figure 13(a). Te estimated frequency obtained
from the PEC, CDFE, MCPG, CPG, and Regalia are shown
in Figure 13(b). It is evident that the proposed PEC is robust

to very high impulsive noise, whereas the CDFE, MCPG,
CPG, and Regalia sufer from impulsive noise; namely, they
are unstable.

5.3. Efect of Signal Amplitude. To study the deterioration of
convergence speed due to the signal amplitude A, a noise
free scenario is assumed. Te parameters used in simulation
are A= {0.2, 1}, ω0 � 0.5π, φ � 0.1π, μ � 0.05, α � 0.7 (for
MCPG, CPG, Regalia), and single run.Te results are shown
in Figure 11. As can be seen, the decrease in input signal
amplitude does not afect the convergence speed of the
proposed PEC (see Figure 11(a)), whereas the decrease in
signal amplitude results in the deterioration of the con-
vergence speed of the CDFE, MCPG, CPG, and Regalia (see
Figures 11(b)–11(e)).

6. Conclusion

We have proposed a phase error criterion adaptive algo-
rithm for estimating the unknown frequency of a complex
sinusoidal signal. Te proposed technique provides two
main advantages: it is robust to impulsive noise and not very
sensitive to the signal amplitude. Te convergence in the
mean of the estimated frequency and steady-state expression
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Figure 13: (a) High probability large variance impulsive noise of SINR� − 40 dB; (b) evolutions of the estimated frequency obtainable by the
PEC, MCPG, CPG, and Regalia for, ω0 � 0.8π, μcdfe � 0.05, and μmcpg � 0.05 μcpg � 0.35 and μregalia � 0.1.
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for MSE are derived in closed form. Extensive studies using
computer simulations have been conducted to show the
superiority of the proposed adaptive algorithm.

Appendix

A. The derivation of equation (10)

Referring to equations (1) and (6)

x(n)x
∗
(n) − x(n)̂s

∗
(n)

� (d(n) + v(n)) × d
∗
(n) + v

∗
(n)( 􏼁

+ (d(n) + v(n)) × e
− jω̂0 d

∗
(n − 1) + v

∗
(n − 1)( 􏼁􏼒 􏼓

� d(n)d
∗
(n) + v(n)v

∗
(n) + v(n)d

∗
(n)

+ v
∗
(n)d(n) + e

− jω̂0d(n)d
∗
(n − 1)

+ e
− jω̂0d(n)v

∗
(n − 1) + e

− jω̂0v(n)d
∗
(n − 1)

+ e
− jω̂0v(n)v

∗
(n − 1).

(A.1)

Averaging equation (A.1) yields

E d(n)d
∗
(n)􏼂 􏼃 + E v(n)v

∗
(n)􏼂 􏼃 + e

− jω̂0E d(n)d
∗
(n − 1)􏼂 􏼃

� A
2

+ σ2 + A
2
e

− jω̂0e
jω0 � A

2
+ σ2 + A

2
e

− j ω̂0− ω0( )

� A
2 1 + cos δω( 􏼁 + σ2 − jA

2 sin δω.

(A.2)

Evaluating equation (A.2) for the phase yields equation
(10). Note that equation (A.2) is obtained by assuming that
d(n) and v(n) are uncorrelated with each other and ejω̂0 is
a constant.

B. The derivation of equation (16)

Te solution of equation (14) is given by

�ω0(n) � �ω0c(n) + �ω0p(n), (A.3)

where �ω0c(n) and �ω0p(n) are, respectively, complementary
and particular solutions. Assuming that the complementary
solution takes the form of

�ω0c(n) � Cλn
, n> 0, (A.4)

where C is a constant determined by an initial condition.
Letting the term on the right-hand side of equation (14) to be
zeros and using equation (A.3) yields

�ω0c(n) � C 1 − μη0( 􏼁
n
, n> 0. (A.5)

In addition, it can be assumed that

�ω0p(n) � Kμη0ω0, (A.6)

whereK is a constant. After substituting equations (A.6) into
(14) and solving the result, we obtain

�ω0p(n) � ω0. (A.7)

Using equations (A.6) and (A.7) in equation (A.5) and
solving for C results in equation (16) where �ω0(0) is an initial
condition.

C. The derivation of equation (29)

Referring to the power spectral theorem [11], the correlation
between the noise components v(n) and v1(n) can be
computed by

Rvv∗1
�
σ2

2π
􏽚
π

− π
H
∗
(ω)dω,

�
σ2

2π
2π − 2 sin(π)e

− jω0􏼐 􏼑

� σ2 � Eq. (29).

(A.8)

D. The derivation of equation (43)

Since the impulsive noise I(n) is the multiplication of two
independent noise processes u(n) and b(n), the variance of
I(n) can be calculated by

Var(I) � Var(ub)

� Var(u)Var(b) + Var(u)E
2
[b] + Var(b)E

2
[u]

� σ2up(1 − p) + σ2up
2

� pσ2u � Eq. (43).

(A.9)

Note that the time index n is omitted for analytical
simplicity.
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