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Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested
in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to
overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically,
it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image
formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on
circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular
invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical
simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential
applications in various fields.

1. Introduction

Since the early 50s, ionizing radiations (in particular gamma-
rays), because of their penetrating property, have been used
to explore the interior of objects. At first, this was done in
transmission mode with an external radiation source, which
projects a shadow onto a plane detector. Later, it was shown
that a three-dimensional image can be reconstructed pro-
vided there is a sufficient number of such two-dimensional
projections generated by the displacement of the source/
detector pair in space. This three-dimensional image recon-
struction of the inner object structure relies on the existence
of the inverse of the so-called X-ray transform, which
correctly models the above process of data acquisition [1, 2].

A second modality, called emission imaging, deals with
radiation-emitting objects. In nuclear medicine, this modal-
ity concerns objects (human organs), which, after injection
of a radiotracer, displays its biodistribution in the human

body. Nowadays, the image reconstruction of both single-
photon emitting and positron-emitting tracer distributions
is achieved by single-photon emission computed tomogra-
phy (SPECT) [3] and positron emission tomography (PET)
[4, 5], respectively. These two modalities are based on the
invertibility of the standard Radon transform.

However, due to the interaction of radiation with matter,
gamma-ray imaging is plagued by Compton scatter, which
degrades image quality and spatial resolution. Thus, effects
due to scattered photons should at best be eliminated or
at least be reduced [6]. However, a more astute point of
view would be to take advantage of their properties either
for improving image quality or for generating new imaging
processes. The idea of Compton scatter imaging has been
launched many years ago and many ways to exploit Compton
scattering for imaging purposes have been introduced.

An early proposal goes back to the 50s [7], but interest
in this concept has remained vivid [8], because this idea
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has many highly desirable features. In the field of diagnostic
medical imaging, radiography using scattered radiation
could provide a direct and quantitative measurement of the
density of the studied object. In nondestructive testing, it
offers three advantages.

(i) It permits to place both the radiation source and the
detector on the same side of the object.

(ii) It has also greater sensitivity to low-density materials
such as gases.

(iii) Finally, it allows direct spatial definition with high-
contrast resolution.

With the advent of X-ray computed tomography (CT),
interest in Compton scatter imaging has waned for a while.
But research in this field has remained very much alive, and
a large variety of imaging techniques have been developed
[3, 9, 10].

Earlier modalities for Compton scatter imaging are
classified according to the way measurement of the spatial
distribution of scattered radiation is done or the number
of simultaneous volume elements being scanned: that is,
point by point, line by line, or plane by plane (see reviews
[9, 10]). Most of the devices work at constant scattering
angles (generally at 90 degrees). In the mid-90s, the concept
of Compton scatter tomography was introduced by Norton
[11] and subsequently developed by many other workers
[12, 13]. A prominent example in which Compton scattering
acts as imaging agent without mechanical collimation is the
co-called Compton camera [14–16], as well as gamma-ray
tracking imaging or the like. More recently, Compton scatter
imaging using annihilation pair photons with coincidence
measurements has appeared on the scene as a yet unexploited
imaging technique [17]. Related concepts allow enhanc-
ing the detection efficiency by reconstructing a significant
fraction of events which underwent Compton scattering in
crystals [18].

In this work, we review a different approach to Compton-
scattered radiation for emission imaging. We first point
out why scattered photons should be used instead of
primary photons in gamma-ray imaging. Then, we show
how the image formation process is actually performed using
the concept of compounded conical projection. The basic
mathematical object to be considered is a generalized Radon
transform on circular cone surfaces. Section 2 describes
the general principles of this imaging modality and its
properties. Then, in consecutive subsequent sections, we
treat explicitly a special case, involving a standard gamma
camera-based SPECT system, in two and three dimensions.
Results on numerical simulations are also presented; they
speak in favor for the realizability of this imaging method,
once real world issues (noise, energy uncertainty, sampling,
etc.) are addressed and resolved. A conclusion summarizes
this paper and points out future research perspectives.

2. The Emission Imaging Problem

The aim is to image the interior of radiating (or made
radiating) objects, which emit gamma-rays of a given energy
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Figure 1: Linear projection through an object.

E0 resulting from a nuclear transition, (e.g., Technetium
99 m in nuclear medicine with E0 = 140 keV). To intercept
the emitted gamma photons, we will use a device called
a directional detector (or DD for short). This is a point-
like pixel at a site D in space, capable of absorbing gamma
photons of any energy E below E0, in a given direction
specified by a unit vector n. It may be thought as a one-
pixel collimated gamma camera. This device is only used for
argumentation.

For each pair (D, n), the DD records a photon flux
density coming directly from the radiating object reaching
the pixel site D in the direction −n. This measurement
is called in the specialized jargon a projection, or better
a linear projection, since it is done along a straight line
passing through D in the direction n. As the recorded
photons carry the original energy E0, they are called
primary (or nonscattered) photons. In this way, the set
of such measurements constitutes the conventional X-ray
projection data of the object radioactivity function, which is
represented by a nonnegative, well-behaved, and compactly
supported function f (r) = f (x, y, z). Mathematically,
this data is represented by X f (D, n), the so-called X-ray
transform of f (x, y, z). Figure 1 illustrates this measurement
concept.

As the X-ray transform is invertible, albeit under
conditions, f (r) can be obtained by various reconstruc-
tion algorithms (see, e.g., among the many references
[21–24]).

2.1. Scattering. Photon transport through matter suffers
from two lossy phenomena: photoelectric absorption and
Compton scattering (Figure 2). The net depletion in photon
number is described by a macroscopic coefficient of linear
attenuation of the traveling photon flux density. However, in
the energy range of a few hundred keV, Compton scattering
is dominant and photoelectric absorption is negligible in
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Figure 2: Illustration of the problem of photon attenuation
resulting from photoelectric absorption and Compton scattering.

biological tissues. Scattered photons have a disturbing effect
in nuclear medicine imaging, see, for example, [25]. It causes
blurring, loss of contrast, and false detection of emitting
sources in the context of primary (nonscattered) radiation
imaging. So it is natural to raise the question: is scattered
radiation any good for imaging?

Handling away scatter in gamma-ray imaging has been
pioneered by many authors. Algorithms to compensate for
Compton scattering in SPECT imaging have been developed,
for example, [26], and techniques allowing the determina-
tion of source depth via scattered radiation proposed [27].
The idea of using scattered photons to reduce the noise level
of SPECT images has emerged in [28], in which data acquired
in the photopeak and various scatter energy windows are sta-
tistically assembled to improve image quality. In 2001, it was
observed that scattered radiation images of an object may be
sorted out at a given energy (or at a given wavelength) using
standard gamma camera data operating in list mode [29].
A series of apparent images labeled by the photon-scattered
energy of the object is then acquired [30]. Subsequently, they
are taken into account in the process of image restoration.
Small details, unresolved before, emerge clearly separated
from each other. As an example in bone scintigraphy,
Figure 3 shows that small hot spots or nodules, which are
invisible on the left image, become perfectly distinguishable
on the right image after accounting for scattered radiation.
This is, in fact, very valuable for clinical diagnosis, assessment
of response to treatment, and radiation therapy treatment
planning. Thus, the newly revealed resolving power brought
by scattered radiation has appeared very attractive for further
development.

Therefore, it is of interest to take a close look at the effect
of scattering in photon detection. Let us consider first the
case of a point source emitting a monochromatic red light
by a clear day. A human eye, placed at a certain distance
from this source, would see only a red spot. However, if a fog
cloud sets in, then the eye would see a diffuse red cloud much
larger than the red spot. The fog cloud has made itself visible
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Figure 3: Bone scintigraphy: a standard scintigraphic image (left
image) is restored with the use of Compton-scattered radiation. Hot
spots or nodule are clearly displayed (right image—reprinted with
permission from [19]).

because the emitted red light is scattered by the fog droplets
and re-emitted as scattered light by the fog droplets acting
as scattering centers. This fog cloud has become a kind of
secondary radiating object, visible to the human eye. It also
implies the existence of a concealed red light source.

In the gamma energy range, a similar observation can
be made. A single gamma-ray emitting point source behaves
exactly in the same way with respect to our directional
detector (DD), which is a kind of gamma-ray sensitive “eye.”
But if the gamma-ray emitting point source is embedded in
a medium of finite volume, which plays the role of the fog
cloud, then light wave scattering by water droplets is replaced
by Compton scattering of emitted photons with electric
charges of the surrounding medium. If visible light emerges
from scattering without changing its wavelength (Rayleigh
scattering), the emerging scattered gamma ray has an energy
E lower than the incident energy E0, because part of E0

is transferred to electric charges in the traversed medium.
As E is continuously distributed, the gamma-ray sensitive
eye (DD) would now “see” a red-shifted “polychromatic”
radiation emanating from the scattering medium volume
[20]. The wavelengths λ of the scattered gamma-rays are
longer than the incident wavelength λ0, as given by the
Compton formula [31],

λ = λ0 +
h

mec
(1− cosω), (1)

where me is the electron mass, h is the Planck constant,
c is the speed of light in vacuum, and ω is the Compton
scattering angle.

Now instead of having a single-point source, consider a
nonuniform three-dimensional distribution of gamma-ray
emitting point sources embedded in a medium of finite
volume. The question is what flux density of photons of
energy E < E0 would a DD record at a site D in a direction
n? To give an answer, we should follow the backward track
taken by the gamma-ray before it reaches the DD.

A gamma photon arriving at D with energy E must have
gone through a scattering with some electric charge at a site
N situated on the straight line, which starts from D in the
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Figure 4: Compounded conical projection.

direction of n, see Figure 4. As the scattering angle ω is given
by the Compton formula

E = E0
1

1− ε cosω
, (2)

where ε = E0/me c2, this photon must have originated from
a site S, located on the surface of a circular cone of vertex N,
axis DN , and opening angle ω. Following this picture, we can
write down the photon flux density detected at D.

To this end, we need the expression of the Compton
differential cross-section, which reads as the product of the
electron density ne(N) at the scattering site N by the so-called
Klein-Nishina probability P (ω) [25, 31], that is, ne(N)P (ω),

P (ω) = πr2
e

1
2π

1

[1 + ε(1− cosω)]2

×
(

1 + cos2ω +

(
1− cos2ω

)
1 + ε(1− cosω)

)
.

(3)

Radiation emitted at point source S is assumed to be
isotropic. It propagates then to scattering site N and reaches
the detection site D at the end. The incoming photon flux
density on scattering site N is computed from the emission
data at a point source. Let f (S) dS be the number of gamma
photons emitted per unit of time by a volume dS in the object
around site S. The emission being isotropic, the number of

photons emitted in the direction
−→
SN in a solid angle dΩS is

f (S)dS
4π

dΩS. (4)

Therefore, the incoming photon flux density at scattering site
N is given by

f (S)dS
4π

e−A(SN)

SN2
, (5)

where SN = |−→SN| and e−A(SN) is the attenuation factor along
the path SN and is given by the integral

A(SN) =
∫ N

S
dsμ(S + sk), (6)

where k = −→
SN/SN and μ(M) is the linear coefficient of

absorption. Recall that, by assumption, μ is equal to the
product of the Compton scattering cross-section and the
electron density.

Next, the number of scatterers around site N in a volume
dN is ne(N) dN. The net number of photons emerging from
the scattering in an elementary solid angle dΩN is

f (S)dS
4π

1
SN2

ne(N)dNπr2
eP (ω)dΩN . (7)

This means in turn that the detected photon flux density at
site D is

f (S)dS
4π

e−A(SN)

SN2
ne(N)dNπr2

eP (ω)
e−A(ND)

ND2
. (8)

Now, all the contributing point sources S, for a given
scattering center N, lie on a circular cone sheet of axis

identified with
−−→
DN = n DN and opening angle ω. Thus,

we must integrate with the measure δ(cone)dS first. Next,
we must take into account all the scattering sites on the line
DN . Hence, we must perform a second integration with the
measure δ(line)dN. Consequently, the detected photon flux
density at D in the direction n for a scattering angle ω is

f̂ (D, n,ω) =
∫ ∫

δ(cone)
f (S)dS

4π
e−A(SN)

SN2

× ne(N)dNπr2
e P(ω)δ(line)

e−A(ND)

ND2
,

(9)

where δ(cone) means the delta function concentrated on the
cone of vertex N, opening angle ω, and axis n = −−→

DN/DN ;
δ(line) is the delta function concentrated on the line DN .

f̂ (D, n,ω) will be called compounded conical projection
data in the direction n, at site D, and with given scattering

angle ω [20]. f̂ (D, n,ω) is also called the compounded
conical Radon transform (CCRT) of f (r), a generalized
Radon transform on circular cone surfaces as originally
introduced in [32].

Assuming that exchange of integration is valid, we may

view f̂ (D, n,ω) as

f̂ (D, n,ω) = πr2
eP (ω)

∫
dNδ(line)ne(N)

e−A(ND)

ND2

×
∫

f (S)dS
4π

δ(cone)
e−A(SN)

SN2
.

(10)

This result may be regarded as the X-ray transform (on the
straight line passing through D in the direction n) of the
function

g(N | n,ω) = ne(N)
e−A(ND)

ND2

∫
f (S)dS

4π
δ(cone)

e−A(SN)

SN2
,

(11)
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or

f̂ (D, n,ω) = πr2
eP (ω)Xg(N | n,ω). (12)

So by letting the directional detector (DD) take all
possible spatial orientations, we generate the totality of
possible compounded conical projections, which depends
on five parameters: four for a line in R3 and one for the
scattering angle (ω). In principle, the object under study is
the support for two functions f (r), the object radioactivity
distribution and ne(r) its electron density distribution to
be simultaneously determined. This problem is akin to the
identification problem in the exponential Radon transform
[33]. It seems to be difficult to solve at present since, by
inspection, the DD data is underdetermined although it
would be in principle possible to perform the inversion of
the X-ray transform in (12), to retrieve g(N | n,ω). Thus, in
the coming sections, we will review two major achievements
of the compounded conical Radon transforms in Rn with
n = 2, 3 and discuss the properties of the corresponding
imaging modalities.

3. Compton-Scattered Radiation Imaging in
Three Dimensions

3.1. The Compounded Conical Radon Transform (CCRT).
In this section, we examine a tractable case by which a
particular set of compounded conical projections is used for
image reconstruction. This is possible under the following
conditions:

(i) First-order scattering events are accounted for since
they are vastly dominant and higher-order scattering
are neglected [6, 34],

(ii) the electron density is assumed to be constant. This
is a reasonable hypothesis since most human tissues
(brain cells, blood, muscles, lung tissues, water, etc.)
have an electron density around 3.4 × 1023 cm−3.
Their density is also around 1.0 g·cm−3 [19]. This
means for our purpose, objects containing bones
should not be considered,

(iii) the set of compounded conical projections has one
fixed direction n, parallel to the Oz axis direction,

(iv) the set of detecting pixels are distributed as array on
a two-dimensional area, forming a collimated SPECT
gamma camera.

Using the coordinate system of Figure 5 and following
the path of a photon from emission to absorption via one
scattering at a site N, the expression of the flux density on the

detector at a site D = (xD, yD, 0), f̂ (xD, yD,ω) has the form
of a linear integral transform of the object activity density
f (x, y, z),

f̂
(
xD, yD,ω

)

=
∫
R3
dx dy dzKPSF

(
xD, yD,ω | x, y, z

)
f
(
x, y, z

)
,

(13)

ζ
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O
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S
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Figure 5: Coordinate system used in CCRT computation.

where the function f (x, y, z) is defined by

f
(
x, y, z

) =
∫∞

0
dζν(ζ) f

(
x, y, z + ζ

)
, (14)

and the integration kernel is

KPSF
(
xD, yD,ω | x, y, z

)

= K(ω)ν
(√

(x − xD)2 +
(
y − yD

)2 + (z − ζ)2
)

× δ
(

cosω
√

(x − xD)2 +
(
y − yD

)2 − (z − ζ) sinω
)

,

(15)

K(ω) is the Compton kinematic factor, and ν(d) is a function
describing a photometric factor for a distance d, for example,

ν(d) = 1/d2. By definition, f̂ (xD, yD,ω) is called the
compounded conical Radon transform (CCRT) of f (x, y, z).

The adopted working hypotheses are aimed to avoid
unnecessary complications which would mask the main idea.

The inversion of the kernel KPSF(xD, yD,ω | x, y, z) is
then obtained via a form of central slice theorem in Fourier
space of the detector plane for the function f , followed by

a deconvolution to get the Fourier transform f̃ (u, v,w) of
f (x, y, z), see [32, 35],

f̃ (u, v,w)

=
∫
R
dσ exp[2iπσw]

[
−|z|√u2 + v2

]
J(w)

×
∫
R+

t dtJ1
(

2π|z|t
√
u2 + v2

)

×
[
H
(
ω − π

2

)
∂

∂t

G(u, v, t)
K(t)

+ H
(
π

2
− ω

)
∂

∂t

G(u, v,−t)
K(−t)

]
,

(16)
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Figure 6: The PSF at a scattering angle of 50 degrees with collimator
(reprinted with permission from [20]).

where J(w) is the Fourier transform of ν(x), J1(x) is the Bessel
function of order 1, H(x) is the Heaviside unit step function,
t = tanω, G(u, v, t) is the Fourier transform of g(xD, yD, t),
K(t) is the Compton kinematic factor as a function of t.

Finally, f (x, y, z) is recovered by three-dimensional
inverse Fourier transform. It is observed that the data
acquisition can be performed with a spatially fixed SPECT
camera operating at successive scattered energies. As the
scattering angle parameterizes series of “images” of the
object, one may view it as replacing the spatial rotation
angle in a standard SPECT data acquisition. This is a major
advantage offered by this approach.

For practical purposes, the effective treatment of (16)
is in itself a numerical challenge. It has been fully done in
chapter 4 and appendices A and B of [19], where details
on samplings in object space and medium space are given.
Because the kernel of (16) is a Bessel function of order
zero, to control the oscillations, an exponential discretization
step is to be used as suggested in [36]. Along the line
perpendicular to the planar detector, the high-frequency
components of the activity function information are carried
by the weakly scattered (or back-scattered) radiation, the
sampling step should then be very small. But for the
low-frequency components of the activity function, it is
the strongly scattered photons (ω ∼ π/2) which carry
information; the sampling step should be then much larger.
For a primary radiation energy of 140 keV, to obtain the same
spatial resolution, the detector should have a very fine energy
resolution ΔE. In fact, simulations show that the activity
function reconstruction is satisfactory for ΔE ∼ 0.5 keV
(even in the presence of a 24 dB white noise). The key point
is that a reconstruction of reasonable quality can be achieved
using the inverse CCRT.

3.2. Point Spread Function of the CCRT and Simulation
Results. A way to get an idea of what the CCRT could be
or do is to construct its point spread function (PSF), or the
response function to a unit point source. It does not have the
form of a delta-function as in the usual Radon transform.
Because of the integration over all cones standing on top of

the detecting site D, it appears as a function with the shape
of a Mexican hat as shown in Figure 6; the point source is
located somewhere on the vertical line symmetry axis of the
Mexican hat above the planar detector [35].

The gamma detector operates now at a fixed position.
No coincidence detection, as in Compton cameras, is
required. Performed numerical simulations are in favor of
the feasibility of this new imaging principle [35]. How-
ever issues related to higher-order scattering contribution,
nonuniform attenuation, Poisson emission noise, detection
sensitivity, and collimator efficiency are to be resolved before
interesting practical modalities with possible combination
with transmission imaging can be proposed [37].

To provide more convincing arguments regarding the
viability of this idea, we present numerical simulations which
illustrate the reconstruction of a simple cylindrical object
using the analytic inversion formula with the following
working conditions:

(i) the used γ-detector is a conventional SPECT camera.
It has discretized dimensions N length units × N
length units. The length unit is arbitrary but should
remain coherent with reality and in fact is taken
equal to 1 mm. We have chosen N = 16 to keep the
calculations required at a reasonable level,

(ii) the scattering medium is represented by a cube of
dimensions N × N × N (length unit)3,

(iii) the electron density in biological medium is ne =
3.5× 1023 electrons/cm3,

(iv) the radionuclide employed is Tc-99 with an activity
concentration corresponding to 4.84 × 1010 counts
per minutes per cm3,

(v) the acquisition time per projection is set to 0.1 sec,

(vi) the 3D original object (a cylinder of height 6 arbitrary
units) is placed at the center of the scattering medium
(cube),

(vii) the distance from the camera to the upper face of the
scattering medium cube is l = 200 arbitrary length
units.

Figure 7 represents the original object. Figure 8 shows the
series of images of the object at various scattering angles ω
(5◦ < ω < 175◦). In Figure 9, the reconstructed object in
the absence of noise is illustrated with a relative mean square
error (RMSE) = 1.2%, which is perfectly reasonable. We
observe a good performance of the CCRT for modeling the
new imaging process.

Concerning spatial resolution, the intrinsic resolution
depends on the camera design (collimator, crystal, photo-
multiplier tubes, and measurement electronics). The recon-
structed system resolution is further determined by the
reconstruction algorithm used. The inclusion of scattered
radiation increases considerably the number of detected
photons, which might contribute to improve the signal-to-
noise ratio (SNR) and the resolution of the imaging system.
To evaluate accurately the spatial resolution, it is necessary to
use real data and to compare it with conventional methods
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Figure 7: Original object (cylinder) in a cube consisting of 16 transaxial planes (reprinted with permission from [20]).

which do not make use of scattered radiation. At the present
time, it is too early to use our preliminary simulation results
for this purpose.

Since our main objective in this paper is to show
how to exploit advantageously Compton-scattered radiation
to propose a new imaging principle, we focus on results
illustrating the image formation process as well as image
reconstruction from scattered photons.

In real situations, of course, one must take into account
other factors such as photon attenuation by the medium,
Poisson emission noise, and imperfections of the detector
system including the collimator and electronics.

The case of uniform attenuation (often assumed in the
literature) was included in [35]. The exact treatment of
inhomogeneous attenuation poses enormous mathematical
difficulties. Concerning emission noise, several approaches
have been suggested to deal with it such as maximum
likelihood or wavelets method. They may be used for
“denoising” the measured data beforehand or jointly with the
inversion process.

As for the imperfections of the detector, the standard
way for treating this problem is to make use of a response

function usually modeled as a Gaussian defined both in
spatial and energy coordinates. These issues are discussed in
details in [19, 29].

3.3. A Possible Generalization and Its Numerical Test. As
mentioned earlier, the presence of a mechanical collimator
restricts severely the sensitivity of the imaging process. We
have recently advocated a new functional modality following
the principle of emission imaging by scattered gamma-
rays without mechanical collimation [37, 38]. Removing
the collimator from the detector allows more gamma-rays
to reach a detecting pixel from all directions coming from
the upper half-space of this site, therefore increasing the
strength of the signal (Figure 10). An introductory study in
two dimensions has recently been performed [39] to show
convincingly the viability of this idea and to motivate the
present work.

The modeling of the image formation process is done
by a more general compounded conical Radon transform,
whereby one sums over conical projections at one detec-
tion pixel over all cone vertices in the upper half-space.
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Figure 8: Series of images parameterized by the angle of Compton scattering ω(5◦ < ω < 175◦) (reprinted with permission from [20]).

Figure 11 shows the position of one conical projection in this
generalized gCCRT.

This transform is obtained by summing over all scatter-
ing sites for a given site D on the detector. The mathematical
expression of one arbitrary conical projection is quite
involved and given in [40]. The summation over all such
objects can be still expressed as a linear integral transform
of the activity density f (x, y, z),

g(D,ω) =
∫
R3
dx dy dzKPSF∗

(
D,ω | x, y, z

)
f
(
x, y, z

)
.

(17)

Unfortunately, the explicit form of KPSF∗(D,ω | x, y, z)
is too complicated to yield a simple interpretation and will
not be addressed here. However, this PSF, although no longer
a computable function, is in fact an integral of the electronic
density over the surface of a torus of revolution whose axis
is the line connecting the point source to the detection point
(Figure 12). The shape of the PSF is now completely different
compared to the collimated geometry (Figure 13).

To compare with the collimated detector geometry,
Figure 14 shows the computed PSFs for both cases at a
scattering angle of 30 degrees. The PSF without collimator

is about 12 times “stronger” than that with collimator
(approximatively 3200 counts without collimator compared
to approximatively 250 counts with collimator; see [38]).

To demonstrate the viability of this idea, we have used
data generated for a simple object and applied classical
algebraic reconstruction methods. We have taken a simple
source immersed in a cubic scattering medium. The source
itself consists of two concentric cubes with different activity
concentrations (Figure 15).

A 256 × 256 pixels detector is placed on the xy plane.
The pixel size is 0.4 × 0.4 mm2. The scattering medium is
a rectangular box of dimensions 30 cm by 30 cm by 15 cm,
which is at a distance of 1 cm above the planar detector.
The electronic density inside the scattering medium is ne =
3.341023 electrons/cm3 since most biological tissues have an
electronic structure close to that of water. The radionuclide
used in this simulation is 99m Tc, which emits photons at an
energy of 140.1 keV. The scattering medium is discretized
with 13 voxels in x and y axis directions and with 9 voxels
in z-axis direction. The detector is reduced to 13 × 13 pixels.
We construct the weight matrix of the medium by calculating
from our previous models, for each point of the mesh, the
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Figure 9: Reconstructed object in the absence of noise (RMSE = 1.2%) (reprinted with permission from [20]).

Detector

Object

Scattering
medium

Collimator

Figure 10: Two imaging modalities using Compton-scattered
radiation with and without collimation (reprinted with permission
from [20]).

PSF of the detector at the different scattering angles. The
reconstruction is carried out using the conjugated gradient
method with positivity constraint; see Figure 16.

These results are an incentive to pursue the development
of this imaging modality.

4. Compton-Scattered Radiation Imaging in
Two Dimensions

4.1. Image formation-Compounded V-Line Radon Transform
(CVLRT). In this section, we discuss the transposition of the
previous concept into a two-dimensional world. This passage
entails a new form of the compounded conical projection,
which is called now the compounded V-line projection, since
the two-dimensional version of the cone surface is now just
a geometric figure made up of two half-lines forming a letter
V. This concept is illustrated in Figure 17.

Inspection shows that each compounded V-Line pro-
jection depends on three parameters: two parameters for
the line, and ω the scattering angle. Thus, an attempt to
determine simultaneously the electron density ne(x, y) and
the radioactivity density of the object with the totality of
the compounded V-line projections in the plane will not be
successful for lack of sufficient data. So we will examine only
the case of constant ne(x, y) within the hypotheses adopted
in the previous section.

This imaging process concerns two-dimensional struc-
tures in biomedical imaging, in which a radiotracer has been
injected and maintained on a support. Figure 18 shows the
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corresponding setup with a linear SPECT gamma camera for
data acquisition.

In the image formation process, the compounded conical
Radon transform is now replaced by the compounded V-
line Radon transform. We give now the expression of the
photon flux density at detecting site D for a scattering angle
ω as in the previous section. Physical densities used here are
actually derived from their three-dimensional values since we
are dealing with real three-dimensional phenomena which
are now restricted to a plane. They will appear with a star
in formulas, for example, n∗e (x, y) in lieu of ne(x, y, z). Let
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f̂ (D, τ) = f̂ (ζ , τ) be the registered photon flux density, it is
given by

f̂ (ζ , τ) = K∗(τ)
∫∞

0

dη

η

∫∞
0

dr

r

× [ f (ζ + r sinω,η + r cosω
)

+ f
(
ζ − r sinω,η + r cosω

)]
,

(18)

where τ = tanω, K∗(ω) = πr2
e n
∗
e P (ω), the Compton

kinematic factor restricted to two dimensions, 1/η and 1/r
are the photometric propagation factor in two dimensions as
opposed to the usual inverse square of the distance rule given

in three dimensions. We call f̂ (D,ω) the compounded V-
line Radon transform (CVLRT) of f (x, y). Inversion of this
transform would allow the reconstruction of f (x, y) under
the assumptions cited above.
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Figure 15: Two representative slices of the original object illustrat-
ing two transaxial slices corresponding to the 6th and 9th planes,
respectively (reprinted with permission from [20]).

4.2. Inversion of the Compounded V-Line Radon Transform.
The inversion procedure can be performed in two steps; see
[41]. We present it with some details since it appears for the
first time.

(i) First, let us define

∫∞
0

dη

η
f
(
ξ±,η + r cosω

) = h(ξ±, r cosω), (19)

where ξ± = (ζ ± r sinω). Then, this problem is now
shifted to the problem of a simple V-line Radon transform
(VLRT) with the integration measure dr/r on the function
h(ξ, r cosω). Hence, the inversion problem of the CVLRT
is that of the inversion of VLRT for h, followed by the
extraction of f from (19),

f̂ (ζ ,ω)

= K∗(ω)
∫∞

0

dr

r

× [h(ζ + r sinω,η + r cosω
)

+ h
(
ζ − r sinω,η + r cosω

)]
.

(20)
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Figure 16: Two representative slices of the reconstructed images
corresponding to the object shown in Figure 15 (reprinted with
permission from [20]).

The inversion formula for the VLRT can be worked out
following [42]. It yields

h
(
x, y

)

= y

π

∫ π

0
dτ

×
⎛
⎝ P.V.

∫
R
dζ

(
1

ζ − x − yτ
+

1
ζ − x + yτ

)
∂ f̂ (ζ , τ)

∂ζ

⎞
⎠.
(21)

(ii) Now, knowing h(x, y), f is the solution of the
convolution equation

h
(
x, y

) =
∫∞

0

dη

η
f
(
x,η + y

)
. (22)

Thus, f (x, y) can be extracted by Fourier techniques [43].
Let

f
(
x, y

) =
∫
R
dke2iπky f (x, k),

∫∞
0

dη

η
e−2iπkη = −

[
log 2π|k| + γ + i

π

2
sgn k

] (23)
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be the relevant Fourier transforms and γ = 0.57721566... the
Euler’s constant, then (22) becomes

h
(
x, y

) =
∫
R
dke2iπky f (x, k)(−)

[
log 2π|k| + γ − i

π

2
sgn k

]
.

(24)

The recovery of f (x, y) is achieved by inverse Fourier
transform

f
(
x, y

) =
∫
R
dqe2iπqy

∫
R dze

−2iπzqh(x, z)
(−)

[
log 2π

∣∣q∣∣ + γ − i(π/2) sgn q
] ,

(25)

as h(x, z) is known for all z ∈ R.
Formula (21) lends itself to the derivation of a filtered

back-projection (FBP) method for image reconstruction.
This is because its structure is basically the one found in
the standard Radon transform. Essentially, the procedure
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Figure 19: Original thyroid phantom.
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Figure 20: The TV transform of the thyroid image shown in
Figure 19 with dω = 0.0025 rad.

consists of the sum of two filtered back-projections on two
half-lines forming the letter V. This is at first not obvious at
all since in general the inverse of the sum of two operators
is not necessarily the sum of their inverses. The advantage of
the filtered back-projection inversion formula is that it can
be implemented by fast algorithms. Simulation results are
presented next.

4.3. Numerical Simulations. We present now the results of
numerical simulations. The original image (Figure 19) of size
512 × 512 of length units is a thyroid phantom presenting
with small nodules. Figure 20 shows the CVLT transform of
a thyroid phantom with angular sampling rate dω = 0.005
rad and 314 projections (π/2/0.005 = 314) which are the
images of Compton-scattered radiation on the camera in
terms of the distance ξ and the scattering angle ω. The
reconstruction using FBP is given in Figure 21. The artifacts
are due to the limited number of projections. Moreover,
back-projection on V-lines generates more artifacts than
back-projection on straight lines, because of more spurious
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Figure 21: FBP-IM reconstruction of the thyroid phantom with
dω = 0.0025 rad.
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Figure 22: Shepp-Logan phantom.

line intersections. As our numerical results are based on the
discretization of the inverse formula, a choice of a smaller
discretization step dω would improve image quality. This
is indeed a well-established fact and in agreement with
the improved sampling resulting from the increase of data
collected at more values of the scattering angle ω. Despite
these limitations, the small structures in the object are clearly
reconstructed. This result illustrates the feasibility of the new
imaging modality, for which the main advantage resides in
the use of a one-dimensional nonmoving Compton camera
for two-dimensional imaging [42]. To show the possible
medical application of this imaging modality, we have also
presented the simulations on a Shepp-Logan phantom as a
second example; see Figures 22, 23, and 24.

5. Conclusion

The aim of this paper on Compton-scattered radiation
emission imaging is to review the progress and development
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Figure 23: The TV transform of the Shepp-Logan image shown in
Figure 19 with dω = 0.0025 rad.
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Figure 24: FBP-IM reconstruction of the Shepp-Logan phantom
with dω = 0.0025 rad.

steps in this field during the last decade. The theoreti-
cal work is based on the inversion of generalized (and
compounded) Radon transforms defined on cone surfaces
in three dimensions and on V-lines in two dimensions.
Numerical simulations appear to support the viability of the
corresponding imaging process. The natural next research
step to undertake is to study how this imaging principle
behave under realistic operating conditions, namely

(i) how does it react to energy uncertainty measure-
ments,

(ii) how the CCRT inversion is modified if the electron
recoil is not negligible,

(iii) how to include the imperfections of the detection
system (collimator response and electronic system
response),

(iv) how to account for limited statistics and random
noise in typical real data acquisition situations.
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In spite of these open questions, we still believe that this
imaging technique has a strong potential as a future variant
of the SPECT modality as soon as high performance detec-
tors with very fine energy resolution are made available and
accessible on a large scale. The future of scattered radiation
emission imaging lies perhaps in its foremost advantage;
it can provide a three-dimensional image reconstruction
without having to move or displace the gamma camera (or
planar detector). As discussed earlier, the usual rotation angle
of an SPECT camera is now replaced with the Compton scat-
tering angle. Thus, in scattered radiation emission imaging,
the gamma camera is motionless and as such it does not
require a heavy mechanical apparatus to accurately rotate the
gamma camera around an object. It will be therefore less
cumbersome and more convenient to use under stringent
space conditions. In the end, it has led to a new concept of
high energy resolution photon detector, a new development
in data acquisition, and new image reconstruction methods
derived from the compounded conical Radon transform
and compounded V-line Radon transform. Applications in
two- or three-dimensional imaging are possible particularly
in medicine for clinical diagnosis and treatment planning.
Finally, the tantalizing subject of identification via the con-
cept of compounded conical projection looks very exciting
and motivates future research in this direction.
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