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To detect breast cancer in mammography screening practice, we modify the inertial relaxed CQ algorithm with Mann’s iteration
for solving split feasibility problems in real Hilbert spaces to apply in an extreme learning machine as an optimizer. Weak
convergence of the proposed algorithm is proved under certain mild conditions. Moreover, we present the advantage of our
algorithm by comparing it with existing machine learning methods. The highest performance value of 85.03% accuracy,
82.56% precision, 87.65% recall, and 85.03% F1-score show that our algorithm performs better than the other machine
learning models.

1. Introduction and Preliminaries

Breast cancer is common in women, with approximately 2
million diagnosed women worldwide each year [1]. Its mor-
tality rate has increased over decades due to the change in
risk factors, aging society, and better cancer registration
and detection [2]. Many trials conclude that mammography
screening at age 40s has mortality reduction, many years of
life saved, and improved treatment, including evaluation of
the extent of the disease [3]. However, there are some risks
of this modality: overdiagnosis, false-positives, anxiety, and
radiation injury [4]. Recently, imaging options combined
with artificial intelligence are believed to be enhanced by
integrating new screening protocols directed toward more
personalized and precision medicine [1].

Many optimization algorithms were used to solve medi-
cal classification in machine learning; see [5, 6]. In this
paper, we focus on the split feasibility problem (SFP) apply-
ing to mammography classification. Let C and Q be two
nonempty closed and convex subsets of real Hilbert space

such that C ⊆H 1 and Q ⊆H 2, and let A : H 1 ⟶H 2 be
a bounded linear operator. The problem SFP is to

findω∗ ∈C such thatAω∗ ∈Q, ð1Þ

if such ω∗ exist. The solution setΩ≔ fω∗ ∈C : Aω∗ ∈Qg of
the problem SFP (1) is denoted by Ω.

The first algorithm to solve the problem SFP (1) was pre-
sented by Censor and Elfving [7]. After that, many mathe-
maticians (see [8–10]) applied the problem SFP (1) to
solve many real-world problems such as machine learning,
signal processing, image restoration, and many more. To
find a solution of the problem SFP (1), Xu [11] proved that
the point ω∗ is a solution of the problem SFP (1) if and only
if the point ω∗ is a fixed point of the following mapping:

ProjC I − λ∇fð Þ = ProjC I − λA∗ I − ProjQð ÞAð Þ: ð2Þ
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Later on, Byrne [12] was the first to propose a popular
CQ algorithm for solving the problem SFP (1). The CQ

algorithm of Byrne [12] was generated as follows:

ωn+1 = ProjC ωn − λA∗ I − ProjQð ÞAωnð Þ,∀n ≥ 1, ð3Þ

where the parameter λ belongs in the interval ð0, 2/
kAk2Þ which makes the mapping ðI − λA∗ðI − ProjQÞA is
nonexpansive where I is an identity, i.e.,

I − λA∗ I − ProjQð ÞAxð − I − λA∗ I − ProjQð ÞAyðk k
≤ x − yk k,∀x, y ∈H 1,

ð4Þ

and A∗ denotes for the adjoint operator of A , while
ProjC and ProjQ are the orthogonal projections onto C

and Q, respectively. The overall cost of calculation is not
high if the metric projections onto C and Q are simple to
calculate. However, precisely computing the metric projec-
tion is difficult or requires too much effort in some circum-
stances when C and Q are complex constructs.

Later on, Yang [13] introduced a relaxed CQ algorithm
by modifying the C and Q sets of the CQ algorithm (3) to
reveal sets as follows:

Cn = x ∈H 1 : c ωnð Þ ≤ ξn, ωn − xh if g andQn

= y ∈H 2 : q Aωnð Þ ≤ ηn,Aωn − yh if g, ð5Þ

where c : H 1 ⟶ℝ ∪ f+∞g and q : H 2 ⟶ℝ ∪ f+∞g
are two proper convex functions such that ξn ∈ ∂cðωnÞ and
ηn ∈ ∂qðAωnÞ. Since the projections ProjCn

and ProjQn
are

easier to use, many mathematicians use them to modify
numerous algorithms for solving the problem SFP (1);
see [14–16].

One of the techniques to speed up the convergence of the
algorithms is the inertial technique which Polyak first intro-
duced [17] in 1964. Polyak’s algorithm was called the heavy
ball method, and it was improved by Nesterov [18]. Later on,
it has been widely used to solve a wide variety of problems in
the optimization field, as seen in [9, 19–22].

In 2017, Dang et al. [9] modified the inertial technique
which was introduced by Alvarez and Attouch [23] with
the CQ algorithm of the Byrne algorithm (3) for the prob-
lem SFP (1) in a real Hilbert space. This algorithm was
defined as follows:

ρn = ωn + σn ωn − ωn−1ð Þ, ð6Þ

ωn+1 = ProjCn
ρn − λA∗ I − ProjQn

� �
A ρnð Þ

� �
,∀n ≥ 1,

ð7Þ

where the parameter λ is in the interval involving the
norm of operator A , Cn and Qn are the revel set introduced
by Yang [13], and the extrapolation factor σn ∈ ½0, �σn� and
σ ∈ ½0, 1Þ such that

�σn =min σ,
1

max n2 ωn − ωn−1k k2, n2 ωn − ωn−1k kÈ É
( )

,∀n ≥ 1:

ð8Þ

The weak convergence of algorithm fωng generated by
(6) was proved under the conditions of the extrapolation fac-
tor (8) and the stepsize parameter λ.

Very recently, Wang and Yu [32] generalized an inertial
relaxed CQ of Yang [13] by modifying Cn,Qn as follows:

Cn = x ∈H 1 : c ωnð Þ ≤ ξn, ωn − xh i − α

2
ωn − xk k2

n o
,

Qn = y ∈H 2 : q Aωnð Þ ≤ ηn,Aωn − yh i − β

2
Aωn − yk k2

� �
:

ð9Þ

Cn and Qn of Wang and Yu [24] can be reduced to Cn
and Qn of Yang [13] when α and β are set to 0. The inertial
generalized relaxed CQ algorithm (IGRCQ) of Wang and
Yu [24] was introduced by ω0, ω1 ∈H 1, and

ρn = ωn + σn ωn − ωn−1ð Þ, ð10Þ

ωn+1 = ProjCn
ρn − λn∇f n ρnð Þð Þ,∀n ≥ 1, ð11Þ

where fσng ⊂ ½0, σÞ ⊂ ½0, 1Þ, fεng ⊂ ð0, 4Þ and

λn =
εn

f n ωnð Þ
∇f n ωnð Þk k2

, if ∇f n ωnð Þk k ≠ 0,

0, otherwise:

8><
>: ð12Þ

For each n ∈ℕ, the functions are defined as follows:

f n ·ð Þ = 1
2

I − ProjQn

� �
A ·ð Þ




 


2, ð13Þ

∇f n =A∗ I − ProjQn

� �
A : ð14Þ

It was shown that, under the conditions ∑∞
n=1σn

kωn − ωn−1k2 <∞ and liminfn⟶∞εnð4 − εnÞ > 0, the
sequence fωng created by (10) weakly converges to a solu-
tion of the problem SFP (1).

In this paper, we modify the inertial technique with
relaxed CQ algorithms and Mann’s algorithm to solve the
split feasibility problems in Hilbert spaces. We establish
weak convergence theorems under suitable conditions. We
apply our main result to solve a data classification problem
by using extreme learning machine with mammographic
mass data set from UCI, and then compare the performance
of our algorithm with other existing machine learning
algorithms.

2. Main Results

In this section, we introduce a new modified inertial projec-
tive algorithm by combining Mann algorithms with inertial
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technique and inertial relaxed CQ algorithm. Assume that C
and Q are two nonempty closed and convex subsets of real
Hilbert space such that C ⊆H 1 and Q ⊆H 2 such that

C = ω ∈H 1 : c ωð Þ ≤ 0f g,Q = ω ∈H 2 : q Aωð Þ ≤ 0f g, ð15Þ

where A : H 1 ⟶H 2 is a bounded linear operator,
c : H 1 ⟶ℝ and q : H 2 ⟶ℝ are lower semicontinuous
convex functions. We next assume that ∂c and ∂q are
bounded operators. For a sequence fyng in H 1, we mod-
ify the half-spaces Cn and Qn by using the idea of Wang
and Yu [24] as follows:

Cn = ω ∈H 1 : c ynð Þ ≤ ϱn, yn − ωh i − α

2
yn − ωk k2

n o
, ð16Þ

where ϱn ∈ ∂cðynÞ, α ≥ 0, and

Qn = ω ∈H 2 : q Aynð Þ ≤ ξn,Ayn − ωh i − β

2
Ayn − ωk k2

� �
,

ð17Þ

where ξn ∈ ∂qðAynÞ and β ≥ 0. We see that C ⊆Cn
and Q ⊆Qn for each n ≥ 1. Define f nð·Þ and ∇f nð·Þ as
in (13).

We now introduce a modified inertial projective algo-
rithms as follows:

Assume that the following condition hold:
(C1) ∑∞

n=1σn max fkωn − ωn−1k2, kωn − ωn−1kg <∞ ;
(C2) 0 < liminfn⟶∞λn ≤ limsupn⟶∞λn < 2/kAk2;
(C3) 0 < liminfn⟶∞αn ≤ limsupn⟶∞αn < 1.

Theorem 1. Let H 1 and H 2 be two real Hilbert spaces, and
let C and Q be nonempty closed convex subsets such that C
⊆H 1 and Q ⊆H 2. Let A : H 1 ⟶H 2 be a bounded linear
operator. Assume that the solution set Ω of the problem SFP
(1) is nonempty, the condition (C1)-(C2) hold. Then the
sequence fωng generated by Algorithm 1:. converges weakly
to a point ω∗ ∈Ω:

Proof. Let ω∗ ∈Ω. Since ðI − ProjQn
Þ is firmly nonexpansive,

then for each n ∈ℕ, we have

2f n ynð Þ = I − ProjQn

� �
Ayn




 


2

= I − ProjQn

� �
Ayn − I − ProjQn

� �
Aω∗




 


2

≤ I − ProjQn

� �
Ayn − I − ProjQn

� �
Aω∗,Ayn −Aω∗

D E

= I − ProjQn

� �
Ayn,Ayn −Aω∗

D E

= A∗ I − ProjQn

� �
Ayn, yn − ω∗

D E

= ∇f n ynð Þ, yn − ω∗h i:
ð18Þ

In the other hand, we set tn = yn − λn∇f nðynÞ, From (18),
we have

ωn+1 − ω∗k k2 = 1 − αnð Þyn + αnzn − ω∗k k2
≤ 1 − αnð Þ yn − ω∗k k2 + αn zn − ω∗k k2
≤ 1 − αnð Þ yn − ω∗k k2

+ αn tn − ω∗k k2 − tn − znk k2
� �

= yn − ω∗k k2 − αn yn − znk k2
+ 2αnλn ∇f n ynð Þ, yn − znh i − 4αnλn f n ynð Þ

≤ yn − ω∗k k2 − αn yn − znk k2
+ 2αnλn ∇f n ynð Þk k yn − znk k − 4αnλn f n ynð Þ

≤ yn − ω∗k k2 + 2λ2nαn Ak k2 f n ynð Þ
− 4αnλn f n ynð Þ = yn − ω∗k k2

− 4λnαn 1 −
1
2
λn Ak k2

� �
f n ynð Þ,

ð19Þ

yn − ω∗k k2 = ρn − λn∇f n ρnð Þ − ω∗k k2
≤ ρn − ω∗k k2 + λ2n ∇f n ρnð Þk k2

− 2λn ρn − ω∗,∇f n ρnð Þ−∇f n ω∗ð Þh i
≤ ρn − ω∗k k2 + λ2n ∇f n ρnð Þk k2 − 2λn

Ak k2 ∇f n ρnð Þk k2

≤ ρn − ω∗k k2 − 2λn
Ak k2 − λ2n

� �
∇f n ρnð Þk k2

≤ ωn − ω∗k k2 + 2σn ωn − ωn−1, yn − ω∗h i
−

2λn
Ak k2 − λ2n

� �
∇f n ρnð Þk k2:

ð20Þ

Replacing (20) into (19), we have

ωn+1 − ω∗k k2 ≤ ωn − ω∗k k2 + 2σn ωn − ωn−1, yn − ω∗h i
−

2λn
Ak k2 − λ2n

� �
∇f n ρnð Þk k2

− 4λnαn 1 −
1
2
λn Ak k2

� �
f n ynð Þ:

ð21Þ

This implies that

2λn
Ak k2 − λ2n

� �
∇f n ρnð Þk k2 + 4λnαn 1 −

1
2
λn Ak k2

� �
f n ynð Þ

≤ ωn − ω∗k k2 − ωn+1 − ω∗k k2 + 2σn ωn − ωn−1, yn − ω∗h i:
ð22Þ
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Since I − λn∇f n and ProjCn
are nonexpansive, we have

ωn+1 − ω∗k k = 1 − αnð Þyn + αnzn − ω∗k k
≤ 1 − αnð Þ yn − ω∗k k + αn zn − ω∗k k
≤ ρn − ω∗k k ≤ ωn − ω∗k k + σn ωn − ωn−1k k:

ð23Þ

By Lemma 1 in [25] and (C1), we have that fkωn − ω∗kg
is convergence sequence for any ω∗ ∈Ω. Therefore, fωng is
bounded. From the definition of fρng, fρng is also bounded.
It follows from (20), (C1)-(C3) that

lim
n⟶∞

∇f n ρnð Þk k = lim
n⟶∞

f n ynð Þ = 0: ð24Þ

Again by I − λn∇f n and PCn
are nonexpansive, then we

have

ωn+1 − ω∗k k2 = 1 − αnð Þyn + αnzn − ω∗k k2
≤ ρn − ω∗k k2 − 1 − αnð Þαn yn − znk k2
≤ ωn − ω∗k k2 + 2σn ωn − ωn−1, ρn − ω∗h i

− 1 − αnð Þαn yn − znk k2,
ð25Þ

which implies that

1 − αnð Þαn yn − znk k2 + 2σn ωn−1 − ωn, ρn − ω∗h i
≤ ωn − ω∗k k2 − ωn+1 − ω∗k k2:

ð26Þ

From limn⟶∞kωn − ω∗k exists, (C1) and (C3), we
obtain

lim
n⟶∞

yn − znk k = 0: ð27Þ

It follows from (C2) and (24) that

lim
n⟶∞

yn − ρnk k = lim
n⟶∞

λn ∇f n ρnð Þk k = 0: ð28Þ

And it is clearly from (C1), we have

lim
n⟶∞

ρn − ωnk k = lim
n⟶∞

σn ωn − ωn−1k k = 0: ð29Þ

From (28) and (29), we obtain

lim
n⟶∞

yn − ωnk k = 0: ð30Þ

Finally, let ω∗ be a weak sequential cluster point of fωng.
There exists a subsequence fωnk

g of fωng which converges
weakly to ω∗ ∈H 1. From (30), we also have that fynkg con-
verges weakly to ω∗ and hence Aynk ⇀Aω∗ as k⟶∞. By
the definition of zn, we have that PQn

ðAynÞ ∈Qn. This
implies that

q Aynk

� �
≤ ξnk , I − ProjQnk

� �
Aank

D E
−
β

2
I − ProjQnk

� �
Aank




 


2,
ð31Þ

where ξnk ∈ ∂qðAynkÞ. By our assumption as ∂q is
bounded (24) and (31), we have qðAω∗Þ ≤ 0, this shows that
Aω∗ ∈Q. Again, by the definition of fzng, we have that
znk ∈Cnk

. This implies that

c ynk

� �
≤ ϱnk , ynk − znk

D E
−
α

2
ynk − znk




 


2 ð32Þ

where ϱnk ∈ ∂cðynkÞ. By our assumption as ∂c is
bounded (27) and (32), we have cðω∗Þ ≤ 0, this shows that
ω∗ ∈C . By Opial’s lemma in [26], we can conclude that
fωng converges weakly to a solution in Ω. This completes
the proof.

3. Application to Data Classification Problem

Nowadays, many cancer patients are reported around the
world each year. In the population survey in Global Cancer

Initialization: Take ω0, ω1 ∈C and set n = 1:
Iterative Steps: Calculate fωng by the following step:
Step 1. Compute
ρn = ωn + σnðωn − ωn−1Þ,

where 0 ≤ σn < σ < 1.
Step 2. Compute
yn = ρn − λn∇f nðρnÞ, zn = ProjCn

ðyn − λn∇f nðynÞÞ,
where λn ∈ ð0, ð2/kAk2ÞÞ.
Step 3. Compute
ωn+1 = ð1 − αnÞyn + αnzn,

where αn ∈ ð0, 1Þ.
Replace n with n + 1 and then repeat Step 1.

Algorithm 1: Inertial modified relaxed CQ Mann algorithm (IMRCQM).
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Statistics 2020, information was found that breast cancer was
the most severe disease with 258 new cases per hour [27].
Breast cancer is more common in developed countries than
in developing countries, and the number of cases varies with
per capita income (GDP per capita). In addition, people’s
way of life in the city (urbanization) and those environments
result in more risk behaviors for breast cancer. Importantly,
it also found that the number of patients tends to increase
significantly each year as well. In Thailand, breast cancer is
the 1st most common cancer among females and the 3rd
most common among both males and females. There are
8,266 deaths from breast cancer per year or about 1 person
per hour. The above data shows that breast cancer is rapidly
increasing and directly threatening the female population
globally, including Thailand. In addition, the number of
doctors specializing in such diseases is limited, not enough
to provide services to the patients. Therefore, the use of
technology-based knowledge related to artificial intelli-
gence or machine learning including deep learning is the
basis for creating tools or innovations that are efficient
and accurate in assisting medical personnel in screening
and diagnosing breast cancer. As a result, patients will be
screened quickly and accurately, cured in the early stages
and could reduce mortality. It is also an indicator of the
modernization of the country’s development in the field
of public health in the future. Mammography plays a cen-
tral part in the early detection of breast cancers because it
can show changes in the breast years before a patient or
physician can feel them. Research has shown that annual
mammograms lead to early detection of breast cancers
when they are most curable, and breast-conservation ther-
apies are available. Women, beginning at age 40, should
screen for mammography every year. In this research, we
use the mammographic mass dataset from UCI is available
on the UCI website. (https://archive.ics.uci.edu/ml/datasets/
Mammographic+Mass?fbclid=IwAR1TL44iSKmqXX6PMiS
VjqGVZRD-suQTPEVsejq01SUylZwildNu7UWEPZQ). This
dataset contains a BI-RADS assessment, the patient’s age,
and three BI-RADS attributes: shape of mass, margin of mass,
and density of mass together with the ground truth (the
severity field) for 516 benign and 445 malignant masses that
have been identified on full-field digital mammogram
collected at the Institute of Radiology of the University
Erlangen-Nuremberg between 2003 and 2006. These datasets
can indicate how well a several computer-aided diagnosis
(CAD) system performs compared to the radiologists [28].
After 167 missing attribute values from 7 BI-RADS, 5 ages,
31 shapes, 48 margins, and 76 densities were removed before

the training process. The following Table 1 shows the overview
of all attributes.

In 2021, Parvez et al. [29] showed many machine learn-
ing predictive models to classify breast cancer using this
mammographic mass dataset. The following Table 2 shows
the comparison of our algorithm 1 consider in two constrain
closed convex sets L1 and L2 with machine learning predic-
tive models by Parvez et al. [29] after feature engineering.

From Table 2, the results show that our algorithm 1 when
constrain closed convex set by L2 was used gives the highest
accuracy 85.03% after removing rows with missing values
and outliers. We next explain how our algorithm 1 optimizes
weight parameter in training data for machine learning. We
focus on extreme learning machine (ELM) by using 5-fold
cross-validation [30]. The ELM method is defined as follows:
assume that U≔ fðμs, rsÞ: μs ∈ℝn, rs ∈ℝm, s = 1, 2,⋯,Ng is
a set of training data with N distinct samples such that μs is
an input training data and rs is a target. Finding optimal out-
put weight using the output function is the objective of the
ELM method. The following output function is for single-
hidden layer feed-forward neural networks (SLFNs) with M
hidden nodes:

Os = 〠
M

i=1
wiV ci, μsh i + eið Þ, ð33Þ

whereV is an activation function and ci and ei are param-
eters of weight and finally the bias, respectively. The optimal
output weight wi at the i-th hidden node is found by setting
the hidden layer output matrix H as follows:

H =

V c1, μ1h i + e1ð Þ ⋯ V cM , μ1h i + eMð Þ
⋮ ⋱ ⋮

V c1, μNh i + e1ð Þ ⋯ V cM , μNh i + eMð Þ

2
664

3
775:

ð34Þ

We also assume an optimal output weight w =
½wT

1 ,⋯,wT
M�T such that Hw =R, where R = ½rT1 ,⋯, rTN �T is

the training target data. For solving linear system Hw =R,
we use the least square problem when theMoore-Penrose gen-
eralized inverse ofH is not easy to find. To ovoid overfitting in
the machine learning, we consider constrain least square

Table 1: Overview of mammographic mass data set from UCI.

Attribute Type �x Standard deviation Max Min Coefficient of variation

BI-RADS Double 4.33 0.63 6 1 14.65

Age Double 55.78 14.67 96 18 26.30

Shape Double 2.78 1.24 4 1 44.66

Margin Double 2.81 1.57 5 1 55.71

Density Double 2.92 0.35 4 1 12.04

Severity Category
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problem in two different closed convex subsets of H as
follows:

min
ω∈C1

Hω −Rk k22
È É

,

min
ω∈C2

Hω −Rk k22
È É

,
ð35Þ

where C1 = fx ∈H : kxk1 ≤ γg, C2 = fx ∈H : kxk22 ≤ γg
such that γ is regularization parameters. Setting f ðωÞ = 1/2
kðI − ProjQÞHωk22, Q =Q1 =Q2 = fRg, c1ðωÞ = kωk1 − γ, c2
ðωÞ = kωk22 − γ, and qðωÞ = 1/2kω −Rk2 for our algorithm 1
to solve the problem (3.1).

We use four evaluation metrics: accuracy, precision,
recall, and F1-score [31] as explained below for comparing
the performance of the classification algorithms.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%:

Precision =
TP

TP + FP
× 100%:

Recall =
TP

TN + FN
× 100%:

F1 − score =
2 × Precision × Recallð Þ

Precision + Recall
,

ð36Þ

Table 2: Highest accuracy of ML algorithms after feature engineering.

Machine learning model
Original

dataset (%)
Highest

accuracy (%)
Data cleaning or feature engineering

Logistic regression 80.46 82.50
Removing two least contributed features, RFE, or removing two least

contributed features, correlation matrix

Linear discriminant analysis 78.90 84.50
Removing two least contributed features, RFE, or removing two least

contributed features, correlation msatrix

K-nearest neighbors 79.03 82.05
Removing two least contributed features, RFE, or removing two least

contributed features, correlation matrix

Classification and regression trees 74.48 82.97
Removing two least contributed features, RFE, or removing two least

contributed features, correlation matrix

Gaussian Naive Bayes 78.37 83.73 Removing rows with missing values and outliers

Support vector machines 80.34 83.73
Removing two least contributed features, RFE, or removing two least

contributed features, correlation matrix

Algorithm 1 (L1) 53.89 83.23 Removing rows with missing values and outliers

Algorithm 1 (L2) 53.89 85.03 Removing rows with missing values and outliers

Table 3: All different necessary parameters of each algorithm.

Parameter σ λn αn γ λ εn

Algorithm 1 (L1) 0.9999
0:9999

max eig ATA
À ÁÁÁ 1

1:2 7 — —

Algorithm 1 (L2) 0.9999 0:9999/max eig ATA
À ÁÁÁ 1

1:2 17 — —

Algorithm (6) (L1) 0.9999 — — 7 0:9999/max eig ATA
À ÁÁÁ

—

Algorithm (6) (L2) 0.9999 — — 17 0:9999/max eig ATA
À ÁÁÁ

—

Algorithm (10) (L1) 0.9999 — — 7 — 0.1

Algorithm (10) (L2) 0.9999 — — 17 — 0.1

Table 4: All performances of each algorithm for comparison.

Algorithm Number of iterations Training time Accuracy Precision Recall F1-score

Algorithm (6) (L1) 410 0.1614 82.04 81.40 83.33 82.35

Algorithm (6) (L2) 271 0.1439 74.25 94.19 68.07 79.02

Algorithm (10) (L1) 188 0.2072 82.63 80.23 85.19 82.63

Algorithm (10) (L2) 242 0.3689 77.25 62.79 90.00 73.97

Algorithm 1 (L1) 81 0.0694 83.23 80.23 86.25 83.13

Algorithm 1 (L2) 259 0.2027 85.03 82.56 87.65 85.03
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where TN is the true negative, FP is the false positive, FN
is the false negative, and TP is the true positive.

For avoiding model overfitting, we consider accuracy
and loss plots. This research, we use the following binary
cross-entropy loss function:

Loss = −
1
m
〠
m

i=1
Oi log ŷi + 1 −Oið Þ log 1 − Ôi

À Á
, ð37Þ

where Ôi is the i-th scalar value in the model output, Oi
is the corresponding target value, and m is the number of
scalar values in the model output.

For comparison with other existing methods from the
literature, the necessary parameters of each algorithm are
chosen in Table 3. The extrapolation parameter of algorithm
1 (L1, L2) and algorithm (10) is in the following from:

σn =

σ

n2 max ωn − ωn−1k k2, ωn − ωn−1k kÈ , if n >N , ωn ≠ ωn−1,

σ otherwise,

8><
>:

ð38Þ

where N is a number of iterations that we want to stop
and σn = �σn for algorithm (6).

Sigmoid is set as an activation function with hidden
nodes M = 160, and four evaluation metrics of each algo-
rithm are shown in Table 4.

Table 4 shows that our algorithm 1 with constrain closed
convex set L2 is the highest F1-score, precision, recall, and
accuracy efficiency. Additionally, our algorithm 1 with
constrain closed convex set L1 has the lowest number of
iterations. The optimal-fitting of our algorithm 1 is shown
by considering the training and validation loss with the
accuracy.

From Figures 1 and 2, we observe that both of algorithm
1 L1 and L2 have optimal-fitting models. This means that the
algorithm suitably learns the training dataset and generalizes
well to predict the severity of mammographic mass based on
BI-RADS assessment, the patient’s age, shape, margin, and
density of mass.

Remark 2. Since a matrix H in ELM was generated by a
finite dataset that contains real numbers, thus we can see
from Table 4 that our Algorithm 1:. which requires a norm
estimation of the bounded linear operator of H , gives more
efficiency than the algorithm (10) of Wang and Yu [24].
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Figure 1: Training and validation loss and the accuracy plots of Algorithm 1: with constrain closed convex set L1.
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Figure 2: Training and validation loss and the accuracy plots of Algorithm 1: with constrain closed convex set L2.
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4. Conclusion and Discussion

Nowadays, there are many studies interested in the accuracy
of artificial intelligence (AI) for the detection of breast can-
cer in mammography screening programme. Some believe
that artificial intelligence (AI) has helped improve radiolo-
gists’ performance and provides results equivalent or supe-
rior to those of radiologists’ alone such as reduce the
volume in screen-reading without affecting cancer detection
substantially [32]. Although there are some issues that
should be more explore including possible factors on recall
and interval cancers [33], Freeman et al. [34] performed
the systematic review of test accuracy and concluded that
there is inadequate evidence in judgement of accuracy of
artificial intelligence (AI) in detecting breast cancer on
screening mammography. There is still small researches,
which could not be representing the real effect of artificial
intelligence (AI) in clinical practice or where on the clinical
pathway AI might be of most benefit.

This paper presented an applying inertial modified relaxed
CQMann algorithms for split feasibility problems for extreme
learning machine based on BI-RADS assessment, the patient’s
age, and three BI-RADS attributes for predicting the severity
of mammographic mass lesion to assist the physician regard-
ing making decision about whether to go for biopsy or not.
The comparison with other machine learning models and
existing algorithms for split feasibility problems shows that
our algorithm provides the highest performance value of
85.03% accuracy, 82.56% precision, 87.65% recall, and
85.03% F1-score. Moreover, considering training and valida-
tion loss, and the accuracy plots show that our algorithm has
good fit model.

Data Availability

The mammographic mass dataset from UCI is available
on the UCI website (http://archive.ics.uci.edu/ml/datasets/
mammographic+mass).
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