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Functional medical imaging promises powerful tools for the visualization and elucidation of important disease-causing biological
processes in living tissue. Recent research aims to dissect the distribution or expression of multiple biomarkers associated with
disease progression or response, where the signals often represent a composite of more than one distinct source independent of
spatial resolution. Formulating the task as a blind source separation or composite signal factorization problem, we report here
a statistically principled method for modeling and reconstruction of mixed functional or molecular patterns. The computational
algorithm is based on a latent variable model whose parameters are estimated using clustered component analysis. We demonstrate
the principle and performance of the approaches on the breast cancer data sets acquired by dynamic contrast-enhanced magnetic

resonance imaging.
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1. INTRODUCTION

Functional imagingtechnologies are providing researchers
and physicians with exciting new tools to study important
disease-causing biological processes in living tissue [1, 2].
Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) uses various molecular weight contrast agents
to assess tumor vascular permeability and quantify cellular
and molecular abnormalities in blood vessel walls [3]. DCE-
MRI can characterize vascular heterogeneity and elucidate
features that distinguish angiogenic blood vessels from their
normal counterparts, and has potential utility in assessing
the efficacy of angiogenesis inhibitors in cancer treatment
[2—4]. Although DCE-MRI can provide a meaningful estima-
tion of vascular permeability when a tumor is homogeneous,
many malignant tumors show markedly heterogeneous ar-
eas of permeability and vascular endothelial growth factor
(VEGF) expression; thus the signal of each pixel often re-
flects multiple microenvironments in a tumor representing
a complex summation of vascular permeability with various
diffusion rates [2, 3].

Several quantitative methods based on parametric com-
partment modeling (CM) have been developed to dissect the
spatial distribution of vascular heterogeneity associated with
tumor angiogenesis [3, 5, 6]. These methods estimate the
fundamental kinetics components (called factors) and the
associated factor weights (called factor images) [6-8]. Each
factor is interpreted as the time course of a compartment,
whereas each factor image is interpreted as local weights rep-
resenting the spatial distribution of vascular permeability
with different diffusion rates [2, 9]. The parametric model
chosen may not fit the data obtained, and each model makes
a number of assumptions that may not be valid for every
tissue or tumor type. The causes for modeling failures are
complex and often not well understood [6, 10]. Key rea-
sons include multiple tissue compartments, an incorrect ar-
terial input function, and numerical nonidentifiability of
the parametric model [3, 6, 9—11]. This motivates the con-
sideration of clustered component analysis (CCA) that can
be based on a flexible compartment latent variable model
[12, 13]. The objective is to factorize the underlying an-
giogenic permeability distributions (APD) and time activity
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curves (TAC) from dynamically mixed DCE-MRI image se-
quences [14, 15].

2. THEORY AND METHODS

We first introduce a simple form of compartment latent vari-
able model for DCE-MRI. Without loss of generality, we
initially focus on the two-tissue compartment model shown
in Figure 1. The tracer characterization within a region of in-
terest can be approximated by a set of first-order differential
equations [15]:

Cr(t) = kipep(t) — kapes(2),
(t) = klscp(t) — kases(2), (1)
c(t) = cp(t) +cs(t) + ¢, (1),

where c(t) and ¢() are the tissue activity in the fast turn-
over and slow turnover pools, respectively, at time £; ¢, () is
the tracer concentration in plasma (the input function); ¢(t)
is the measured total tissue activity; ki s and k; are the unidi-
rectional transport constants from plasma to tissue (perme-
ability in ml/min/g: spatially varying); ky s and ky; are the rate
constants for efflux (diffusion in /min: spatially invariant) in
the fast flow and slow flow pools, respectively [5-7].
Mathematical consideration based on a latent variable
model suggests a simple method to convert temporal kinet-
ics (1) to spatial information [7]. Let x(i) = [x(i, 1), x(i, £2),
..»x(i,17)]T be the observed tracer activities of pixel i mea-
sured at L time points. Now consider a source vector of spa-
tial permeability distributions k(i) = [k (i), ks(i), kp(i)]7 to-
gether with an L X3 mixing matrix A(t) which maps the latent
space into the data space: x(i) = A()k(i)
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where the TACs associated with different APDs are

ar(t) = cp(t) ® e frt
as(t) = cp(t) ® e kst (3)
ap(t) = Cp(t),

and ® denotes the convolution operation. Relationship (2)
describes how the observed multivariate data are generated
by a process of mixing the latent components, as illustrated
in Figure 2.

Since the APDs k(i) and TACs A(t) are both unknown,
what we seek in the above model is an algorithm that can per-
form blind source separation to recover the source patterns
from their observed mixtures. Based on the realistic assump-
tion that the APDs are spatially heterogeneous (e.g., piece-
wise stationary with insignificant spatial overlap) [2, 3, 16],
CCA on x(7) over the time domain aims to perform a non-
parametric multivariate clustering of pixel TACs similarly to
the successful application in functional MRI analysis [13].

Intuitively, when there are only pure-volume pixels, a one-
to-one association between pixel TAC x(i,t) and one of the
source TACs a;(t) exists—except for a local scaling by k; (i)
and some additive statistical variation

x(i) = kj(i)a; +£(i), je€{f,sp} (4)
where &(i) is the noise term being both temporally and spa-
tially white Gaussian distributed with zero mean and un-
known variance ‘73(1‘) and a; = [aj(tl),aj(tz),...,aj(tL)]T
[13]. However, note that the forms of compartment TACs
in (4) are no longer necessarily parametric as in (3) and are
much more flexible; this should help reduce the potential for
modeling failures. To perform a top-down CCA on x(i) to
estimate a; based on (4), the shape rather than the magni-
tude k;(i) of the pixel TAC is of the interest [7, 11, 17]. By
performing both “centering” and “normalization” over time,
given by

1 L
60— San ] 6

1
xn(ia t) =
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x(i)

each pixel TAC can be transformed to a constant scale with
mean zero independent of amplitude variations, denoted by
the normalized x,,(i). There has been considerable success in
using the standard finite normal mixture (SFNM) distribu-
tion to model clustered data sets, taking a sum of the follow-
ing general form [18]:

fsp
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where 7 is the mixing factor and g is the Gaussian kernel with
mean a; and covariance matrix C;.

Finding an estimate of the mixing matrix A comes down
to performing a maximum likelihood estimation of the
SFNM model (6), where the joint log-likelihood is given by

N fsp j
dX,)=> lo ——
"=, g@ r2 ||
1 . T g .

X exp (_5 (Xn(l)_aj) Cj (xn(i) — aj))))

(7)

where N is the number of the pixels. This clustered com-

ponent analysis task can be, fortunately, solved by the

expectation-maximization (EM) algorithm that maximizes
the joint log-likelihood [13, 15, 18]

{n,a;,Cj} = argmax ®(X, | 7,a;,Cj), (8)

7j,2;,Cj
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FIGURE 1: Schematic diagram of two-tissue compartment model and time-activity curves of fast and slow diffusions for quantifying tumor
vascular characteristics based on DCE-MRI. The patterns of interest include the heterogeneous spatial distribution of vascular permeability

associated with fast and slow diffusions.
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FiGurek 2: Illustration of source pattern mixing process.

where the “soft” splits of a pixel TAC allow x,,(i) to contribute
simultaneously to multiple source TACs. Specifically, in or-
der to compute the expectation step of the EM algorithm, we
must first estimate the posterior probability that each pixel
TAC x,,(7) is of source TAC a > namely, the maximization step
of the EM algorithm [13]. Such estimated posterior Bayes
probabilities of pixel TAC x,(i) associated with one of the
source TACs are given by

ﬂjg(xn(i) | aj, C])
P(Xn(l)) ’

and the compartment TACs are the normalized and weighted
sample averages of pixel TACs in the light of their compart-
ment memberships estimated by (9), computed via the ex-
pectation step of the EM algorithm [13]:

Zij:P(j‘Xn(i)): je{f)5>p} (9)

N .
lic1 ZijXn()
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for j = f,s, p. Having determined the mixing matrix A =
[as, a5 ap] representing the compartment TACs, the APDs

can be reconstructed using a least squares fit according to (2),
resulting in

k(i) = (ATA) ' ATx(i), (11)
where T denotes matrix transpose.

To perform CCA, we use the visual statistical data ana-
lyzer (VISDA) algorithm [18]. The main function of VISDA
is cluster modeling, discovery, and visualization. In addi-
tion to the multivariate soft clustering by the EM algorithm,
VISDA also includes model selection by minimum descrip-
tion length (MDL) criterion and cluster initialization by hi-
erarchical clustering. To capture all of the hidden clusters,
VISDA is both statistically principled and visually insight-
tul that incorporates both the power of statistical methods
and the human gift for pattern recognition. VISDA uses an
adaptive boosting of discriminatory subspaces involving hi-
erarchical mixture modeling, selected optimally by the MDL
criterion, and allows the complete data set to be visualized
at the top level and so partitions data set, with clusters and
subclusters of data points visualized at deeper levels.
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F1GURE 3: The estimated TACs derived from real DCE-MRI data by maximum likelihood method.

Complementary to (9) and (10), the M step in EM algo-
rithm also involves the update rules for cluster factors and
covariance matrices

1 N
7'[]' = N;Z,‘j,
(12)
c - SNz (i) — a;) (x4(0) —a) "
! Zﬁlzij

for j = f,s, p. The E step involves assigning to the clusters,
probabilistically, contributions from the data points and the
M step involves re-estimating the parameters of the clusters
in the light of this assignment. The algorithm cycles back and
forth until the joint likelihood function is maximized.

When there are multiple compartment mixture regions,
one remaining issue in pixel TAC clustering is the model
selection that refers to the detection of cluster number Kj.
The EM model fitting cannot be used to estimate Ky since
the ML is a nondecreasing function of Ky, thereby making it
useless as a model selection criterion. This problem can be,
fortunately, solved by using MDL criterion in conjunction
with EM clustering. MDL is a proven information-theoretic
criterion for model selection and has proven asymptotically
consistent. The major thrust of MDL-based cluster valida-
tion has been the formulation of a model fitting procedure
in which an optimal model is selected from the several com-
peting candidates such that the selected model best fits the
observed data. Specifically, the optimal value of Ky is selected
by minimizing

N Ko
MDL(Kyp) = — Z]og ( Z nkg(xn(i) | ak,Ck))
ML

i=1 k=1 (13)

+

6K02— LlogN,

where the first term on the right is the approximation er-
ror and the second term on the right is the estimation er-
ror whose role is to penalize large value of K,. For Ky =
Kuins - - - » Kimax, the values of MDL are calculated and a model
with Ky clusters is selected that will correspond to the mini-
mum MDL value.

3. EXPERIMENT AND RESULTS

In this section, we first demonstrate the performance of clus-
tered component analysis when applied to real DCE-MRI
data sets. The data was acquired at the NIH Clinical Cen-
ter using gadolinium DTPA as the contrast agent. The three-
dimensional DCE-MRI scans were performed every 30 sec-
onds for a total of 11 minutes after the injection. For the
purpose of comparison, Figure 3 shows the estimated TACs
associated with the input function as well as the fast and slow
flows obtained by the advanced parametric compartment
modeling method. The corresponding reconstructed APDs
are given in Figure 4. This represents an advanced breast tu-
mor case where active angiogenesis occurs often in the pe-
ripheral area (i.e., boundary with fast flow), while the inner
core reflects hypoxia (dominated by slow flow) [2, 3].

We then apply CCA to the same data set. The DCE-
MRI sequence contains a total of 18 images taken at differ-
ent times, of which, we remove the first few images that do
not show sufficient contrast accumulation and use the re-
maining 12—15 images in the experiment. After an analysis
by VISDA, MDL criterion determines that there is clearly
more than one pixel TAC cluster. By targeting the two ma-
jor compartment sources, the corresponding source TACs
are estimated and the hidden APD images are subsequently
reconstructed. Figure 5 shows the extracted source images
(i.e., vascular permeability) carrying out fast and slow dif-
fusions. The projected distribution of pixel TACs clearly re-
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FIGURE 4: The reconstructed source factor images associated with fast and slow diffusions as well as plasma input.

50
40 4

30 1

30
.
L)

Average intensity

Frame number

Fast flow
—— Slow flow

(d) (e)

FIGURE 5: (b) shows the projected distribution of pixel TAC vectors (the dot plot represented in (b) is the two-dimensional projection of
the component TAC clusters) whose two centers correspond to the fast and slow source TACs, respectively (the associated/extracted source
images are given in (a) and (c)). (d) shows the kinetics of source TACs displayed as the time-course patterns and (e) shows the scatter plot of
the source images showing the correlation patterns.

veals a multicluster data structure, and the scatter plot of the tifications, since otherwise blood samples will be taken inva-
source images shows the expected globally negative corre- sively at the radial artery or from an arterialized vein which,
lation dependence.In addition, the ability of estimating the =~ however, poses health risks and is not compatible with clin-
input function has aprofound impact in multivariate quan- ical practice. The outcome of CCA on further decomposing



International Journal of Biomedical Imaging

---- Fast flow
—— Slow flow
Plasma

FiGure 6: Compartmental latent variable modeling by CCA including plasma input. The source images are given in the right column (from

top to bottom: fast flow, slow flow, and plasma input).

the mixture into the three underlying compartments is given
in Figure 6 that presents a very consistent result with the one
obtained by the independent method based on the compart-
ment modeling shown in Figures 3 and 4. To test the stability
of the performance by CCA, we have applied this method
to a series of realistically simulated data sets in which vari-
ous realistic TACs are numerically synthesized and the mixed
observations are generated by weighting the real APDs (e.g.,
given in Figures 4 and 6) by these synthesized TACs. The re-
sults show that CCA can successfully reconstruct the hidden
clustered components under various mixtures and TAC con-
ditions.

As an example of more challenging problems, with signif-
icant practical utility, we report the preliminary application
of CCA method in a longitudinal study to monitor a breast
tumor’s response to anti-angiogenic therapy. Defective en-
dothelial barrier function due to vascular endothelial growth
factor (VEGF) expression is one of the best-documented ab-
normalities of tumor vessels, resulting in spatially heteroge-
neous high microvascular permeability to macromolecules.
Initial results suggest that changes in vascular permeability
and volume fraction can be detected in a responsive tumor
soon after therapy begins. Vascular permeability has been
reported to correlate closely with VEGF expression in tu-
mors, and decrease significantly after anti-VEGF antibody
treatment and after the administration of other inhibitors of
VEGEF signaling. In breast and cervical cancers, a decrease in
transendothelial permeability often accompanies tumor’s re-
sponse to chemotherapy and an early increase or no change
in permeability can predict non-responsiveness or poorer
prognosis.

Three sets of DCE-MRI data were acquired before and
during the treatment period, each with three-months apart.
Figure 7 shows the DCE-MRI images as a potential endpoint

in assessing the response to therapy. The introduction of
imaging cancer therapies by DCE-MRI has posed new chal-
lenges to traditional anatomic imaging approaches, because
the vascularity of a tumor can change without a correspond-
ing change in tumor size and vice versa. Our preliminary
experiment shows promising results on the application of
CCA to this problem, see Figure 8. For example, the extracted
source TACs closely resemble the expected compartmental
kinetics of the contrast agent, and both the APD images
and TACs show the expected changes of the patterns over
time, consistent with clinical assessment of a responsive case.
Of particular scientific value, our results show that tumor-
induced vascular activities were significantly reduced after
a positive response to anti-angiogenesis chemotherapy, de-
spite a noticeable increase in tumor volume during the initial
treatment period.

4. DISCUSSION AND FUTURE WORK

In CCA approach, the significant overlap between the source
image boundaries in space causes a potential partial volume
effect (PVE) [16]. It can be shown that PVE will lead to a bi-
ased estimation of the compartment TACs. We can incorpo-
rate such PVE into the SFNM model that can be, fortunately,
estimated by a constrained EM algorithm [16]. Specifically,
we will first apply MDL criterion (13) to estimate the most
appropriate number of distinctive temporal clusters that will
also include the so-called composite boundary clusters [16];
we will then estimate the PVE-SFNM model by only updat-
ing the parameters of pure-volume clusters usingz;;, followed
by the assignment of the parameter values for the partial vol-
ume clusters based on the PVE model [16]. Alternatively, we
can simply consider those composite boundary clusters as in-
trinsic compartment TACs where the emphasis will be on
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Figure 7: DCE-MRI as a potential endpoint in monitoring tumor’s response to anti-angiogenic therapy. Three sets of DCE-MRI data of the
same tumor were acquired and are shown in (a). The tumor sites were extracted via advanced image segmentation tools and are highlighted
in (b). The pattern changes are consistent with the clinical foundings that, even as a responsive case, most tumors’ volume will grow initially

but shrink lately with much reduced vascular activities.

interpreting such compartments in relation to biological or
clinical parameters.

In longitudinal studies, special care should be taken in as-
sessing the response to therapy. Inour present experiment, we
have considered longitudinal samplings separately and per-
formed blind source separation for each of the samplings. It
would be more meaningful to consider the estimated TAC
before the therapy starts as a baseline reference, and then
estimate the source images in the follow-up studies to see
whether the spatial distribution of fast and slow permeabil-
ities changes. We can also use the estimated baseline source
image as the reference, and subsequently recover the TACs in
the follow-up studies to detect the changes of diffusion rates.
The multivariate quantifications that reflect the efficacy of
angiogenesis inhibitors has great potential but is at an early

stage. Part of the challenge stems from incomplete knowledge
of how blood vessels are affected. For example, angiogenesis
inhibitors can block the growth of new blood vessels from ex-
isting vessels, but may also eliminate certain existing vessels,
such as tumor vessels.

We believe that our comparative studies provide use-
ful information on the utility of the proposed methods
for computed simultaneous imaging of multiple functional
or molecular biomarkers. Given the difficulty of the task,
while the optimality of these methods may be data or
modality dependent, we wouldexpect them to be important
toolsin dynamic image formation and analysis. For exam-
ple, since angiogenesis is complex process critical to growth
and metastasis of malignant tumors, the clinical value and
promise of DCE-MRI in imaging tumor angiogenesis before
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F1GURE 8: Blind decomposition of permeability distribution and diffusion dynamics via CCA in a longitudinal study with three-time snap-
shots shown in Figure 7. (a) 2D projection of compartment TAC clusters and 2D projection of individual compartment TAC clusters; (b)
TACs corresponding to fast and slow flows/perfusions; and (c) and (d) extracted angiogenic permeability distributions (source images) as-
sociated with fast and slow flows/perfusions. Serving as the quantitative measures for monitoring functional response to therapy, the results
correspond to a positive responsive case where both fast and slow diffusion/perfusion rates are significantly reduced during and after the

therapy.

and during therapy provides strong incentive for advancing
the imaging formation method [2—4]. Specifically, with the
prior information on the nonnegativity of the mixing ma-
trix and sources, new principle and perhaps improved meth-
ods may yet become possible [19]. Here we wish to propose
a nonnegative least-correlated component analysis (nLCA)
when the hidden sources and mixing matrix are known to be
nonnegative [20]. This concept has powerful features which
are of considerable universal applicability since it eliminates
the condition of source independence and non-Gaussianity
required by independent component analysis [19]. It can be
shown that when the mixing matrix is nonnegative, the cor-
relation between the mixtures is always positively increased,
namely, the correlation increase theorem [20]. Such a positive
increase in correlation after nonnegative mixing immediately
suggests a possible recovering mechanism for blind source
separation of dependent sources. With the encouraging pre-
liminary success tested on real data sets, we are currently in-
vestigating the existence and uniqueness of nLCA solution
that exploits the nonnegativity constraint on correlated yet
well-grounded sources in the light of correlation increase
theorem [19, 20].
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