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Providing global coverage for ubiquitous users is a key requirement of the ffth generation (5G) and beyond wireless technologies.
Tis can be achieved by integrating airborne networks, such as unmanned aerial vehicles (UAVs) and satellite networks, with
terrestrial networks. However, the deployment of airborne networks in a three-dimensional (3D) or volumetric space requires
a new understanding of the propagation channel and its losses in both the areal and altitude dimensions. Despite signifcant
research on radio environment map (REM) construction, much of it has been limited to two-dimensional (2D) contexts. Tis
neglects the altitude-related characteristics of electromagnetic wave propagation and confnes REMs to 2D formats, which limits
the comprehensive and continuous visualization of propagation environment variation in spatial dimensions.Tis paper proposes
a volumetric REM (VREM) construction approach to compute 3D propagation losses. Te proposed approach addresses the
limitations of existing approaches by learning the spatial correlation of wireless propagation channel characteristics and vi-
sualizing REM in areal and height/altitude dimensions using deep learning models. Specifcally, the approach uses two deep
learning-based models: volume-to-volume (Vol2Vol) VREM with 3D-generative adversarial networks and sliced VREM with
altitude-aware spider-UNets. In both cases, knowledge of the propagation environment and transmitter locations in 3D space is
used to capture the spatial and altitude dependency of the propagation channel’s characteristics. We developed the Addis dataset,
a large REM dataset comprising 54,000 samples collected from the urban part of Addis Ababa, Ethiopia, to train the proposed
models. Each sample of data comprises a 512-meter by 512-meter areal resolution with diferent 3D obstacles (buildings and
terrain), 15 simulated propagation loss maps at every 3-meter altitude resolution, and 80 diferent 3D transmitter locations. Te
results of the training and testing of the proposed models reveal that the constructed VREMs are statistically comparable. In
particular, the Vol2Vol approach has a minimum L1 loss of 0.01, which further decreases to 0.0084 as the line-of-sight (LoS)
probability increases to 0.95.

1. Introduction

Fifth-generation (5G) wireless networks and beyond are
being designed to provide global, ubiquitous connectivity
while meeting demanding service requirements such as high
spectral efciency, throughput, energy efciency, reliability,
and guaranteed low end-to-end latency. Key enabling
technologies for 5G to meet the service requirements include
network densifcation, massive multiple-input multiple-
output (MIMO) antenna systems, and millimeter wave
(mmWave) communications. In addition, the integration of

terrestrial and nonterrestrial networks, such as satellite and
unmanned aerial vehicle (UAV) networks is being
researched to extend coverage over a wider area, increase
capacity, improve reliability, and enable new
applications [1].

UAVs, in particular, are considered to play a critical role
in future wireless network due to their large mobility,
adaptive altitude, and line-of-sight (LoS) communication
capabilities [2, 3]. Figure 1 depicts an example of a terrestrial
cellular network that leverages UAVs to improve its service
delivery. Te UAV can function as aerial user equipment
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(AUE) or an aerial base station (ABS), both located at an
altitude of tens to hundreds of meters. AUEs and ABSs are
used to ofoad trafc in cellular hotspots [4, 5], for remote
sensing, remote monitoring and control, surveillance and
security, emergency communications, and entertainment, to
name a few. Te cellular network, on the other hand, is
represented by a ground-based base station (GBS) that
serves both ground user equipment (GUEs) and aerial user
equipment (AUEs) positioned at varying elevations based on
the user’s location.

Despite the advantages, the deployment of UAV-assisted
networks poses a number of challenges. Primarily, the
network planning must take into account the additional
degrees of freedom introduced by the diferent altitudes of
the radio elements, such as GUEs, AUEs, and ABSs. Tis
includes the defnition of coverage and capacity re-
quirements, as well as the optimization of the UAV tra-
jectory and power consumption. Secondly, the intricate
three-dimensional (3D) mobility of ABSs and AUEs in-
troduces a dynamic aspect to LoS communication. Tis
continuous transition from LoS to nonline-of-sight (NLoS)
scenarios can lead to fuctuations in signal quality, poten-
tially compromising the cellular network’s ability to main-
tain consistent and reliable communication channels and
services [2, 6]. Furthermore, existing terrestrial cellular
networks are inherently designed to accommodate GUEs
and GBSs operating within a two-dimensional (2D) plane.
Tis design approach may limit the networks’ efectiveness
in serving ABSs and AUEs, which are operating at varying
altitudes and across complex 3D terrains. Consequently,
signal strength, quality, and reliability may face challenges,
necessitating tailored strategies to address these altitude-
driven variations.

In a broader perspective, the planning and deployment
of both terrestrial and aerial network components within
UAV-assisted networks introduces complexities. Te in-
herently 3D nature of the propagation environment, which
is characterized by irregular terrain shapes and random
receiver locations, requires careful consideration. Over-
coming these challenges helps with optimizing UAV

placement strategies and resource allocations to ensure
seamless communication and coverage across the diverse
spatial dimensions introduced by UAVs [7].

1.1. Radio Environment Maps for UAV-Assisted Cellular
Networks. In the context of UAV-assisted cellular networks,
3D radio propagationmodels play a critical role in accurately
characterizing the signal propagation environment. Tese
models are predictive tools that mathematically simulate
how radio waves propagate in various complex 3D envi-
ronments, estimating parameters like path loss and signal
strength. Tey are particularly relevant given the unique
challenges posed by UAV network elements, such as their
3D mobility and the presence of obstacles in the environ-
ment [8–10]. Existing models encompass a wide range of
methodologies, from empirical models that are based on
measurement to more sophisticated analytical models such
as ray-tracing-based models that account for intricate en-
vironmental details. Ray-tracing models excel at accurately
simulating signal propagation in a 3D environment by
tracing individual ray paths, particularly when utilizing real
terrain data and detailed geometry. However, their accuracy
comes with computational complexity due to extensive
calculations. Not to mention, they are inherently site-
specifc, meaning they must be re-generated for each new
environment and deployment scenario [10, 11].

In that aspect, Radio Environment Maps (REMs) have
recently been explored in the context of UAV-assisted
cellular networks to address diferent challenges, such as
placement and path-planning optimization and user asso-
ciation [12–16]. REMs are essentially a type of fne-grained
digital radio map that provides detailed information about
signal strength, quality, coverage, and propagation charac-
teristics across a specifc geographical region [17]. Te
strength of REMs lies in their capacity to incorporate real-
world data, such as building layouts, terrain features, ob-
stacles, and network confgurations, into their visual de-
piction of how signal quality varies across space. Tis
information can be used to optimize the placement, oper-
ation, and performance of UAVs in cellular networks. For
example, REMs can be used to optimize the placement of
ABSs to maximize coverage and capacity, plan the optimal
trajectory for ABSs to minimize interference, optimize an-
tenna confgurations, and allocate radio resources to users.

Te construction of REMs involves collecting data
through measurements, simulations, or a combination of
both. Creating REMs based on measurement data such as
environment-specifc real terrain maps or signal charac-
teristics parameters such as received signal strength (RSS)
ofers high accuracy as it captures real conditions and po-
tential signal variations. However, it can be resource-
intensive, demanding both time and cost, making it suit-
able for specifc applications where precision is paramount
[18–20]. On the other hand, REMs solely based on data from
simulation employ computational models to predict radio
wave behaviors across the area of interest. Although less
accurate compared to measurement-based approaches due
to the simplifed nature of the models and the variability of
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Figure 1: An example of a cellular network topology involving
terrestrial and airborne network segments in diferent altitudes.
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the environment, simulations are efcient and allow the
assessment of a broader spectrum of scenarios. As mostly
preferred, combining the two approaches strikes a balance
between accuracy and efciency as it reduces the need for
extensive measurement collection [21].

1.2. Deep Learning for Constructing REM. Various ap-
proaches exist to construct REMs, which can be broadly
categorized into two main methods: model-driven methods
and data-driven learning methods. Model-driven methods,
such as Inverse Distance Weighting (IDW) [22] Kriging
[19, 23], and Bayesian models [24–27], rely on predefned
mathematical models and parameters to describe the re-
lationship between environmental features and radio wave
behavior. Tese models are usually based on simplifed
assumptions and prior knowledge of the propagation en-
vironment. While model-driven methods can provide
valuable insights, they may struggle to accurately capture
complex interactions, especially in scenarios with numerous
variables or dimensions.

On the other hand, data-driven methods, especially
those that are based on machine learning algorithms, do not
rely on explicitly defned model parameters. Instead, they
learn the nonlinear spatial characteristics of the radio en-
vironment, along with relevant propagation efects like
blockage, refection, and scattering, directly from the pro-
vided data [28]. Such methods usually involve model
training using limited historical measurement data, allowing
them to generalize and make predictions (interpolate or
extrapolate) for unmeasured locations.

Particularly in deep learning, convolutional neural
network (CNN)-based models have shown remarkable ca-
pabilities in constructing REMs [26, 27, 29–35]. CNNs are
a type of deep learning algorithm that is well suited for image
processing tasks. Tey can be used to extract features from
images, such as edges, shapes, and textures. By leveraging the
power of CNNs, the REM construction problem can be
redefned as an image processing or feature extraction
problem. Tis simplifes the process of training the propa-
gation loss predictor and building REMs for all GBSs, GUEs,
AUEs, and ABSs locations.

Constructing a complete REM with measurement-based
data is bound to give a more accurate estimation. However,
there are practical limitations to this approach, such as
determining the optimal number of measurements and the
acquisition of the measurements (either with dedicated
sensor networks or crowd-sourcing). To compensate for
these limitations, more advanced neural network architec-
tures, such as generative adversarial networks (GANs) in
[30] and deep CNN-based autoencoder architectures called
UNets in [32, 33, 35], are proposed. Tese architectures can
learn to generate synthetic measurements that are similar to
real ones, even when the number of real measurements is
limited. Tis capability can help improve the accuracy of
REM construction, particularly in cases where collecting
a large number of measurements is not possible. However,
the aforementioned papers solely considered a 2D envi-
ronmental map displaying the location of obstructions

(building topology) and the transmitter (along with sparse
measured samples in the case of RadioUNet in [35]) to
estimate the propagation loss at any point within
a specifed area.

In the context of UAV-assisted networks [19, 29], ad-
dress the additional degree of freedom introduced by alti-
tude for creating 2D-REMs. In [19], measurements from
UAVs across frequencies and altitudes, coupled with
a Kriging model, were used to formulate discrete 2D-REMs
at varying altitudes. On the other hand, in [29], the efec-
tiveness of 3D environmental maps in capturing complex
radio wave interactions infuenced by altitude was
highlighted.

Despite substantial research on REM construction,
much has been confned to 2D contexts, disregarding
altitude-related characteristics of radio wave propagation or
confning REMs to 2D formats. Tis limitation restricts the
comprehensive and continuous visualization of propagation
environment variations in spatial dimensions, thereby
diminishing the applicability of REMs across scenarios,
including UAV-assisted cellular networks.

Hence, our study introduces the concept of volumetric
REM (VREM), which aims to capture spatial correlation and
visualize REM in three dimensions, i.e., 2D areal and height/
altitude dimensions. Our work formulates the VREM
problem as an image translation challenge, exploring two
approaches: volume-to-volume (Vol2Vol) and sliced-map
construction (sliced-VREM). In the Vol2Vol method, a deep
learning model is trained to generate the VREM repre-
sentation by utilizing the intricate details of the 3D envi-
ronmental map and transmitter coordinates. With the
sliced-VREM, the complexity associated with learning
from volumetric data is addressed by capturing the altitude
dependency of propagation characteristics from stacked 2D
environmental maps and transmitter location information.
To that end, the main contributions of the paper are
summarized as follows:

(i) Propose two VREM construction approaches,
namely, Vol2Vol-VREM and sliced-VREM con-
struction techniques, in which knowledge of the 3D
environment, transmitter location information, and
simulated REM data are used to train the models to
capture spatial correlation and altitude dependency
of the characteristics of the propagation channel.

(ii) As 3D measurement data are not readily available to
train the proposed models, a commercial wireless
propagation and radio network planning software
called WinProp, which is part of the Altair Feko
2021.1 suite, is used to simulate actual radio prop-
agation and generate a large set of REM data. Te
simulation took into account the 3D environment
geometry and Advanced Long-Term Evolution-
(LTE-A-) based network confguration parameters,
including the location and height of a particular
transmitter. We named the data Addis dataset, and it
is developed for the urban part of the city of Addis
Ababa, Ethiopia. Comprising 54,000 samples, the
dataset encompasses 225 distinct geographical

International Journal of Antennas and Propagation 3



regions, each defned by 3D terrain and building
information. Ground-level areas measuring
512meters by 512meters are considered, and sim-
ulated REMs are generated for every 3-meters res-
olution interval of height. Te dataset encompasses
three propagation links: the GBS-GUE link, the
GBS-AUE link, and the ABS-GUE link, for 80 ar-
bitrary 3D transmitter locations.

To the best of our knowledge, the Addis dataset is the
frst of its kind, as it provides 3D information about radio
wave propagation. Te dataset’s comprehensive coverage of
diverse propagation environments, spanning 225 diferent
geographical areas, empowers the VREM model to yield
reliable results even in unfamiliar settings.

Te remainder of the paper is organized as follows: Te
system model and the problem formulation approach are
discussed in Section 2. Te two proposed VREM con-
struction approaches are presented in Section 3. Te model
training, map construction, and performance evaluation of
the proposed approaches are discussed in Section 4, and
conclusions and future remarks on the work are given in
Section 5.

2. System Model

2.1. Scenario Defnition and Propagation Loss Model. To
address the limitations posed by the lack of available
measurement data for training the deep learning VREM
constructionmodel, we generated synthetic propagation loss
data using a realistic 3D environment map and a simplifed
ray-tracing propagation loss model known as the dominant
path model. Tis involved setting up two distinct scenarios
within a 3D environment, as illustrated in Figure 2. Scenario
1 consists of a GBS located within a designated spatial region
χ ⊂ R3 to serve GUEs and AUEs at varying altitudes. Sim-
ilarly, scenario two involves a low-altitude ABS serving
GUEs while hovering over a specifc geographic region. In
both scenarios, a 3D Cartesian coordinate system is used,
defning lb � (xb, yb, hb) and lu � (xu, yu, hu) as the co-
ordinates of the locations GBS/ABS and GUE/AUE within
the environment. Here, hb indicates the height of the GBS
antenna above the ground in the frst scenario or the
hovering altitude of the ABS in the second scenario.

Te 3D environment depicted in Figure 2, denoted as ψ,
is characterized by environment-dependent coefcients, as
outlined in the ITU recommendation report [10]. Tese
coefcients include parameters such as the mean width of
the building, W, the number of obstacles (mainly buildings),
No, and the maximum height of obstacles along the LoS link
between the transmitter and receiver, ho. In both scenarios,
we focus on the downlink propagation channel, where
a signal with power Pt is transmitted (by GBS or ABS) and
received by a receiver (AUE or GUE) at a ground distance,

dtr �

�������������������

(xb − xu)2 + (yb − yu)2
􏽱

and height of hb, with signal
strength Pr.

Propagation channel modeling in UAV-assisted net-
works involves both air-to-ground and terrestrial channel
considerations. Due to the similarity in channel statistics for

both cases, the propagation loss is generally defned between
any transmitter and receiver, factoring in distance,
environment-dependent path loss, and shadowing efects
[8]. Depending on whether the propagation path is under
LoS or NLoS conditions, the loss between the transmitter at
lb and the receiver at lu is quantifed in decibels (dB) as
follows:

c lb, lu( 􏼁dB � PtdB
− PrdB

, (1)

c lb, lu( 􏼁dB � β lb,lu( ) + α.10. log10 lb − lu
����

����􏼐 􏼑 + ξ lb,lu( ), (2)

where β(.) and α and ξ(.) are the propagation channel co-
efcients that denote the mean free space loss, the path loss
exponent, and the shadowing factor of the propagation,
respectively. Te Frobenius norm is

lb − lu
����

���� �

�����������������������������

xb − xu( 􏼁
2

+ yb − yu( 􏼁
2

+ hb − hu( 􏼁
2

􏽱

, (3)

the distance between the transmitter and receiver, measured
in meters.

For the given operating frequency (f), and elevation
angle (θe � tan− 1(|hb − hu|/dtr)), between the transmitter
and receiver, the parameter β(.) is evaluated as

β � −27.56dB + 20. log10 fMHz( 􏼁 + 20. log10
hb − hu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

sin θe

􏼠 􏼡,

(4)

which emphasizes its signifcant infuence, especially with
increased height diferences and at higher frequencies
[8, 36]. Te specifc values of α and ξ, on the other hand,
depend on environmental factors, such as the distribution of
3D obstacles (e.g., buildings and terrain) that categorize the
environment as suburban, urban, dense urban, or high-rise
urban. Tis determination is infuenced by factors such as
the transmitter-receiver location, geographical area (A), the
ratio of the total area covered in buildings (ζ � f(No/A)),
the mean number of buildings per unit area (ρ � f(1/ζ)),
and the variation in the heights of buildings that can be
modeled as the Rayleigh probability density function (c �

f(ho/A)) [36]. For instance, when considering larger values
of c and ζ, the scenario often involves an environment
abundant with tall buildings, indicative of an urban setting
characterized primarily by high-rise structures. Such con-
ditions imply a higher likelihood of NLoS situations, ap-
plicable to both GBS or ABS to GUE, as well as GBS to low-
altitude AUE communication links. In contrast, lower values
of c and ζ tend to correspond to suburban areas, where there
is a higher chance of near-LOS conditions for GBS-GUE/
AUE links. Following that, the parameter α generally falls
within the range of 2 to 6, which is ftted according to
whether the link between the transmitter and receiver is in
LoS or NLoS condition. Similarly, the standard deviation of ξ
exhibits higher values in high-rise urban regions compared
to suburban areas.

To address the complexities of ray tracing, the Urban
Dominant Path (UDP) model [37], a simpler yet equally
accurate alternative, is employed in this work. As shown in
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Figure 3, this model concentrates solely on the most
prominent propagation path, referred to as the dominant
path, connecting the transmitter (GBS or ABS) with the
receiver (AUE or UE). It is notable that in a majority of
propagation scenarios, approximately 90% of the received
power emanates from this single path [37, 38].

Te UDP model is designed to collectively represent
propagated waves guided by refections and difractions at
walls and corners, forming the dominant path. It

intentionally limits interactions between transmitters and
receivers, reducing computational complexity while main-
taining accuracy [36, 38, 39]. With this, it is possible to refne
the propagation loss expression in equation 2, where the
deterministic approximation of c is realized through the
equation as

cdB � −27.56dB + 20. log10 fMHz( 􏼁 + 20. log10
hb − hu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

sin θe

􏼠 􏼡 + α.10. log10
hb − hu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

sin θe

􏼠 􏼡 + 􏽘

NI

i�1
r(ϕ, i) −Ω. (5)

Here, NI represents the number of interactions in-
volving the actual propagation path interacting with
refecting obstacles. It is dependent on the function r(ϕ, i)

captures the interaction loss in decibels, accounting for the
changes in the direction of propagation represented by the
angle ϕ due to the wave’s interaction with ith obstacle. Te
loss follows a regression function with a positive intercept,
gradually increasing as ϕ rises until stabilizing for larger ϕ
values. Te waveguiding factor,Ω, represents collective wave
propagation (explained in [40]) and varies based on re-
fection loss, angle, and obstacle-path distance. In densely
urban areas with higher ho and No values, the refection loss
for GUE diminishes in turn increasing Ω.

In both scenarios shown in Figure 2, the transmitter
(GBS or ABS) maintains a constant altitude above ground
level, while the receiver height changes discretely. With
increasing altitude above ground, α(·) tends to approximate
2, indicating free space propagation. Consequently, the loss
becomes more dependent on the separation distance

between transmitter and receiver, dth. Furthermore, ξ(·)

decreases for higher altitudes compared to ground-level
users, as the number of refections and difractions within
the area decreases. Tis means that the propagation loss for
the GBS-AUE link is primarily determined by β, while the
GBS-GUE and ABS-GUE links are more sensitive to envi-
ronmental efects, depending on α(·) and ξ(·). Notably,
a comprehensive examination of gradual altitude changes
from 0 to 50m and their implications on propagation loss
across diferent frequency ranges (sub-6G and at 60GHz) is
expounded upon in [41, 42].

2.2.Volumetric RadioEnvironmentMaps. Temathematical
expression of the VREM for a given 3D propagation envi-
ronment is as follows:

Γ lb, lu( 􏼁dB � C
V

c lb, lu( 􏼁 dx dy dh. (6)

LOS

lb

lb
lu

lu

dtr

ho

θe

NLOS

GBS

ABS
AUE

GUE

GUE

Scenario I Scenario II

Figure 2: Systemmodel illustrating the 3D propagation environment, encompassing two distinct scenarios denoted by varying color shades.
Te blue shade indicates GBS-based communication, encompassing the GBS-GUE link and GBS-AUE link, while the red shade illustrates
the ABS-GUE link.
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Here, the 3D space is discretized along theX, Y, and Z (or
h) axes, each with a unit resolution of dx, dy, and dh, re-
spectively.Tis discretization results in a cubic grid or a pixel
that encompasses dimensions N, M, and S. Tus, a distinct
receiver position represented as lu � [xui, yuj, huk]T

|i ∈ [0, N), j ∈ [0, M) and k ∈ [0, S).
As depicted in Figure 4, the VREM slices obtained at

varying altitudes (e.g., ground level at 1.5m receiver height,
6m, and 15m above ground) ofer insights into altitude-
specifc changes in propagation loss and environmental
efects. Each slice represents a 2D REM snapshot stacked
sequentially to form the 3D VREM, with each altitude slice
separated by dh. As altitude changes, the composition of
obstacles, refective surfaces, and potential signal obstruc-
tions can signifcantly infuence propagation characteristics.

2.3. Problem Formulation. In the context of this study, the
construction of VREMs is framed as a supervised image-to-
image (I2I) translation problem. Tis problem formulation
fnds its roots in various felds like image processing,
computer graphics, and computer vision [43, 44], where it
involves converting input images from a source domain (S)

into corresponding images in a target domain (T). Tis
concept is harnessed to construct VREMs that accurately
capture the propagation environment and transmitter lo-
cation information.

To elaborate, a mapping model, denoted as MS⟶T, is
trained with a substantial dataset of training image pairs.
Tis model aims to generate a synthesized target domain
image, represented as 􏽥Yt~∈ T, which closely resembles the
true image Yt ∈ T corresponding to the input source image
Xs ∈ S. Tis relationship can be expressed as

􏽥Yt~∈ T: Yt ∈ T � MS⟶T Xs( 􏼁. (7)

Each input image within the dataset,
X1, X2, . . . XN􏼈 􏼉: Xi ∈ S encapsulates the environmental
map and transmitter location information, while the cor-
responding REM Yi ∈ T captures the propagation charac-
teristics of the signal. Tis pairing serves as the basis for
training our VREM construction models, enabling them to
learn the transformation from one image domain to another.

Various I2I translation methods are available that attempt to
learn the mapping between diferent image domains
[43–46].

Notable architectures like Radio UNets (UNets specif-
cally designed for REM construction in [35]) and Spider-
UNets (a fusion of UNets and Long Short-Term Memory
(LSTM) networks designed for segmented image con-
struction in [46]) utilize generative models such as UNets
and GANs networks for image translation. GANs consist of
two models, a generator (G) and a discriminator (D), that
work in tandem to generate target images and distinguish
them from real ones. UNets, a deep convolutional
autoencoder network, was originally designed for image
segmentation to facilitate direct feature mapping between
input and output images.

In this study, GANs and UNets are employed in-
dependently or in combination to address the I2I translation
challenge in VREM construction.Tey serve as foundational
frameworks for the proposed approaches, providing a basis
for generating VREMs that efectively capture the intricate
interplay between the radio environment and propagation
phenomena. Te subsequent section delves into further
detail on these frameworks, elucidating their utilization in
the context of this research.

3. Proposed Deep-Learning Approaches for
Volumetric Radio Map Construction

Following the world’s trend toward data-driven learning
approaches for solving REM estimation problems; this paper
introduces two distinct deep-learning-driven strategies for
VREM construction. In both methodologies, the environ-
mental map and transmitter location are interpreted as input
images, which undergo transformation into corresponding
propagation loss maps that vividly depict the 3D environ-
ment’s characteristics. Sections 3.1 and 3.2 subsequently
elucidate the intricacies of these two deep-learning-based
approaches.

3.1. Vol2Vol-VREM Construction with 3D-Generative Ad-
versely Networks. To estimate the characteristics of the
volumetric channel directly by learning the 3D inputs or as

Tx

Rx

(a)

Tx

Rx

(b)

Figure 3: Diferent propagation methods: (a) ray-tracing model and (b) dominant path model [37].
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a form of Vol2Vol translation, we proposed a 3D-GAN-
based network that has a concept similar to the Pix2Pix
architecture in [45]. However, in contrast to Pix2Pix ar-
chitecture that uses a conditional GAN network to translate
a semantic label to a realistic-looking image, the proposed
Vol2Vol-VREM construction approach in Figure 5 imple-
ments UNet-based 3D-GAN to learn the one-to-one map-
ping between the 3D environment and transmitter location
maps with corresponding REM. Our selection of the
3D-GAN architecture was motivated by its superior ability
to construct high-fdelity 3D images. Compared to tradi-
tional interpolation or deep CNNs, 3D-GANs possess
a distinct advantage in capturing the intricate spatial re-
lationships and subtle details inherent to 3D environments.

3.1.1. Architecture. Te main structure of the 3D-GAN
network is illustrated in Figure 5 and the detailed archi-
tecture is tabulated in Table 1. Te generator, G, part of the
network “translates” the environment and transmitter lo-
cation map input image to the corresponding propagation
loss map image and uses a “3D-UNet”-based architecture
that relies on skip connections (represented by broken arrows)
between each layer of the encoder (red blocks) and decoder
(dark blue blocks). With 3D convolution and max-pooling
layers, the encoder part can extract features that correspond to
the 3D efect of distance, buildings, and other environmental
factors between the transmitter-receiver propagation link. A
max-pooling follows each paired convolution layer to shirk the
input resolution and assist each layer of the UNets to extract
the spatially correlated features under the various input res-
olutions. Two convolution units and a max-pooling layer are
referred to as the encoder basic layers (BL-enc) of UNets and
are used as a building block forG to construct the four-layered
encoder UNet architecture. For the decoder, the key aspect is
the use of a transposed 3D convolution layer and double-stride
instead of 3D convolution and max-pooling, respectively, to
construct the decoder’s basic layers (BL-dec). Te double-
stride is used as an upsampling unit to upscale with the same

settings as those of the encoder layers. Also, those skip con-
nections that are weaved between every encoder and decoder
layer are anticipated to give the decoder’s performance a boost.
Tey allow extra environmental features from each encoder
level to fow through, compensating for any potential loss due
to compression.

In contrast, the discriminator, D, part estimates the
probability that the generated VREM from the source data x

is real, zreal, or not. To achieve this, D is formulated as
a typical image classifer comprising six layers of pro-
gressively shrinking 3D convolution layers. Tis classifer
takes both the generated VREM and the original VREM as
inputs.Te LeakyReLU activation function is employed after
each convolutional layer, except for the fnal layer, which
uses the sigmoid activation function, ensuring real-value
generation and model stability. Te sigmoid layer produces
a scalar output, indicating whether the input VREM image is
an accurate reconstruction or not. Batch normalization with
random normal input is applied across all layers of G and D,
excluding the output layer of G and the input/output layer of
D. Consequently, the optimization objective forms a Min-
Max strategy, working to enhance the ability of the model to
correctly classify estimated VREM and learn from input
data. Tis approach is formally defned as

L(D, G) � EZ−Zreal
[logD(z)] + EZ∼X[log(1 − D(G(x)))].

(8)

3.2. Sliced-VREM Construction with Altitude-Aware Spider-
UNets. To create a VREM, it is essential to have a model that
accounts for how the channel’s characteristics vary with
altitude. However, using 3D models for this purpose poses
challenges due to high memory usage and difculties in
handling the varying numbers of altitude slices caused by the
diverse propagation environment and scattering object
randomness. To overcome this, we adopted an alternative
approach called sliced-VREM (S-VREM). Tis involves
using altitude-aware 2D UNets networks, similar to the

(1.5 m) or Ground level

6 m above ground

15 m above ground

512 m 

51
2 m

45
 m

 

Normalized γ (lb) 

0.526
0.579
0.632
0.684
0.737
0.789
0.842

Figure 4: Illustration of the VREM concept depicting the spatial distribution of propagation loss within a 3D environment.
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Spider-UNets architecture proposed for medical image
segmentation in [46]. Tis architecture captures altitude
dependency by processing a sequence of 2D images in
parallel, where each modifed 2D UNet focuses on a single-
plane image while sharing information to learn altitude-
related patterns. Tis approach, akin to 2.5D REM con-
struction, maintains altitude awareness but does not gen-
erate a full VREM without a simple interpolation along the
altitude axis.

As it is possible to represent volumetric images as
a sequential stack of 2D images, the propagation loss at
a given altitude can be learned with modifed 2D UNets
parallelly processing a single-plane image and sharing in-
formation among themselves to capture the altitude de-
pendence. Although this Spider-UNet-like architecture
considers slices of VREMs and maintains its altitude
awareness, it does not, for example, generate a VREM
without considering a simple interpolation along the height/
altitude axis, and for that, this model can be also referred to
as a partial 3D or 2.5D REM construction.

3.2.1. Architecture. Te high-level architecture of our Sliced-
VREM methodology is outlined in Figure 6, with detailed
components described in Table 2. Te network consists of
two main pathways, similar to the setup described in ref-
erence [46].Te frst path entails the parallel stacking of n 2D
convolutional layer-based autoencoders, UNets. Each U-Net
is designed to understand environmental impacts and
transmitter locations within a specifed geographical region,
constructing a 2D REM to represent propagation loss at
a particular altitude level. Tis simultaneous processing of
image slices improves efciency. Te encoder part of UNet

includes 4 sets of custom layers, each consisting of a pair of
2D convolution and 2D max-pooling layers forming the
basic building blocks (BL-enc). Similarly, the decoder part of
UNet is built with four custom layers, each including
a transposed 2D convolution, a skip connector from the
encoder, and a single BL-enc layer.

Te second path, depicted by the orange-shaded section
in Figure 6, captures interslice correlations within sequential
REM image slices. Tis is facilitated by a memory-based
recurrent neural network, specifcally the Long Short-Term
Memory network (LSTM) in conjunction with the con-
volutional layer that forms the convolutional LSTM layers
(Conv-LSTM). Conv-LSTM layer is used at the center of
each UNet stack with bidirectional connection to share
spatial features learned at various heights. In both the en-
coder and decoder part, LeakyReLU activation function is
used after each convolutional layer. By accommodating
variations across both positive and negative input ranges,
this activation function substantially enriches the model’s
adeptness in fully representing intricate patterns and subtle
intricacies intrinsic to the radio propagation environment.
Te number of parallel stacked UNets, denoted n, plays
a crucial role in shaping the depth of the VREM and de-
termining the maximum sequence size the model can
manage. As the number of stacked U-Nets increases, so does
the complexity of model training. To ensure efcient and
efective training, a stack length of 3 or 5 has been chosen.
Tis implies that three or fve consecutive REMs are si-
multaneously constructed and consolidated to form the
VREM. Tis approach strikes a balance between complexity
and training performance, facilitating the creation of
a comprehensive and accurate VREM representation.

T/F

G-Loss D-Loss

Discriminator 

Generator 

Input 1 

BL-dec_1

BL-enc_1 

BL-enc_2 

BL-enc_3 
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Figure 5: 3D-GAN architecture (high level) for the Vol2Vol-VREM construction.
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4. Experiment and Results

4.1. Addis Dataset Description. To construct VREMs based
on 3D radio environmental data, we generated and utilized
a new dataset called the Addis Dataset. Tis comprehensive
dataset features 54,000 samples, each representing
a 512m× 512m× 45m volumetric space. Te data were
collected across diverse terrains and building types,

capturing the resulting variations in signal propagation
conditions. Tis rich diversity equips the dataset to gener-
alize robustly to a wide range of environmental conditions.

Te altitude range for GBS or hovering ABS to GUE links
is from ground level to 45m. Tis height is determined by
adding 5m to the maximum building height in the geo-
graphical area, ensuring comprehensive coverage. For GBS-
to-low-altitude AUE communication, the altitude range is
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Figure 6: Sliced-VREM with altitude-aware Spider-UNet.

Table 2: Altitude-aware Spider-UNet model parameters for Sliced-VREM construction.

Model parameters
Values

Encoder Decoder Interconnector
Parallel UNet stack 3

Basic 2D-Building blocks
2D Conv. ⟶
2D Conv. ⟶
2D Max-pool (2)

Transposed 2D Conv. ⟶
Concatenate ⟶
2D Conv. ⟶
2D Conv. ⟶

Stride (2)

Conv-LSTM (bi-directional)

Layers 4 4 1

Filters

(64, 64)⟶
(128, 128)⟶
(196, 196)⟶
(256, 256)

(256, 256, 256) ⟶
(196, 196, 196) ⟶

(128, 128, 128) ⟶ (64, 64, 64) ⟶ 1∗
512

Input resolution for single stack (128, 128, 1) + (128, 128, 1) — —
Output resolution for single stack (128, 128, 1) + (128, 128, 1) — —
Kernel size 4
Activation LeakyReLU (alpha� 0.2)
∗as an output 2D convolution layer with a single channel.
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from 75 to 90m, which accommodates the practical fight
heights of AUE. Te actual radio propagation is simulated
usingWinProp from the Feko 2021.1 suite. Tis software uses
a UDP model to generate the REM with a resolution of
3meters per iteration.

A set of simulation parameters used to calculate prop-
agation loss and generate REM in WinProp is provided in
Table 3. Each REM with a grid resolution of 1m× 1m is
simulated for a particular geographical area, transmitter
location, and UAV-assisted network scenario. As the sim-
ulation is repeated for 15 diferent altitude levels, it is
possible to stack them and create a VREM.

4.2.Model Training. Our proposed models, Vol2Vol VREM
and sliced-VREM, were efciently implemented in Ten-
sorFlow and trained on the EthERNet high-performance
computing cluster (https://hpc.ethernet.edu.et/).Tis cluster
comprises 20 nodes, each equipped with 40 CPU cores and
approximately 185GB of memory. To optimize memory
usage and ensure efcient training, the input images (en-
vironment maps and transmitter locations) were down-
sampled from 512× 512 to 128×128 resolution. Bothmodels
further benefted from an early stopping technique, halting
training before 80 consecutive epochs without improving
validation loss, optimizing resource utilization, or improv-
ing model generalizability. In addition, 90/10/10% training,
validation, and testing sets were created using a fxed seed,
ensuring complete separation and consistent
reproducibility.

Te selection of loss functions for both models priori-
tizes computational efciency. For that aspect, the generator
of the 3D-GAN network and the Spider-UNet networks
utilized the Mean Absolute Error (MAE) loss function. Tis
choice efectively achieves accurate REM slice or volumetric
representation without the added complexity of perceptual
loss functions. For the discriminator part of the 3D-GAN
network, the standard binary cross-entropy loss is chosen to
identify the realness of the generated VREM.

Training 3D GANs presents a unique challenge due to
their sharp gradient space, leading to potential model in-
stability. We explored two solutions: gradient penalties with
a regularization value of 10 and weight-clipping. While
gradient penalties ofered stability benefts, their computa-
tional overhead signifcantly lengthened training time (more
than 4 hours). Terefore, we opted for clipping the dis-
criminator’s weights to 30, combined with a zero-mean
normal initializer with a standard deviation of 0.02. Tis
efectively stabilized training while maintaining efciency.
Both models were trained using the Adam optimizer with
the following parameters: λ � 0.002, β1 � 0: 5,

and β2 � 0: 999. In addition, dropout regularization with
a probability of 0.2 was applied after each building block in
the generator.

Te training parameters summarized in Table 3 opti-
mized training for Vol2Vol and sliced-VREM, laying a ro-
bust foundation for VREM construction performance.

4.3. VREM Construction Performance. In this section, we
present the VREM construction results and performance
results of the two proposed approaches. We primarily
evaluate their performance through two key comparison
metrics.

For measuring the pixel-wise accuracy, the mean ab-
solute error (MAE or L1 loss) is used as

l1(z, 􏽢z)􏼁 �
1
n

􏽘

n−1

i�0
‖z − 􏽢z‖1, (9)

where zi and 􏽢zi represent the actual and predicted propa-
gation loss in every pixel of the VREM image for n pixels.

Te other metric considered is the Structural Similarity
Index (SSIM), which assesses the structural similarity be-
tween the constructed and real VREM images, considering
its luminance (l), contrast (c), and structure (s). Te overall
index is given as

SSIM(x, y) � [l(x, y)]
α

×[c(x, y)]
β

×[s(x, y)]
c
, (10)

SSIM(x, y) �
2μxμy + C1

μ2x + μ2x + C1
􏼢 􏼣

α

×
2σxσy + C2

σ2x + σ2x + C2
􏼢 􏼣

β

×
σxy + C3

σxσy + C3
􏼢 􏼣

c

, (11)

where μx, μy, σx, σf, and σxy are the local means, standard
deviations, and cross-covariance for the constructed and real
REM images. Te constants C1, C2, andC3 are there to
stabilize the quotation at low luminance and contrast regions
of the images. If the following common assumptions are
taken as α � β � c � 1 and C3 � C2/2, the equation (11) can
then be simplifed to

SSIM(x, y) �
2μxμy + C1􏼐 􏼑 2σxy + C2􏼐 􏼑

μ2x + μ2x + C1􏼐 􏼑 σ2x + σ2x + C2􏼐 􏼑
⎛⎝ . (12)

Te result of the Vol2Vol approach to the construction
of VREM is presented in Figure 7. For a randomly selected
communication link, i.e., for the GBS-GUE communication
link, the comparison from the ground truth is done both at
diferent heights and as a whole. Te model was able to learn
the impact of the environment on signal propagation, as
shown in the results. However, Figure 7(a) reveals that the
model has difculty capturing the extended impact of
narrow buildings that are located farther away from the
transmitter, particularly at lower altitudes (as indicated by
the red arrows). Tis is because the model is not able to
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account for the long-range propagation efects of these
buildings. However, at higher altitudes, the model accurately
captures the propagation loss at all altitudes, as seen in
Figure 7(a). Tis trend is further underscored by the SSIM
values in Table 4, which measure image quality at diferent
altitudes. Te higher SSIM values at higher altitudes

(approaching 1, indicating perfect similarity) directly con-
frm the model’s improved accuracy in those regions.

For the sliced-VREM (n� 5-stack) approach, the con-
structed VREM at diferent altitudes is illustrated in Figure 8,
where the estimated map is pictorially compared to the
ground truth. Te 5-stack model refers to fve UNets

Table 3: WinProp simulation and deep-learning model training parameters.

Parameters Values
WinProp-related parameters
Areal resolution, dx, dy 1m
Height resolution, dh, 3m
Network LTE—advanced
Bandwidth 10MHz
Center frequency, f 2600MHz
GBS/ABS transmission power 43 dBm/33 dBm
GBS/ABS height 35m/150m
GUE height 1.5m–45m
AUE height 75m–90m

Deep-learning-related parameters
Adam optimizer learning rate (λ) 0.002
Training/test/validation data split (for the 80 transmitters in each scenario) 80/10/10%
Epochs 30–80
Batch size 2, 4

1.5 m 3 m 9 m 12 m 15 m

(a)

Normalized
γ (lb)

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

(b)

Figure 7: Comparison of the constructed VREM with the Vol2Vol approach with the ground truth. In (a), the ground truth (top row) is
compared with the constructed map at a diferent height above the ground; and in (b) the constructed VREM (to the left) is compared to the
ground truth (to the right).
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simultaneously learning the propagation channel charac-
teristics from fve consecutive REMs. In this case, the VREM
that is generated at once will have 15m (5× 3m resolution)
of height.

As mentioned in Section 3.2, it is straightforward to infer
that the number of parallelly stacked UNets in the sliced-
VREM approach governs the trade-of between the com-
plexity and depth of the constructed VREM. If the number of
stacks increases to the maximum, n � S, where S represents
the maximum discretized altitude, one can construct the
VREM by taking into account the broad altitude de-
pendency. However, as altitude increases and with the re-
duced number of scatters between the transmitter and
receiver, the channel characteristics would be somewhat
deterministic (the model easily captures α and) and be
dominantly dependent on the GBS-GUE/AUE or ABS-GUE
distance. In other words, above a certain altitude, the
propagation loss will be less dependent on shadowing and
can be modeled by the frequency loss and space loss. With
this understanding, it might be possible to limit the con-
sideration of higher altitudes and extrapolate beyond
a particular height above ground level, as shown in Table 4.
On the other hand, with a smaller number of stacks for the

sliced-VREM approach, the complexity and memory needed
for map construction will decrease, which also results in
a shorter reconstructed volumetric height (stack) of the map.
When sliced-VREM takes only a single layer, it will be
similar to 2D REM constructing models in [34, 35].

Tables 4 and 5 summarize the performance comparison
of our proposed approaches. At lower altitudes, Vol2Vol-
VREM exhibits slight constructed image quality degradation
compared to sliced-VREM, as evidenced by Table 4.Tis can
be attributed to the inherent limitations of the 3D GAN in
capturing fner details and sharper edges. However, as al-
titude increases, the deterministic nature of propagation loss
plays to Vol2Vol-VREM’s advantage. Its direct modeling of
signal propagation allows it to excel over the sliced approach,
resulting in superior performance at higher altitudes. Tis
superiority is further confrmed by Table 5, where Vol2Vol-
VREM achieves a consistently lower MAE than Sliced-
VREM, solidifying its accuracy despite the increased com-
plexity of training and constructing large-volume VREMs.

Although a related approach for one-to-one comparison
on VREM construction could not be found, we compare the
richness of the Addis dataset for deep learning approaches in
[34, 35]. As shown in Table 6, while the 2D REM models

h5 h4 h3 h2 h1

Normalized
γ (lb)

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Figure 8: Comparison of the constructed REM with sliced-VREM (5-stack) (top row) with the ground truth (bottom row).

Table 4: Comparing the image quality of the contracted VREM at diferent altitudes.

Mean SSIM 1.5m 3m 9m 12m 15m
Vol2Vol-VREM 0.748 0.802 0.842 0.927 0.9447
Sliced-VREM 0.799 0.833 0.868 0.905 0.922

Table 5: Comparing the map construction with the maximum probability of LoS.

MAE Mean Sliced-VREM Mean Vol2Vol-VREM Sliced-VREM (at PLoS� 0.95) Vol2Vol-VREM (at PLoS� 0.95)
Addis dataset 0.02 0.018611 0.01 0.0084

Table 6: Evaluating the richness of the Addis dataset.

MAE RadioNet (2D) [34] Radio UNets [35] Sliced-VREM Vol2Vol-VREM
Addis dataset 0.054 0.0439 0.02 0.018611
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perform comparably with the proposed VREM approaches,
their lack of extraction of the impact of altitude dependency
on propagation loss from almost identical maps will hinder
their performance.

 . Conclusions

Future wireless networks are evolving to include fexible and
3D network deployments. In these networks, it is critical to
have complete knowledge of the radio environment in
a large geographical area. However, due to the randomness
associated with the propagation environment, attaining
volumetric propagation environment awareness is
challenging.

To this end, this paper presents a new concept of VREM
and proposes two deep learning-based techniques for
constructing maps using transmitter location and 3D geo-
graphical map information, including terrain and building
data.Temodels were trained using a large REM dataset that
was carefully prepared by considering real-world environ-
mental data and diferent GBS-GUE/AUE-ABS communi-
cation links. Te results demonstrated that these models can
accurately capture the impact of obstacles and the distance
between the transmitter and the receiver on the propagation
loss to provide precise VREM.

Tis work opens doors to several exciting future di-
rections. Firstly, extending its application to generate vol-
umetric spectrum maps for network optimization and
resource allocation holds immense potential. Tis would
empower real-time network adaptations based on intricate
spatial signal variations, enhancing efciency and perfor-
mance. Secondly, augmenting the training data with addi-
tional prior information represents a promising avenue for
improvement. Leveraging partial channel knowledge, in-
corporating further antenna parameters, or exploring more
complex learning architectures could signifcantly refne the
generated VREMs. Fine-tuning the architecture and opti-
mizing the loss function training procedures also ofer
signifcant potential. For instance, incorporating perceptual
loss functions like SSIM and implementing progressive
training strategies tailored to specifc altitude ranges are
promising approaches worth exploring. Finally, this work
paves the way for expansion to other volumetric radio maps
beyond VREMs. Generating volumetric channel state in-
formation maps and volumetric interference maps could
unlock further optimization opportunities for wireless
networks. Tese maps would enable deeper insights into
signal behavior and empower real-time interference man-
agement, ultimately leading to enhanced network perfor-
mance and user experience.

Data Availability

Te dataset is available at https://codeocean.com/capsule/
7136637/tree and access will be granted upon request to the
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