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A finite element mesh aggregating approach is presented to reconstruct images of multiple internal bioluminescence sources.
Rather than assuming independence between mesh nodes, the proposed reconstruction strategy exploits spatial structure of nodes
and aggregation feature of density distribution on the finite element mesh to adaptively determine the number of sources and
to improve the quality of reconstructed images. With the proposed strategy integrated in the regularization-based reconstruction
process, reconstruction algorithms need no a priori knowledge of source number; even more importantly, they can automatically
reconstruct multiple sources that differ greatly in density or power.

1. Introduction

Bioluminescence tomography (BLT) is a rapidly growing
field of research in optical molecular imaging, which allows
for the visualization of normal and abnormal cellular pro-
cesses in living subjects at the molecular or genetic level
[1–4]. With BLT, we seek to recover the spatial distribution
of bioluminescent light source inside a small animal from
external noninvasive measurements [5]. Generally speaking,
the internal source intensity is closely related to the strength
of the molecular/cellular activity, such as gene expression
[6]. Thus, this imaging modality can provide in-depth
information of the internal biological sources concerned
in longitudinal monitoring and quantitative assessment
changes and efficacy and thus further facilitates our under-
standing of bio-molecular processes as they occur in living
animals.

When using BLT technique to measure efficiency of a
genic therapy or to observe the growth or migration of cancer
cells, accurate detection of different sources that differ greatly
in density or power is instrumental; for example, it may yield
a great deal of information regarding tumor dissemination
and burden in various sites before the development of gross

disease [1, 7, 8]. Therefore, the emphasis of this paper is
multiple-source reconstruction that has not been sufficiently
considered to date in BLT.

Most reconstruction methods for BLT can be classified
to model-based reconstruction [9]. In this case, given a
light propagation model, the flux on the boundary can be
predicted with numerical methods such as the finite element
method (FEM) by combing with the structural information
and optical parameters regarding different organs. And then
the BLT is formulated as an optimization problem of mini-
mizing the discrepancy between the boundary measurements
and the predicted light intensities on the tissue surface [10].

In the reconstruction procedure, the ill posedness of the
BLT problem does pose a challenge for determining a unique
solution of the tomographic problem. Different strategies
have been proposed for coping with the ill posedness of BLT
inverse problems. These studies obtain stable reconstruction
by increasing the amount of independent measurements
with spectrally resolved approaches [11–13], or by reducing
the number of unknowns [10, 14], or with regularization
techniques to incorporate some a priori information regard-
ing the inverse source problem [15–17]. In this paper, we
focus our attention on the multiple-source reconstruction
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with monochromatic boundary measurements where reg-
ularization techniques are inevitable in the reconstruction
process.

The existing regularization-based reconstruction
schemes in bioluminescent imaging to date can be loosely
classified into three categories: l2 regularization, l1 regulari-
zation, and implicit regularization such as TSVD and
LSQR [18, 19]. Through regularization, some constraints
are applied to reconstruction and yield an approximate
solution of the BLT problem. No matter which regularizer
is used, source location and visualization are still needed
for preclinical practice. Most source location schemes are
directly based on the reconstructed density vector and the
larger the density, the more probable the source center.
Specifically, according to a priori knowledge of the number
of sources, several nodes with larger density values are
identified as the promising sources or set a global threshold
by referring to the maximum density and only those nodes
with a density value higher than the threshold will be dis-
played.

In most applications of BLT, for example, monitoring
cancer metastasis, neither the sources number nor an appro-
priate global threshold is easy to determine. This is mainly
due to the fact that bioluminescent lights are usually weak
and diffuse, and consequently the number of potential
sources is hard to estimate only by surface photon distribu-
tions. Moreover, the global threshold strategy is unfeasible
for distinguishing multiple sources with distinct difference
in power. Especially in l2 norm regularization cases, the
obtained solution is usually oversmoothing, and thus a lower
threshold will incur some artifacts in the final images
whereas a higher one will discard some small potential
sources. Consequently, effective reconstruction scheme for
multiple sources with different powers deserves further
investigation.

In this paper, we develop a finite element mesh aggregat-
ing approach for multiple-source reconstruction in BLT. The
contribution of this paper to BLT reconstruction includes
the following. First, we propose a multiple-source detecting
strategy. Rather than assuming independence between mesh
nodes, the proposed reconstruction strategy exploits spatial
structure of the nodes and characteristic of energy decay to
adaptively determine the number of sources and to improve
the quality of reconstructed images. Second, we integrate
the proposed reconstruction strategy with regularization-
based inverse algorithms to build a unified framework for
solving BLT inverse problem. Numerical simulations and
phantom experiments demonstrate the effectiveness of this
framework.

The paper is organized as follows. In Section 2, we
present a multiple-source reconstruction framework with
the emphasis on the finite-element-mesh-aggregating-based
source detection strategy. In Section 3 we evaluate the
proposed method with numerical simulations. Section 4
presents a phantom experiment to further test the effective-
ness of the proposed method. Short discussions and conclud-
ing remarks are given at the end of this paper.

2. Multiple-Source Reconstruction Framework

2.1. FEM-Based Inverse Model. Radiative transfer equation
(RTE) plays an important role in image reconstruction by
predicting the bioluminescence light intensities on the tissue
boundary [20], but solving RTE remains an intractable
task for biological tissue with spatially nonuniform optical
properties and complex tissue geometries [21]. Instead, some
approximations to RTE have been established to overcome
the difficulty of directly solving RTE. Among them, the
diffusion approximation (DA) model has been extensively
used to describe the photon propagation in tissue where
there is scattering dominant absorption [5–14]. Here, we
restrict our discussion to the DA model for simplicity.
The steady state diffusion equation complemented with the
Robin boundary condition can be expressed as follows [10]:

−∇ · (D(r)∇Φ(r)) + μa(r)Φ(r) = S(r), (r ∈ Ω), (1)

Φ(r) + 2A(r;n,n′)D(r)(v(r) · ∇Φ(r)) = 0, (r ∈ ∂Ω),
(2)

where Φ(r) is the photon power density at r ∈ Ω, S(r) is
an isotropic source distribution of gene expression, and D(r)
and μa(r) are the optical diffusion and absorption coefficient,
respectively. In this work, we assumed these two parameters
are constant during the BLT reconstruction procedure. The
term v(r) in (2) denotes the unit outer normal at boundary
∂Ω, A(r;n,n′) ≈ (1 + R(r))/(1 − R(r)) is the boundary
mismatch factor accounting for different refractive indices
across the boundary ∂Ω.

Following the standard finite element analysis [22],
support domain Ω is discretized into T vertex nodes
(N1,N2, . . . ,NT) and Ne mesh elements, denoted as Ωl (l =
1, 2, . . . ,Ne); then Φ(r) and source term S(r) can be approxi-
mately expressed as

Φ(r) ≈ Φh(r) =
T∑

k=1

φkϕk(r), ∀r ∈ Ω,

S(r) ≈ Sh(r) =
T∑

k=1

skγk(r), ∀r ∈ Ω,

(3)

where φk is the approximate nodal value of Φ(r) on the kth
node Nk,ϕk(r) the nodal basis function with support over
the elements Ωl, sk the discretized nodal values of S(r), and
γk(r) the interpolation basis functions, which is usually the
same with ϕk(r).

Based on (1)–(3), a matrix equation of the linear
relationship between source distribution and boundary
measurements can be derived [10, Section 2]:

AS = Φ∗, (4)

where A is a typical ill-conditioned matrix and Φ∗ represents
measurable boundary nodal photon density. In real BLT
experiments, Φ∗ is computed from the surface flux image
captured with a CCD camera.
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2.2. General lp-Norm-Based Regularization. As mentioned in
Section 1, the flux density on the boundary can be predicted
according to a forward model, thereby a natural choice for
source reconstruction is to minimize the misfit between
predicted data and measurements, that is,

S = arg min
S

∥∥AS−Φ∗∥∥2
. (5)

To deal with the ill posedness of BLT inverse problem, per-
missible source region is usually incorporated into the recon-
struction model by spatially constraining the reconstruction
domain to the area of interest [10, 14, 16, 23]. A more
effective approach to reconstruction is using regularization
to act as an algebraic stabilizer in estimating solutions.

Using a general lp (0 < p � 2) norm constraint, we
reformulate the objective function for BLT reconstruction in
(5):

Sreg = arg min
S

{∥∥AS−Φ∗∥∥2
2 + λ‖S‖p

}
, (6)

where the first term represents reconstruction error and the
second is regularization term that fuses a priori knowledge
or constrains into reconstruction. Regularization parameter
λ > 0 provides a tradeoff between data fitting and constraints
regarding solutions. Obviously, Tikhonov regularization
method is a special case of (6) for p = 2, that is, using
an l2-norm regularizer. For p = 1, l1-norm-based sparse
regularization methods have recently attracted considerable
amount of attention in BLT [17, 23–25] and the reconstruc-
tions results therein witnessed some improvements in image
quality.

2.3. Multiple-Source Detection Strategy. Based on the solu-
tion (a source density vector) obtained in Section 2.2, source
localization and imaging is then performed by combining
with FEM mesh information. Facing the dilemma of thresh-
old choice mentioned in Section 1, we are hoping for an
adaptive method that can avoid the difficulty of threshold
selection while at the same time removing artifacts in the
reconstructed images with relatively lower computational
cost.

Consider that in most applications of BLT, for example,
detecting events that occur during the early stages of disease
progression, the bioluminescent sources we want to recover
are often localized in some small subregions of the domain.
On the other hand, because light intensity is heavily attenu-
ated in biological tissue and falls off exponentially from the
illumination point, the diffusion range of a bioluminescent
source is limited by the source strength. Consequently, when
taking the spatial structure of the mesh nodes into account,
the source density vector should have a spatial aggregation
on the mesh, which is also illustrated in the experiments in
Section 3 (Figure 4). It is found that, in a very small local
region, if a node in the mesh has a maximum density value,
with a very high probability its adjacent nodes are also with
larger density. It is found that in a very small local region,
if a node in the mesh has a maximum density value, with
a very high probability its adjacent nodes are also with a
larger density. We also observe that there are some nodes

Regularization:

Sreg = arg min{∥ −Φ∗
s

Obtain regularized solution S with a specific
reconstruction algorithm

Preprocessing S with a small threshold and define
O = {Si|i εN , Si > 0}

Traverse set O and find out all the elements that have
direct spatial adjacent relationship with Sj according

to the FEM mesh structure information, and move
these elements to set Pk

All the elements in Pk represent the kth reconstructed
source, and the node with the largest density value Sj

is regarded as the source center

No

End

Begin

Build system equation for BLT reconstruction with

FEM: AS = Φ∗

Find j = arg max (
Siε0

Si), and then move the element S to

a new set Pk

Yes

Is set O null

j

∥2
2 + λ∥S∥p}

Initialize the source number k := 1

Final reconstruction result: k subset of the initial set O:
Pi (i = 1, 2, . . . , k), and each subset Pi represents a

reconstructed source

k := k + 1

AS

Figure 1: Flow chart of the regularization framework for multiple-
source reconstruction.

with smaller density in the vicinity of nodes with the larger
density. These observations are helpful for discriminating
pseudosource from a cluster of mesh nodes and removing
artifacts in images. On the basis of the above analysis,
an iterative multiple-source detection strategy (MSDS) is
proposed in the following steps.

Step 1. Obtain the regularized solution (the source density
vector S).

Step 2. Threshold preprocessing. In the presence of inev-
itable noise, the solutions usually have many very small
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Figure 2: (a) 3D view of the heterogeneous phantom with two sphere sources in the left lung. (b)–(e) Different photon distributions
generated, respectively, in power ratio of 1 : 1, 2 : 1, 4 : 1, and 8 : 1 cases.

nonzero components. Consequently, the preprocessing of
solution with a small threshold of cmax (Si) is helpful
to remove pseudosources and reduce the data size to be
processed in the subsequent steps. For all the experiments in
Section 3, the constant c = 0.05.

Step 3. Define a set O = {Si | i ∈ N , Si > 0}.

Step 4. Initial the sources number k = 1.

Step 5. Compute the node index j = arg maxSi∈O(Si). We
move the element Sj to a new set Pk. By traversing set O we
can find out the other elements that directly adjoin the node
j, if any, according to the mesh structure information. Re-
move these elements to Pk.

Step 6. If set O is null, stop; otherwise k := k + 1, and go to
Step 5.

With the steps defined above, we provide an automatic
method to estimate the number of sources from the
reconstruction results iteratively. The final results contain
k sources. Here, k is the number of subsets of the initial
set O obtained at the end of the above iteration. Each
subset corresponds to a reconstructed source. When Pi (i =
1,L, k) has more than one member, we call this situation
“overrepresentation,” the nodes related to these elements will
aggregate to represent a single source and the node with
largest density value Sj is regarded as the source center
for simplicity. Eventually, the cartesian coordinates of the
reconstructed sources are obtained by their node index in the
finite element mesh.

2.4. Regularization Framework for Multiple-Source Recon-
struction. Based on the foregoing reconstruction scheme, we
build a unified regularization framework for multiple-source
reconstruction by integrating the MSDS with the general lp-
norm regularization, as shown in Figure 1.

An appealing property of this framework is its flexibility.
The MSDS is a relatively independent component of the
framework, and hence different regularizer and different
reconstruction algorithms can be utilized according to the
practice of BLT.

Table 1: Optical properties of different organs.

Material Tissue Lung Heart Bone

μa[cm−1] 0.07 0.23 0.11 0.01

μ′s[cm−1] 10.31 20.00 10.96 0.60

3. Numerical Results and Analysis

In this section, we present some numerical experiments
to demonstrate the utility and the effectiveness of the
proposed method in multiple-source settings. Comparison is
performed between the proposed MSDS and the traditional
global threshold strategy (GTS). It should be pointed that
the main theme of this paper is to evaluate the performance
of this framework for multiple-source reconstruction in BLT,
rather than the comparison between specific reconstruction
algorithms. As representatives of algorithms using l1 and
l2 regularization, Tikhonov regularization method [26] and
l1–ls [27] are, respectively, combined with the above two
strategies to recover the interior source distribution from
the synthetically boundary measurements. Consequently,
the reconstruction methods evaluated in the following
experiments include Tikhonov + MSDS, Tikhonov + GTS,
l1–ls + MSDS, and l1–ls + GTS.

It is known that regularization parameter is crucial to
yield a good solution for ill-posed problems, and the choice
of regularization parameter is usually nontrivial. In this
paper, the regularization parameter for Tikhonov method
was determined with the adaptive method proposed in [28].
As for l1–ls, the parameter λ was chosen as suggested in [27],
that is, λ = 0.1‖2ATΦ∗‖∞.

All the experiments were performed on a cylindrical
mouse chest numerical phantom as shown in Figure 2(a).
The heterogeneous model is 30 mm in diameter and 30 mm
high. The specific optical properties of different organs are
listed in Table 1 [14].

3.1. Reconstruction for Double Sources with Different Powers.
In the first study, we consider the ability to resolve sources
with different powers. Two sphere sources with radius of
0.5 mm were positioned in the left lung with the centers at
S1 = (−9,−3.5, 15) and S2 = (−9, 3.5, 15), respectively. They



International Journal of Biomedical Imaging 5
X

(m
m

)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

0.
00

2

0.
00

6

0.
01

0.
01

4

0.
01

8

0.
02

2

0.
02

6

0.
02

8

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
00

5

0.
00

2

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
00

5

0.
00

2

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

X
(m

m
)

Y (mm)
15 10 5 0 −5 −10 −15

−15

−10

−5

0

5

10

15

Po
w

er
de

n
si

ty

(n
W

/m
m

3
)

X

Y Z

0.
04

0.
03

5

0.
03

0.
02

5

0.
02

0.
01

5

0.
01

0.
00

5

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3: From left to right: transverse views of the reconstruction results at z = 15 mm in power ratio of 1 : 1, 2 : 1, 4 : 1, and 8 : 1. From top
to bottom: final results of Tikhonov + GTS, Tikhonov + MSDS, l1–ls + GTS, and l1–ls + MSDS, respectively.
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l1–ls + MSDS (right).

were uniform in size and shape. To illustrate the point of our
discussion, we consider four cases of experiment settings: (I)
both of the initial source densities were 1 nW/mm3; (II) to
(IV) the densities of S1 were still 1 nW/mm3, but the densities
of S2 were 0.5 nW/mm3, 0.25 nW/mm3, and 0.125 nW/mm3,
respectively, that is, the ratios of the power of source S2 to
that of S1 were 2 : 1, 4 : 1, and 8 : 1.

In the following experiments, the model was discretized
into a fine tetrahedral element mesh and synthetic measure-
ments were generated by solving the forward model with
FEM. To simulate the noise involved in real BLT experiment,
10% Gaussian white noise was added to synthetic data.
Figures 2(b)–2(e) show the forward mesh and the simulated
photon distribution on the surface in the above four source
settings. Obviously, it is difficult to predict the source
number only according to the photon distribution especially
in case (III) and case (IV).

In the reconstruction process, a permissible source region
strategy was also employed as a priori information to
decrease the ill posedness of BLT inverse problem, which was
defined as {(x, y, z) | 8 < (x2 + y2)1/2 < 12, 13.5 < z < 16.5}

[14]. Following the proposed reconstruction framework the
reconstructions were carried out with the aforementioned
four methods under different source settings.

The first row and the third row of Figure 3 show
the final reconstruction results by Tikhonov method and
l1–ls method combined with the proposed MSDS. For
comparison, the second row and the fourth row of Figure 3
present the corresponding reconstructed results rendered
from GTS, where a global threshold (35% of the maximum
density value) was used. It is obvious that the two sources are
accurately detected by the proposed MSDS combined with
different regularization methods in all the cases considered.
On the other hand, for case (III) and case (IV), only the
source with larger power is detected by Tikhonov + GTS and
l1–ls + GTS, whereas the other weaker one is lost in the final
reconstruction results.

To quantitativly assess reconstruction results in dif-
ferent power settings, we summarize location errors and
reconstructed powers by different reconstruction schemes
in Table 2, where the second column represents the actual
initial power ratio of S1 to S2, and SR1 and SR2 denote
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Figure 5: 3D views of reconstruction results with synthetic data generated from four scattered sources with different powers. (a)–(d) are the
results of Tikhonov + GTS, l1–ls + GTS, Tikhonov + MSDS, and l1–ls + MSDS, respectively.

the corresponding reconstructed sources. N/A denotes that
location information is not available.

From Table 2, it is seen that l1-norm-based method l1–ls
generally performs better than l2-norm-based Tikhonov
method in terms of reconstructed powers and locations.

Figure 4 illustrates the mesh aggregating process of
MSDS and compares the final reconstruction results of
MSDS with those of GTS in case (I). We can observe that
there are some nodes with smaller density value in the
vicinity of the two nodes with larger density, as shown

in Figures 4(a) and 4(b). Apparently, retaining all of the
nonzero components of the regularized solution will incur
some artifacts in the final reconstruction image, in particular
for l2 norm solution by Tikhonov regularization method.
The results in Figures 4(c) and 4(d) show that the traditional
GTS directly discards those nodes with density value lower
than the given threshold in the final results to improve the
image quality. Usually, a higher threshold is preferred in
the literature, thus a threshold of 0.35 max (Si) was used
in the experiments for GTS method [16, 29]. As a result,
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Figure 6: (a) Location error under different mesh levels. (b) Reconstructed power under different mesh levels.

Table 2: Reconstruction results in double-source case.

Case
Power
ratio

Reconstruction
method

Reconstructed center and location error (mm) Reconstructed power (nW)

SR1 SR2 SR1 SR2

I 1 : 1

Tikhonov + GTS −8.95, 2.13, 14.83 1.39 −8.98,−3.57, 14.73 0.28 0.65 0.28

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.35 0.28

l1–ls + GTS −8.99, 2.92, 14.77 0.62 −8.98,−3.57, 14.73 0.28 0.502 0.44

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.41 0.44

II 2 : 1

Tikhonov + GTS −9.03, 2.69, 14.65 0.88 −8.98,−3.57, 14.73 0.28 0.48 0.15

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.37 0.14

l1–ls + GTS −8.98, 2.98, 14.81 0.56 −8.98,−3.57, 14.73 0.28 0.51 0.22

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.43 0.22

III 4 : 1

Tikhonov + GTS −9.03, 2.72, 14.66 0.85 N/A N/A 0.49 0

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.38 0.07

l1–ls + GTS −8.97, 3.00, 14.82 0.53 N/A N/A 0.51 0

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98, −3.57, 14.73 0.28 0.4339 0.10

IV 8 : 1

Tikhonov + GTS −9.03, 2.73, 14.67 0.84 N/A N/A 0.49 0

Tikhonov + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.38 0.03

l1–ls + GTS −8.97, 3.02, 14.83 0.51 N/A N/A 0.51 0

l1–ls + MSDS −8.85, 3.59, 15.14 0.22 −8.98,−3.57, 14.73 0.28 0.43 0.04

those suspect targets with density lower than threshold will
be omitted in this way. Unlike traditional methods, the
proposed MSDS considers not only density value of a node
but also mesh structure used in reconstruction and thus
it has an ability to remove pseudosources and retain weak
suspect sources in the final reconstruction results, as shown
in Figures 4(e)-4(f) and 3.
3.2. Four-Source Reconstruction. In the second experiment,
we attempt to reconstruct sources with synthetic data gener-
ated from four scattered sources with different initial powers,

which may be a common case in tumor metastasis. Specif-
ically, the power setup was according to ratio of 8 : 4 : 2 : 1
and the maximum power density was 1 nW/mm3. Figure 5
shows 3D views of the results of Tikhonov regularization
method and l1–ls method, respectively, combined with GTS
and MSDS. The global threshold was the same as previous
simulations. Obviously, it is hard for traditional GTS method
to detect multiple sources with lower power density in such
experimental setting, whereas the proposed MSDS accurately
distinguishes all of the sources.
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3.3. Influence of Finite Element Mesh. In view of the idea that
the proposed multiple-source reconstruction approach uti-
lizes underlying mesh structure information, it is necessary
to assess the influence of different FEM discretization on
the proposed method. Therefore, we conducted a set of
double-source experiments under different discretization
level. The results in Figure 6 (where the number of nodes in
reconstruction domain denotes different discretization level
or mesh size) show the influence of finite element mesh
on reconstruction. For Tikhonov regularization method
combined with MSDS, the location error increases slightly
after a decrease along with the increasing of mesh size and
the reconstructed power presents a similar variation trend.
As for l1–ls combined with MSDS, both location error and
reconstructed power vary slightly with mesh changes.

In general, finite element discretization does affect recon-
structed results in the sense that the location error and the
reconstructed power vary with the change of mesh. However,
for all of the discretization levels considered, the proposed
method is able to accurately localize and quantify light source
distribution. These results demonstrate the robustness of the
proposed reconstruction framework against mesh discretiza-
tion.

4. Phantom Study

We further demonstrate the effectiveness of the proposed
reconstruction algorithm with phantom experiments. This
set of BLT experiments were conducted with a dual-
modality BLT/micro-CT system [17, 30]. A backthinned,
backilluminated cooled CCD camera is used to measure the
signal on the phantom surface from four directions at 90-
degree intervals.

The heterogeneous mouse chest phantom with 30 mm
height and 15 mm diameter consists of four parts that
represent muscle, lungs, heart, and bone, respectively [30].
The optical properties of different organs are listed in Table 1.
Two small holes of diameter 2 mm were drilled in the
phantom to place glass capillary with 1 mm inside diameter.
Luminescent solutions of height 2 mm were extracted from
a red luminescent light stick (Glow products, Canada) and
then injected to glass capillary to serve as one testing source.
The generated luminescent light had an emission peak wave-
length of about 650 nm. The real center positions of the two
testing sources were (−9, 2, 16.6) and (−9,−3, 16.6).

It is known that luminescent light intensity will decrease
with the passage of time. We collected 100 gray level images
of the sources, which were taken by the CCD camera every
one minute. Figure 7 shows the fitted decay curve of light
density. According to the decay curve, we can obtain sources
with different intensities by controlling the injection time
of luminescent solutions. Three groups of experiments were
conducted, and the ratios of the intensity of source S2 to that
of S1 were 1 : 1, 2 : 1, and 4 : 1, respectively. Figures 8(a)–8(c)
show the front views of the corresponding measured data
on CCD under different intensity settings. Subsequently, a
permissible source region was roughly determined according
to the surface flux density distribution, which is expressed as
{(x, y, z) | 8 < (x2 + y2)1/2 < 13, 15 < z < 18}.
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Figure 7: Decay curve of light density.

The phantom model was discretized into 4202 nodes and
21721 tetrahedra. After mapping the collected optical data on
the three-dimensional phantom surface, we performed four
rounds of reconstruction with Tikhonov + GTS, l1–ls + GTS,
Tikhonov + MSDS, and l1–ls + MSDS under different source
intensity settings. The normalized reconstruction results of
Tikhonov regularization method are similar to that of l1–ls.
To avoid interminable description, Figure 9 only presents
comparison results between Tikhonov + GTS and Tikhonov
+ MSDS.

For all of the testing cases considered in phantom exper-
iments, Tikhonov + MSDS and l1–ls + MSDS can accurately
detect two sources, and the maximum location error is
1.7 mm. Even for the case of real intensity ratio 4 : 1, the
reconstructed source strength ratios of them were 3.12 : 1
and 2.97 : 1. In stark contrast to the proposed methods,
traditional global threshold methods failed to reconstruct
the weaker of the two sources, as shown in Figure 9(c).
Compared with the results of using GTS (the top row of
Figure 9), the proposed MSDS methods produce fewer
artifacts in the reconstructed images (the bottom row of
Figure 9).

5. Discussions and Conclusion

Accurately reconstructing and distinguishing several sources
with different intensities is a challenge problem in BLT, which
is also an essential ability for serial observation of disease
progression or response to therapy in the same animal
over time. In this work, we present a unified framework
for multiple-source reconstruction by integrating a novel
multiple-source detection strategy with regularization-based
reconstruction process. The effectiveness of this regulariza-
tion framework is validated with numerical simulations and
further confirmed with phantom experiments.

The advantage of this framework is twofold. First, there
is no need for a prior knowledge regarding source number,
which is automatically estimated from the reconstruction
results iteratively. Second, the regularization framework is
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Figure 8: (a)–(c) Front views of measurements by CCD for the case of intensity ratios 1 : 1, 2 : 1, and 4 : 1.
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Figure 9: Normalized reconstruction results in phantom experiments. (a)–(c) are the results of Tikhonov + GTS with power ratio of 1 : 1,
2 : 1, and 4 : 1. (d)–(e) are the corresponding results of Tikhonov + MSDS.

general since it can work with different regularizers and
inverse algorithms. The proposed MSDS is also easily applied
to other finite-element-based reconstruction schemes to
improve the final reconstruction results or image quality.

There are several limitations to the proposed method.
As indicated in the experiment results, sparseness-inducing
regularization method (l1–ls) performs better than l2 norm
method (Tikhonov). This is mainly because l1 norm solution
accords with the sparsity nature of bioluminescent source

distribution in these applications. Consequently, how to
select appropriate regularizer and inverse algorithm for
specific BLT application is very important when using this
framework.

Additionally, other regularizers can also be used in this
unified framework. In fact, lp(0 < p < 1) norm regular-
ized reconstruction has been tried for recovery of signals
with weak sparsity in other image processing fields [31].
So far, related researches have not yet been reported in
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BLT. Based on the proposed regularization framework, our
future studies will investigate the effectiveness of other
forms of regularizer for the ill-posed inverse problem of
BLT.

Although only the DA model is considered for the sake
of simplicity, the proposed BLT reconstruction framework
has no limitation on the forward model. The performance of
our framework might be improved by using more accurate
forward models, which is also the direction of our further
work.
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