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A critical issue in image restoration is the problem of noise removal while keeping the integrity of relevant image information. The
method proposed in this paper is a fully automatic 3D blockwise version of the nonlocal (NL) means filter with wavelet subbands
mixing. The proposed wavelet subbands mixing is based on a multiresolution approach for improving the quality of image denois-
ing filter. Quantitative validation was carried out on synthetic datasets generated with the BrainWeb simulator. The results show
that our NL-means filter with wavelet subbands mixing outperforms the classical implementation of the NL-means filter in terms
of denoising quality and computation time. Comparison with wellestablished methods, such as nonlinear diffusion filter and total
variation minimization, shows that the proposed NL-means filter produces better denoising results. Finally, qualitative results on

real data are presented.

Copyright © 2008 Pierrick Coupé et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Image denoising can be considered as a component of pro-
cessing or as a process itself.In the first case, the image de-
noising is used to improve the accuracy of various image
processing algorithms such as registration or segmentation.
Then, the quality of the artifact correction influences perfor-
mance of the procedure. In the second case,the noise removal
aims at improving the image quality for visual inspection.
The preservation of relevant image information is important,
especially in a medical context.

This paper focuses on a new denoising method firstly in-
troduced by Buades et al. [1] for 2D image denoising: the
nonlocal (NL) means filter. We propose, to improve this filter
with an automatic tuning of the filtering parameter, a block-
wise implementation and a mixing of wavelet su-bands based
on the approach proposed in [2]. These contributions lead to
a fully-automated method and overcome the main limitation
of the classical NL-means: the computational burden.

Section 2 presents related works. Section 3 presents the
proposed method with details about our contributions.
Section 4 shows the impact of our adaptations compared to
different implementations of the NL-means filter and pro-

poses a comparison with well-established methods. The vali-
dation experiments are performed on a phantom dataset in a
quantitative way. Finally, Section 5 shows results on real data.

2. RELATED WORKS

Many methods for image denoising have been suggested in
the literature, and a complete review of them can be found
in [1]. Methods for image restoration aim at preserving the
image details and local features while removing the undesir-
able noise. In many approaches, an initial image is progres-
sively approximated by filtered versions which are smoother
or simpler in some sense. Total variation (TV) minimiza-
tion [3], nonlinear diffusion [4-6], mode filters [7], or regu-
larization methods [3, 8] are among the methods of choice
for noise removal. Most of these methods are based on a
weighted average of the gray values of the pixels in a spatial
neighborhood [9, 10]. One of the earliest examples of such
filters has been proposed by Lee [11]. An evolution of this
approach has been presented by Tomasi and Manduchi [9]
who devised the bilateral filter which includes both a spatial
and an intensity neighborhood.
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Ficure 1: (a) Usual voxelwise NL-means filter: 2D illustration of the NL-means principle. The restored value of voxel x; (in red) is the
weighted average of all intensities of voxels x; in the search volume V;, based on the similarity of their intensity neighborhoods u(N;) and
u(N;). In this example, we set d = 1 and M = 8. (b) Blockwise NL-means filter: 2D illustration of the blockwise NL-means principle. The
restored value of the block By, is the weighted average of all the blocks B; in the search volume V;,. In this example, we set « = 1 and M = 8.

F1GURE 2: Blockwise NL-means filter. For each block B;, centered on
voxel x;,, an NL-means-like restoration is performed from blocks
Bj. In this way, for a voxel x; included in several blocks, several esti-
mations are obtained. The restored value of voxel x; is the average of
the different estimations stored in vector A;. In this example, a = 1,
n=2,and |A;| = 3.

Recently,the relationships between bilateral filtering and
local mode filtering [7], local M-estimators [12], and non-
linear diffusion [13] have been established. In the context
of statistical methods, the bridge between the Bayesian es-
timators applied on a Gibbs distribution, resulting with a
penalty functional [14] and averaging methods for smooth-
ing, has also been described in [10]. Finally, statistical aver-
aging schemes enhanced via incorporating a variable spatial
neighborhood scheme have been proposed in [15-17].

All these methods aim at removing noise while preserv-
ing relevant image information. The tradeoff between noise
removal and image preservation is performed by tuning the
filter parameters, which is not an easy task in practice. In this

paper, we propose to overcome this problem with a 3D sub-
bands wavelet mixing. As in [2], we have chosen to com-
bine a multiresolution approach with the NL-means filter
[1], which has recently shown very promising results.

Recently introduced by Buades et al. [1], the NL-means
filter proposes a new approach for the denoising problem.
Contrary to most denoising methods based on a local recov-
ery paradigm, the NL-means filter is based on the idea that
any periodic, textured, or natural image has redundancy, and
that any voxel of the image has similar voxels that are not nec-
essarily located in a spatial neighborhood. This new nonlocal
recovery paradigm allows to improve the two most desired
properties of a denoising algorithm: edge preservation and
noise removal.

3. METHODS

In this section, we introduce the following notations:

(i) u: Q® — R is the image, where Q° represents the im-
age grid, considered as cubic for the sake of simplicity
and without loss of generality (]Q?®| = N3);

(ii) for the original voxelwise NL-means approach,

(a) u(x;) is the intensity observed at voxel x;,

(b) V; is the cubic search volume centered on voxel
x; of size | V| = @M +1)°, M € N,

(c) N; is the cubic local neighborhood of x; of size
IN;| = (2d+1)’,d € N,

(d) u(N)) = WON),...,u™ND(N)T is the vector
containing the intensities of N; (that we term
“patch” in the following),

(e) NL(u)(x;) is the restored value of voxel x;,

(f) w(x;i, x;) is the weight of voxel x; when restoring
u(x;) (see Figure 1(a));
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Ficure 3: Workflow. First, the noisy image I is denoised with two
sets of filtering parameters S, and S,. Then, I, and I, are decom-
posed into low- and high-frequency subbands by 3D DWT. The
four lowest frequency subbands of I, (i.e., LLL;, LLH;, LHL;, and
HLL,) are mixed with the four highest-frequency subbands of I,
(i.e., LHH,, HLH,, HHL,, and HHH,). Finally, the result image is
obtained by inverse 3D DWT of the selected subbands.
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Figure 4: Influence of the filtering parameter 236% on the PSNR
according to f3 and for several levels of noise. These results are ob-
tained with the optimized blockwise NL-means filter on the T1-w
phantom MRI and account for the error in the estimation of .

(iii) for the blockwise NL-means approach,

(a) B;is the block centered on x; of size |B;| = (2o +
1)3, aeN,

(b) u(B;) is the vector containing the intensities of
the block B;,

(c) NL(u)(B;) is the vector containing the restored
value of B;,

(d) w(B;, Bj) is the weight of block B; when restoring
the block u(B;) (see Figure 1(b)),

(e) the blocks B,, are centered on voxels x; which
represent a subset of the image voxels, equally
regularly distributed over Q® (see Figure 2),

(f) n represents the distance between the centers of
the blocks B;, (see Figure 2).

3.1. The nonlocal means filter

In the classical formulation of the NL means filter [1],the re-
stored intensity NL(u)(x;) of the voxel x;, is a weighted aver-
age of the voxels intensities u(x;) in the “search volume” V;
of size 2M +1)*:

NL(w)(x;) = > wlxi, xj)u(x;), (1)

XjEV,’

where w(x;, x;) is the weight assigned to value u(x;) to restore
voxel x;. More precisely, the weight evaluates the similarity
between the intensity of the local neighborhoods N; and Nj
centered on voxels x; and x;, such that w(x;, x;) € [0,1] and
ijeviw(xi,xj) =1 (cf.,, Figure 1, Left).



International Journal of Biomedical Imaging

TaBLE 1: Comparison of different implementations of NL-means in terms of computational time and denoising quality. The computational
time was obtained with multithreading on a DualCore Intel(R) Pentium(R) D CPU 3.40 GHz. These results were obtained on a T1-w

phantom image of 181 x 217 X 181 voxels with 9% of noise.

Computational time (s) PSNR (dB)
NLM 4208 32.59
Blockwise NLM 734 31.73
Optimized NLM 778 34.44
Optimized blockwise NLM 135 33.75
Optimized blockwise NLM with WM 181 34.47
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Figure 5: Comparison of the different NL-means filters on T1-w phantom MRI and T2-w phantom MRI with MS.

For each voxel x; in V;, the computation of the weight is
based on the Euclidean distance between patches u(N;) and
u(N;), defined as

1
W(xi:xj) — Ze*Hu(Ni)*U(Nj)H%/hz’ (2)
i

where Z; is a normalization constant ensuring that
> jw(xi,x;) = 1, and h acts as a filtering parameter control-
ling the decay of the exponential function.

3.1.1.  Automatic tuning of the filtering parameter h

As explained in the introduction, denoising is usually the first
step of complex image processing procedures. The number
and the dimensions of the data to process being continually
increasing, each step of the procedures needs to be as auto-

matic as possible. In this section, we propose an automatic
tuning of the filtering parameter h.

First, it has been shown that the optimal smoothing pa-
rameter h is proportional to the standard deviation of the
noise o [1]. Second, if we want the filter independent of the
neighborhood size, the optimal # must depend on |N;| (see,
(2)). Thus, the automatic tuning of the filtering parameter h
amounts to determining the relationship h* = f (o2, |N;l, ),
where f3 is a constant.

Firstly, the standard deviation of the noise o needs to be
estimated. In case of an additive white Gaussian noise, this
estimation can be based on pseudoresiduals €; as defined in
[18, 19]. For each voxel x; of the volume Q?3, let us define

€ = \ﬁ(u(xi) - é > u(xj)>, (3)
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FIGURE 6: Fully automatic restoration obtained with the optimized blockwise NL-means with wavelet mixing filter in 3 minutes on a Dual-
Core Intel(R) Pentium(R) D CPU 3.40 GHz. The image is a T2-w phantom MRI with MS of 181 x 217 x 181 voxels and 9% of noise.

P; being the 6-neighborhood at voxel x; and the constant
\/6/7 is used to ensure that E[€7] = 67 in the homogeneous
areas. Thus, the standard deviation of noise ¢ is computed as

. 1
07 = —— > € (4)

Then, in order to make the filter independent of | N;|, we used

the Euclidean distance || - |2 normalized by the number of
elements:
1 5 1 INi| 2
WHU(NI‘) —u(Nj)||, = mg(u(P)(Ni) - u(P)(Nj)) .
(5)

Based on the fact that, in the case of Gaussian noise and with
normalized L2-norm, the optimal denoising is obtained for
h? = 207 [20], (2) can be written as

I N —u(N, 52N
w(xirx;) = x ;) ~u(N,)13/2B5 INi| (6)
where only the adjusting constant § needs to be manually
tuned. If our estimation ¢ of the standard deviation of the
noise o is correct, 3 should be close to 1. The optimal choice
for B will be discussed later.

3.1.2. Blockwise implementation

The main problem of the NL-means filter is being its compu-
tational time, a blockwise approach can be used to decrease
the algorithmic complexity. Indeed, instead of denoising the
image at a voxel level, entire blocks are directly restored.

A blockwise implementation of the NL-means filter con-
sists in (a) dividing the volume into blocks with overlapping
supports, (b) performing NL-means-like restoration of these
blocks, and c) restoring the voxels values based on the re-
stored values of the blocks they belong to, as follows.

(1) A partition of the volume Q? into overlapping blocks
B, of size 2a + 1)3 is performed, such as Q* = U;B;,,

under the constraint that each block B;, intersects with
at least one other block of the partition. These blocks
are centered on voxels x;, which constitute a subset of
Q3. The voxels x;, are equally distributed at positions
ix = (kin,kyn, ksn), (ki,ky, k3) € N3, where n repre-
sents the distance between the centers of B;,. To ensure
a global continuity in the denoised image, the overlap-
ping support of blocks is nonempty: 2a = n.

(2) For each block B;,, an NL-means-like restoration is
performed as follows:

NL(U)(B;k) = Z W(B,‘k,Bj)u(Bj),
BjeV;,
1 25052 )
WithW(B,'k,Bj) = — ¢ lluBi)—u(B))lz/2pa \Nl\’
Zi,
where Z; is a normalization constant ensuring that
2.iw(Bj, Bj) = 1 (see Figure 1, Right).

(3) For a voxel x; included in several blocks B;,, several es-
timations of the restored intensity NL(u)(x;) are ob-
tained in different NL(u)(B;, ). The estimations given
by different NL(u)(B;,) for a voxel x; are stored in a
vector A;. The final restored intensity of voxel x; is then
defined as

NLG(x) = 4 3 Adp) (8)

PEA;

where A;(p) denotes the pth element of the vector A;.

The main advantage of this approach is to significantly
reduce the complexity of the algorithm. Indeed, for a vol-
ume O3 of size N3, the global complexity is O((2a +
1)’(2M +1)*((N = n)/n)*). For instance, with n = 2, the
complexity is divided by a factor 8.

3.1.3.  Block selection

In [21-23], the authors have shown that neglecting the
voxels/blocks with small weights (i.e., the most dissimilar
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F1GURE 7: Top. Phantom and phantom noisy with 9%. Middle. The
denoising result obtained with the optimized blockwise NLM with
WM filter and the optimized blockwise NLM filter. Bottom. The im-
age of difference between the phantom and the denoising result (i.e.,
Ugroundtruth-Udenoised )- The contrast of the zooms have been artificially
increased. Visually, less structures have been removed with the opti-
mized blockwise NLM with WM filter.

patches to the current one) speeds up the filter and signifi-
cantly improves the denoising results. Indeed, the selection
of the most similar patches u(B;) to the current patch u(B;)
to compute NL(u)(B;) can be viewed as a spatially adapta-
tion of the patch dictionaries. As in [21-23], the preselection
of blocks in V; is based on the mean and the variance of u(B;)
and u(B;). The selection tests are given by

Ly -u(B))13/2682 N
Z

u(Bik) <
u(B;) i’ (9)
Var(u(Bip)) 1

if w1 <
W(Bik,Bj) = 1

0 otherwise,

PSNR for the NLD filter with 9 % of Gaussian noise
the maximum is: 31.24 dB
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PSNR for the TV minimization with 9 % of Gaussian noise
the maximum is: 31.42 dB

32

PSNR in (dB)

—_

4 20

2
0 Number of

jter ations

(®)

Ficure 8: Result for the NLD filter and the TV minimization on
phantom images with Gaussian noise at 9%. For the NLD filter, K
varied from 0.05 to 1 with a step of 0.05 and the number of itera-
tions varied from 1 to 10. For the TV minimization, A varied from
0.01 to 1 with a step of 0.01 and the number of iterations varied
from 1 to 10.

where u(B;,) and Var(u(B;)) represent, respectively, the
mean and the variance of the intensity function for the block
B, centered on the voxel x;,. The new parameters 0 < p; < 1
and 0 < 01 < 1 control the level of rejection related to tests.
When y; and oy are close to 0, there is almost no selection and
the number of patches taken into account increases: thus the
denoised image becomes smoother. The filter is equivalent to
the classical NL-means and the computation time increases.
When g, and o0 are close to 1, the selection is more severe
and the number of patches taken into account decreases: the
denoised image is less smoothed and the computation time
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Ficure 9: Comparison between nonlinear diffusion, total varia-

tion, and optimized blockwise NL-means with wavelet mixing denois-
ing. The PSNR experiments show that the optimized blockwise NL-
means with wavelet mixing filter significantly outperforms the well-
established total variation minimization B> process and the nonlin-
ear diffusion approach.

decreases. This kind of selection tends to better enhance the
contrast. In practice, 41 and g, were chosen as in [21, 22]:
p1 = 0.95and oy = 0.5.

3.2. Wavelet subbands mixing

3.2.1.  Hybrid approaches

Recently, hybrid approaches coupling the NL-means filter
and a wavelet decomposition have been proposed [2, 24, 25].
In [24], a wavelet-based denoising of blocks is performed be-
fore the computation of the nonlocal means. The NL-means
filter is performed with denoised version of blocks in order to
improve the denoising result. In [25], the NL-means filter is
applied directly on wavelet coefficients in transform domain.
This approach allows a direct denoising of compressed im-
ages (such as JPEG2000) and a reduction of computational
time since smaller images are processed. In [2], a multires-
olution framework is proposed to adaptively combine the
result of denoising algorithms at different space-frequency
resolutions. This idea relies on the fact that a set of filtering
parameters is not optimal over all the space-frequency reso-
lutions. Thus, by combining to the transform domain the re-
sults obtained with different sets of filtering parameters, the
denoising is expected to be improved.

3.2.2.  Overall processing

In order to improve the denoising result of the NL-means fil-
ter, we propose a multiresolution framework similar to [2] to
implicitly adapt the filtering parameters (h, | B;|) over the dif-

Phantom Noisy phantom at 9 %

Optimized blockwise

Total variation NL-means with WM

Non linear diffusion

Unoisy~Udenoised

Ugroundtruth ~Udenoised

FIGURE 10: Comparison between nonlinear diffusion, total variation,
and our optimized blockwise NL-means with wavelet mixing denois-
ing on synthetic T1-w images. Top. Zooms on T1-w BrainWeb im-
ages. Left. The “ground truth” Right. The noisy images with 9%
of Gaussian noise. Middle. The results of restoration obtained with
the different methods and the images of the removed noise (i.e., the
difference (centered on 128) between the noisy image and the de-
noised image. Bottom. The difference (centered on 128) between
the denoised image and the ground truth. Left. Nonlinear diffusion
denoising. Left. Nonlinear diffusion denoising. Middle. Total vari-
ation minimization process. Right. Optimized Blockwise NL-means
with WM filter. The NL-means-based restoration better preserves
the anatomical structure in the image while efficiently removing the
noise as it can be seen in the image of removed noise.

ferent space-frequency resolutions of the image. This adapta-
tion is based on the fact that the size of the patches impacts
the denoising properties of the NL-means filter. Indeed, the
weight given to a block depends on its similarity with the
block under consideration, but the similarity between the
blocks depends on their sizes. Thus, given the size of the
blocks, removal or preservation of image components can be
favored.

In the transform domain, the main features of the im-
age correspond to low-frequency information while finer de-
tails and noise are associated to high frequencies. Nonethe-
less, noise is not a pure high-frequency component in most
images. Noise is spanned over a certain range of frequencies
in the image with mainly middle and high components [2].

In NL-means-based restoration, large blocks and setting
B = 1 efficiently remove all frequencies of noise but tend to
spoil the main features of the image, whereas small blocks
and low smoothing parameter (f = 0.5) tend to better pre-
serve the image components but cannot completely remove
all frequencies of noise. As a consequence, we propose the
following workflow (see Figure 3).
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Figure 11: Fully automatic restoration obtained with the optimized blockwise NL-means with wavelet mixing filter on a 3 Tesla T1-w MRI
data of 256 voxels in less than 4 minutes on a DualCore Intel(R) Pentium(R) D CPU 3.40 GHz.

(i) Denoising of the original image I using two sets
of filtering parameters: one adapted to the noise
components removal (i.e., large blocks and § = 1) and
the other adapted to the image features preservation
(i.e., small blocks and 8 = 0.5). This yields two images
I, and I,,. In I,, the noise is efficiently removed and,
conversely, in I,,, the image features are preserved.

(ii) Decomposing I, and I, into low- and high-frequency
subbands. The first level decomposition of the im-
ages is performed with a 3D discrete wavelet transform
(DWT).

(iii) Mixing the highest-frequency subbands of I, and the
lowest frequency subbands of I,,.

(iv) Reconstructing the final image by an inverse 3D DWT
from the combination of the selected high and low fre-
quencies.

In this paper, we propose an implementation of this ap-
proach using our optimized blockwise NL-means filter and
the 3D DWT Daubechies-8 basis. The latter is implemented
in Qccpack (http://qcecpack.sourceforge.net) in the form of
dyadic subband pyramids. This DWT is widely used in im-
age compression due to its robustness and efficiency.

3.2.3. Selection of wavelet subbands

Once the original image I has been denoised using two sets of
filtering parameters, a 3D DWT at the first level is performed
on both I, and I, images. For each image, eight subbands
are obtained: LLL;, LLH,, LHL,, HLL,, LHH;, HLH;, HHL,,
and HHH;.

(i) In the eight wavelet subbands obtained with I,, the
frequencies corresponding to noise are efficiently re-
moved from the high frequencies whereas the low fre-
quencies associated to the main features are spoiled.

(ii) In the eight wavelet subbands obtained with I,, the low
frequencies associated to main features are efficiently
preserved whereas residual frequencies corresponding
to noise are present in high frequencies.

Thus, we select the highest frequencies of I, (i.e., LHH;,
HLH;, HHL,, and HHH;) and the lowest frequencies of I,
(i.e., LLL;, LLH;, LHL;, and HLL,). Then, the 4 lowest sub-
bands of I, are combined with the 4 highest subbands of I,.
Finally, an inverse 3D DWT is performed on these 8 selected
subbands to obtain the final denoised image (see Figure 3).

In [21, 22], the optimal parameters for 3D MRI have
been estimated as &« = 1, M = 5, y; = 0.95, and 07 = 0.5.
In our experiments, the two sets of parameters used to ob-
tain I, and I, were S, = (ay, Mw,fBs) = (1,3,0,5) and
So = (a0, Mw,Bo) = (2,3,1). Compared to [21, 22], the
size of “search volume” was reduced to decrease the com-
putational time. Several sets of parameters have been tested,
the mentioned numerical values are satisfying to balance the
denoising performance (high PSNR values) and computa-
tional burden. Finally, to decrease the computational time,
this workflow is parallelized and each version is computed
on different CPUs or cores (see Figure 3).

4. VALIDATION ON A PHANTOM DATA SET
4.1. Materials

In order to evaluate the performance of the different vari-
ants of the NL-means filter on 3D MR images, tests were per-
formed on the BrainWeb database [26]. Several images were
simulated to validate the performance of the denoising on
various images: (a) T1-w phantom MRI for 4 levels of noise
3%, 9%, 15%, and 21% and (b) T2-w phantom MRI with
multiple sclerosis (MS) lesions for 4 levels of noise 3%, 9%,
15%, and 21%. A white Gaussian noise was added, and the
notations of BrainWeb are used: a noise of 3% is equivalent
to N (0,27(3/100)), where v is the value of the highest voxel
intensity of the phantom (150 for T1-w and 250 for T2-w).

4.2. Comparison with different NL-means filters

In the following, let us define the following.

(i) NL-means: standard voxelwise implementation with
automatic tuning of the filtering parameter h (f = 1)

[1].
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(ii) Optimized NL-means: voxelwise implementation with
automatic tuning of the filtering parameter h (f = 1)
and voxels selection presented in [21].

(iii) Optimized blockwise NL-means: (This filter can
be freely tested at http://www.irisa.fr/visages/bench
marks) blockwise implementation with automatic
tuning of the filtering parameter / ( = 1) and blocks
selection presented in [22].

(iv) Optimized blockwise NL-means with wavelet mixing:
proposed filter based on a blockwise implementation,
an automatic tuning of the filtering parameter h ( =
1), a block selection, and a wavelet subbands mixing.

The selected filtering parameters for the different implemen-
tations were as follows.

(i) For the NL-means and optimized NL-means filters, the
parameters are those used in [21]: d =1, f =1, M =
5, p1 = 0.95,and of = 0.5.

(ii) Concerning the optimized blockwise NL-means filter,
the sets of parameters are those used in [22]: n =
2, a=1, =1, M =5, y =0.95and f = 0.5.

(iii) Finally, for the optimized blockwise NL-means with
wavelet mixing filter the parameter are the follow-
inggn = 2,8, = (apMw,B,) = (1,3,0.5), S, =
(0ty M, Bo) = (2,3,1), p1 = 0.95,and o7 = 0.5.

For 8-bit encoded images, the PSNR is defined as follows:

255

PSNR = 20 logwm,

(10)

where RMSE denotes the root mean square error estimated
between the ground truth and the denoised image. For the
sake of clarity, the PSNR values are estimated only in the re-
gion of interest (cerebral tissues) obtained by removing the
background (i.e., the label 0 of the discrete model in Brain-
web).

Firstly, we have experimentally verified that the optimal
denoising is obtained for § ~ 1 for high levels of noise and
B = 0.5 for low levels of noise. These results account for the
error in the estimation of o (62 = 3.42% at 3%, 0% = 7.93%
at 9%, 0% = 12.72% at 15%, and 0% = 17.44% at 21%) (see
Figure 4). The parameter f3 was fixed to 1 for all the experi-
ments.

4.2.1. Quantitative results

Table 1 shows that the blockwise approach of the NL-means
filter, with and without voxels selection (see (9)), allows to
drastically reduce the computational time. With a distance
between the block centers corresponding to n = 2, the block-
wise approach divides the timings by a factor superior to 5
(see Table 1). However, the computational time reduction is
balanced with a slight decrease of the PSNR (see Figure 5)
compared to the optimized NL-means filter presented in [21].
Our optimized blockwise NL-means with wavelet mixing al-
lows to compensate this slight decrease of the PSNR and to
divide the computational by a factor 4 compared to the opti-
mized NL-means filter.

4.2.2. Visual assessment

Visually, the proposed method combines the most important
attributes of a denoising algorithm: edge preservation and
noise removal. Figure 6 shows that our filter removes noise
while keeping the integrity of MS lesions (i.e., no structure
appears in the removed noise). Figure 7 focuses on the dif-
ferences between the optimized blockwise NLM and the op-
timized blockwise NLM with WM filters. The denoising re-
sult obtained with the optimized blockwise NLM with WM
filter visually preserves the edges better than the optimized
blockwise NLM filter. This is also confirmed by visual inspec-
tion of the comparison with the “ground truth”. The images
of difference between the phantom and the denoised image
(see bottom of Figure 7) show that less structures have been
removed with the optimized blockwise NLM with WM filter.
Thus, the multiresolution approach allows to better preserve
the edges and to enhance the contrast between tissues.

4.3. Comparison with other methods

In this section, we compare the proposed method with two
of the most used approaches in MRI domain: the nonlinear
diffusion (NLD) filter r [4] and the total variation (TV) min-
imization [3]. The main difficulty to achieve this comparison
is related to the tuning of smoothing parameters in order to
obtain the best results for NLD filter and TV minimization
scheme. After quantifying the parameter space, we exhaus-
tively tested all possible parameters within a certain range.
This allows us to obtain the best possible results for the NLD
filter and the TV minimization.

For the optimized blockwise NLM with WM, the same
set of parameters S, = (ay, Mw,fy) = (1,3,0.5) and S, =
(a0, Mw, 35) = (2,3, 1) are used for all noise levels. The au-
tomatic tuning of h adapts the smoothing to the noise level.

For NLD filter, the parameter K varied from 0.05 to 1
with a step of 0.05 and the number of iterations varied from
1 to 10. For TV minimization, the parameter A varied from
0.01 to 1 with a step of 0.01 and the number of iterations var-
ied from 1 to 10. The results obtained for a 9% of Gaussian
noise are presented in Figure 8, but this screening was per-
formed for the four levels of noise. It is important to under-
line that the results giving the best PSNR are used, but these
results do not necessarily give the best visual output. Actually,
the best PSNR value for the NLD filter and TV minimization
are obtained for a visually under-smoothed image since these
methods tend to spoil the edges. This is explained by the fact
that the optimal PSNR is obtained when a good tradeoff is
reached between edge preserving and noise removing.

4.3.1.  Quantitative results

As presented in Figure 9, our block-optimized NL-means
with wavelet mixing filter produced the best PSNR values
whatever the noise level is. On average, a gain of 2.15dB is
achieved compared to TV minimization and AD filter. The
PSNR value between the noisy image and the ground truth is
called “No processing” and is used as a reference.
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4.3.2. Visual assessment

Figure 10 shows the denoising results obtained by the NLD
filter, the TV minimization, and our optimized blockwise
NLM with WM. Visually, the NL-means-based approach pro-
duced the best denoising. The removed noise (see middle of
Figure 10) shows that the proposed method removes signif-
icantly less structures than NLD filter or TV minimization.
Finally, the comparison with the “ground truth” underlines
that the NL-means restoration gives a result very close to the
“ground truth” and better preserves the anatomical structure
compared to NLD filter and TV minimization.

5. EXPERIMENTS ON CLINICAL DATA

The T1-weighted MR images used for experiments were ob-
tained with T1 sense 3D sequence on 3T Philips Gyroscan
scanner. The restoration results, presented in Figure 11, show
good preservation of the cerebellum. Fully automatic seg-
mentation and quantitative analysis of such structures are
still a challenge, and improving restoration schemes could
greatly improve these processings.

6. DISCUSSION AND CONCLUSION

This paper presented a fully automated blockwise version
of the nonlocal means filter with subbands wavelet mix-
ing. Experiments were carried out on the BrainWeb dataset
[26] and real dataset. The results on phantom shows that
the proposed optimized blockwise NL-means with subbands
wavelet mixing filter outperforms the classical implementa-
tion of the NL-means filter and the optimized implementa-
tion presented in [21, 22], in terms of PSNR values and com-
putational time. Compared to the classical NL-means filter,
our implementation (with block selection, blockwise imple-
mentation, and wavelet subbands mixing) considerably de-
creases the required computational time (up to a factor of
20) and significantly increases the PSNR of the denoised im-
age. The comparison of the filtering process with and with-
out wavelet mixing shows that the subbands mixing better
preserves edges and better enhances the contrast between
the tissues. This multiresolution approach allows to adapt
the smoothing parameters along the frequencies by com-
bining several denoised images. The comparison with well-
established methods such as NLD filter and TV minimization
shows that the NL-means-based restoration produces better
results. Finally, the impact of the proposed multiresolution
approach based on wavelet subbands mixing should be inves-
tigated further, for instance, when combined to the nonlinear
diffusion filter [4] and the total variation minimization [3].
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