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Segmentation of specular reflections is an essential step in endoscopic image analysis; it affects all further processing steps
including segmentation, classification, and registration tasks. The dichromatic reflectance model, which is often used for specular
reflectionmodeling, is made for dielectric materials and not for human tissue. Hence, most recent segmentation approaches rely on
thresholding techniques. In this work, we first demonstrate the limited accuracy that can be achieved by thresholding techniques
and propose a hybrid method which is based on closed contours and thresholding.Themethod has been evaluated on 269 specular
reflections in 49 images which were taken from 27 real laparoscopic interventions. Our method improves the average sensitivity by
16% compared to the state-of-the-art thresholding methods.

1. Introduction

One major concern in laparoscopic image processing is
specular reflections which are present in the majority of
laparoscopic interventions and affect all following processing.
Specular reflections are most pronounced if the surface
normal bisects the angle between the incident light and
the camera. They are caused by moist tissue and appear
as white glare or light-colored glare in the images. Many
different approaches to segment specular reflections have
been proposed in the previous decades. Most of them are
based on the dichromatic reflection model [1, 2]. Let 𝑖 be the
incident angle, 𝑒 the exitance angle, 𝑔 the phase angle, and 𝜆

the wavelength. The reflectance 𝐿
𝑠
(𝜆, 𝑖, 𝑒, 𝑔) and 𝐿

𝑏
(𝜆, 𝑖, 𝑒, 𝑔)

model the surface reflection and the body reflection. The
radiance 𝐿(𝜆, 𝑖, 𝑒, 𝑔) reflected by a surface can be defined as

𝐿 (𝜆, 𝑖, 𝑒, 𝑔) = 𝐿
𝑠
(𝜆, 𝑖, 𝑒, 𝑔) + 𝐿

𝑏
(𝜆, 𝑖, 𝑒, 𝑔) . (1)

The dichromatic reflectionmodel holds for dielectric surfaces
and separates the spectral reflection from the geometric
reflection [3–5]:

𝐿 (𝜆, 𝑖, 𝑒, 𝑔) = 𝑚
𝑠
(𝑖, 𝑒, 𝑔) 𝑐

𝑠
(𝜆) + 𝑚

𝑏
(𝑖, 𝑒, 𝑔) 𝑐

𝑏
(𝜆) , (2)

where 𝑚
𝑠
(𝑖, 𝑒, 𝑔) and 𝑚

𝑏
(𝑖, 𝑒, 𝑔) are geometric scaling factors

and 𝑐
𝑠
(𝜆) and 𝑐

𝑏
(𝜆) are spectral power distributions.The body

reflection (diffuse reflection) and the specular reflection form
linear clusters in a color histogram [6]; fitting linear subspaces
to these clusters can be used to detect specular reflections
in images, and the diffuse color can be reconstructed by
projection. However, in practice, surface roughness and the
imaging geometry make the fitting of subspaces inaccurate
[7]. Additionally, the assumption of dielectric surfaces is not
fulfilled by human tissue. Nevertheless, several algorithms
have been proposed that use the dichromatic model in an
endoscopic environment [8, 9]. However, Vogt et al. show
that simple S channel thresholding in the HSV color space
achieves similar accuracy on endoscopic images [10]. Several
adaptive thresholding techniques have been proposed that
make use of nonlinear color transformations to separate the
specular reflections from bright tissue in color space [9, 11].
Most of the specular reflection segmentation algorithms have
in common that thresholding is used to segment the central
part of the reflections, and the bright region surrounding the
reflection is segmented in a second step. In the following,
we will refer to this region where specular reflection is still
strong, but body reflection increases as specular lobe. Com-
monly, this region is segmented by applying morphological



2 International Journal of Biomedical Imaging

operations to the thresholded image or using region growing
[12]. As mentioned by several authors, single threshold tech-
niques have limited accuracy [13, 14]. Bright parts of the tissue
commonly intersect with weak specular reflections in color
space.The approach ofOh et al. [14] is similar to our approach
as they distinguish betweenweak and strong reflections using
multiple thresholds. In our approach, specular reflections are
classified as weak, intermediate, and strong reflections. We
demonstrate that closed contours can be used to detect weak
reflections which would be missed by thresholding tech-
niques. The segmentation of weak, intermediate, and strong
reflections is combined to obtain the final segmentation.

In here, Sections 2 and 3 discuss methods and results.
First, thresholding techniques for specular reflection segmen-
tation are detailed in Sections 2.1 and 2.2. These methods
are applied in conjunction with the specular lobe seg-
mentation described in Section 2.3. Section 2.4 defines our
hybrid approach combining thresholding techniques with
closed contour segmentation.The results of our approach are
compared to the classical techniques in Section 3.

2. Methods

The most common techniques for specular reflection seg-
mentation in endoscopic images are thresholding methods
[9–11, 13, 14]. In the following sections, we detail the specular
peak thresholding algorithm and outline a second threshold-
ing method which we refer to as cone thresholding. In the
evaluation, we compare these thresholding techniques to our
hybrid approach which is explained in Section 2.4.

2.1. Specular Peak Thresholding. A common assumption for
specular reflections is that they are located in the brightest
peak in the histogram of an image. Stehle selects the brightest
peak of the luminance channel of the YUV color space [15],
while Saint-Pierre et al. perform a nonlinear transformation.
Let 𝐼 : Ω → R3 be an RGB image; the transformed image
𝐼
𝑡
: Ω → R3 is defined by

𝐼t (x) = (1 − 𝑆 (x)) 𝐼 (x) , (3)

where 𝑆(x) is the saturation channel of 𝐼(x) using the HSV
color space [16]. This transformation decreases the color
values depending on their distance to the gray-axis. The
transformation is based on the assumption thatmost specular
reflectionswill be located close to the gray-axis and have a low
saturation. This transformation increases the gap between
specular reflections and tissue in the histogram [11]. The
threshold is selected by the following criterion. Let ℎ(𝑡) be
the histogram of the Y channel of 𝐼

𝑡
and 𝑡 = {0, . . . , 255}. The

threshold 𝑡spec is given by

𝑡spec = max {𝑡 | ℎ̃ (𝑡) − ℎ̃ (𝑡 + 1) > 0} , (4)

with

ℎ̃ (𝑡) = {
1 if ℎ (𝑡) − ℎ (𝑡 + 1) > 0,

0 if ℎ (𝑡) − ℎ (𝑡 + 1) ≤ 0.
(5)

In [11], the threshold 𝑡spec is directly used to detect specular
reflections. However, in our experiments this segmentation
was not robust; if no specular reflections are present in
the image, the brightest parts of the tissue will be classi-
fied as specular reflections. Furthermore, different specular
reflections might appear at different intensity levels and
lead to several peaks in the high intensity range of the
histogram ℎ(𝑡

𝑖
). Therefore, we apply the two following steps

to increase the robustness of the algorithm. First, we allow
only thresholds 𝑡spec > 𝑡min. Second, we convolve ℎ(𝑡𝑖) with
a Gaussian kernel N(𝑡

𝑖
, 𝜎) to merge the peaks of ℎ(𝑡

𝑖
) that

are caused by different specular reflections. The set S ⊆ Ω

of specular reflections is given by S = {x ∈ Ω | 𝐼gray(x) >

𝑡spec}, where 𝐼gray is the Y channel of 𝐼
𝑡
. This approach sets

the threshold according to the brightest specular peak in
ℎ(𝑡
𝑖
) ⋆N(𝑡

𝑖
, 𝜎).

2.2. Cone Thresholding. One drawback of the specular peak
thresholding technique is the assumption that specular reflec-
tions are represented by a single peak in the histogram of
an image. In practice, this is not always the case. Specular
reflections appear at different intensity levels and can lead to
several peaks in the histogram.Therefore, another technique
which relies on defining a cone in the RGB color space as
specular reflections can be used. The cone is located on the
axis n

𝑟=𝑔=𝑏
= (1 1 1)

T for which 𝑟 = 𝑔 = 𝑏, which implicitly
assumes a perfect white balance. Let I : Ω → R3 with
Ω ⊆ R2 be an RGB image. The projection of I(x) on n

𝑟=𝑔=𝑏
is

given by

p
𝑟=𝑔=𝑏

(x) =
⟨n
𝑟=𝑔=𝑏

, I (x)⟩
󵄨󵄨󵄨󵄨󵄨
n
𝑟=𝑔=𝑏

󵄨󵄨󵄨󵄨󵄨

n
𝑟=𝑔=𝑏

. (6)

The set Sspec of specular reflections is then defined by

Sspec = {x ∈ Ω |
󵄨󵄨󵄨󵄨󵄨
I (x) − p

𝑟=𝑔=𝑏
(x)󵄨󵄨󵄨󵄨󵄨

< 𝑎(

⟨n
𝑟=𝑔=𝑏

, I (x)⟩
󵄨󵄨󵄨󵄨󵄨
n
𝑟=𝑔=𝑏

󵄨󵄨󵄨󵄨󵄨

− 𝑥
0
)} .

(7)

The parameters 𝑥
0
and 𝑎 define the tip and the slope of the

cone. This detection algorithm relies on the assumption that
the specular reflections are close to the gray-axis of the RGB
space. The advantage of this segmentation algorithm is that
it does not suffer from multiple peaks in the histogram of
the image. However, one should keep in mind that the RGB
color space is a hardware-dependent color space. Therefore,
the parameters 𝑥

0
and 𝑎 need to be adjusted for different

hardware.

2.3. Specular Lobe Segmentation. The thresholding tech-
niques outlined in the previous sections segment the central
part of the specular reflections. To obtain a segmentation
of the entire specular reflection, specular lobe segmentation
needs to be applied. We use a technique similar to [11]
which is based on region growing [12]. Instead of using
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(a) The brighter specular reflections in this image are of
Type 2. The weak, small reflections are of Type 3 and are
segmented using closed contours

(b) In the lower part of the image, a large reflection of Type
1 can be observed.The three reflections in the upper left are
of Type 2. The small, weak reflection is of Type 3

Figure 1: Two regions of interest show reflections of Types 1, 2, and 3. Both images are taken from laparoscopic sequences of the liver.
Segmentation is performed using the hybrid contour thresholding algorithm.

a single threshold for the region growing, we compute thresh-
olds based on the specular reflection intensities. For every
connected componentScc,𝑖 ⊂ Sspec, with 𝑖 = 1, . . . , 𝑁, where
𝑁 is the number of connected components inSspec, themean
value of the connected component is estimated by

𝜇cc,𝑖 =
1

󵄨󵄨󵄨󵄨Scc,𝑖
󵄨󵄨󵄨󵄨

|Scc,𝑖|

∑

𝑗=1

𝐼 (xj) , where xj ∈ Scc,𝑖. (8)

The region growing algorithm adds a pixel x to the setSlobe if

𝐼 (x) > 𝑐𝜇cc,𝑖, (9)

where 𝑐 is a scaling factor and 𝐼(x) is the luminance channel
of the YUV color image. The final segmentation is given
by Sspec ∪ Slobe. The optimal parameter 𝑐 for different
thresholding algorithms is given in Figure 3. In the following
evaluation, specular lobe segmentation is used together with
the outlined thresholding algorithms.

2.4. Hybrid Closed Contour Thresholding. Single threshold
segmentation techniques have an upper limit of accuracy
which is often caused by bright tissue which is classified
as specular reflection. An increase in precision can be
achieved by using different models for specular reflections.
In laparoscopic videos of the liver surface, different types of
specular reflections appear. The first types of reflections are
large specular reflections which occur in situations where the
endoscope is located very close to the organ surface (Type 1).
As the image intensities at specular reflections of Type 1 are
very high and often clipped in the center part, thresholding
can be used to segment this type of specular reflections.
Another property of this type of reflection is the slowly,
radial decreasing intensity. More difficult to detect are small,
weak reflections located further apart from the endoscope.
These reflections are caused by moist curved organ surfaces.
The intensities of these small specular reflections can be
low, depending on the surface geometry and the underlying

tissue. However, most of this type of reflections have a step-
shaped border, which can be used for detection and precise
segmentation. In the proposed segmentation algorithm, this
type of specular reflections is split up into small reflections
with high intensity (Type 2) and specular reflections that have
low intensities even in the center (Type 3). All three types
are illustrated in Figure 1. For Types 2 and 3, the contour
is used to determine the segmentation boundary. For every
connected component in the binary image that was created by
cone thresholding, it is checked if the component is enclosed
by a contour; this contour is used for segmentation. If no
closed contour is found, the reflection is classified as Type
1. To detect reflections of Type 3, closed contours are used
as seed points. An overview of this approach is given in
Figure 2. In the following, SType1 denotes the set of pixels
segmented as specular reflections by thresholding.TheCanny
edge detector is used to compute a binary edgemap 𝐼Edge(x) of
the laparoscopic image 𝐼(x) [17]. The liver surface is smooth
and lacks edges or corners. Therefore, most of the strong
filter responses are caused by the boundaries of specular
reflections. A morphological closing operation is used to
close small gaps in the contours. Let Scc,𝑖 denote the set
of pixels of the connected component 𝑖 that is enclosed by
the contours of 𝐼Edge(x). The set of Type 2 reflections SType2
is obtained by the connected components that contain at
least one pixel of SType1. The weak Type 3 reflections are
segmented using constraints on the connected components
Scc that are not elements of SType2. The specular reflections
SType3 are given by the connected componentsScc,𝑖 that fulfill
the following constraints:

𝐸 [𝐼 (x)] > 𝑡av, where x ∈ Scc,𝑖,

𝐸 [𝐼 (x)] − 𝐸 [𝐼 (x̂)] > 𝑡diff, where x ∈ Scc,𝑖, x̂ ∈ 𝛿Scc,𝑖,

󵄨󵄨󵄨󵄨Scc,𝑖
󵄨󵄨󵄨󵄨 > 𝑡cc,min,

󵄨󵄨󵄨󵄨Scc,𝑖
󵄨󵄨󵄨󵄨 < 𝑡cc,max.

(10)
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Specular reflection
Type 1

Specular reflection
Type 2

Specular reflection
Type 3

Endoscopic image

Cone thresholding
Closed contour

detection

Constrained
closed contour
segmentation

Closed contour
segmentation based

on thresholds

Threshold
segmentation

Combined
segmentation

Figure 2: Overview of the hybrid closed contour thresholding algorithm. Three different process lines are used for the detection and are
combined in a final segmentation. The contour-based segmentation is capable of segmenting even tiny specular reflections which cannot be
detected by a single threshold. Furthermore, the closed contour supports reflections of Type 2, which have been detected by thresholding
with a precise boundary. Reflections of Type 1 are large specular reflections with a smooth gradient and a bright central part.
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(a) Parameter space of the cone thresholding
algorithm spanned by 𝑥

0
and 𝑎. For visualiza-
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𝑎, and 𝑐 were reduced to the slice containing
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0
= 0.89, 𝑎 = 0.89,
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(b) Parameter space of the specular peak
thresholding algorithm spanned by 𝜎 and 𝑐.
The maximal Jaccard index is located at 𝜎 =
3.4 and 𝑐 = 0.92
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(c) Parameter space of gray-level thresholding
spanned by 𝑡spec and 𝑐. The maximum Jaccard
index is labeled by the red dot. 𝑡spec = 0.94 and
𝑐 = 0.92

Figure 3: Parameter optimization using the Jaccard index. The dot labels the optimal parameter values. The optimal parameters are used in
the evaluation.

The perimeter of Scc,𝑖 is denoted by 𝛿Scc,𝑖, and 𝐸[𝐼(x)]
denotes the expectation value.The last two constraints assure
that only closed contours of a specific size are considered
to be specular reflections of Type 3. The first two con-
straints are based on the aspect that the average intensity

of specular reflections is limited by a lower boundary and
that there should be a high decrease in intensity close to
the perimeter of the reflections. The final segmentation
of specular reflections is then given by SType1 ∪ SType2∪
SType3.
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Table 1: The hybrid closed contour algorithm achieves the best results compared to thresholding techniques in terms of the Jaccard index
and sensitivity. Note the high value for𝑄

1
and the sensitivity; this increase is caused by the reflections of Type 3 (T3) which are missed by the

other algorithms.

Algorithm 𝐹Jaccard 𝑄
1

𝑄
3

Sensitivity PPV
T1 T2 T3 Avg.

Gray-level thresholding 0.55 0.26 0.80 1 0.96 0.10 0.74 0.96
Specular peak thresholding 0.60 0.38 0.87 1 0.81 0 0.61 0.99
Cone thresholding 0.60 0.37 0.81 1 0.91 0.10 0.70 0.99
Hybrid closed contour 0.66 0.55 0.82 1 0.97 0.69 0.90 0.96
The bold font highlights the best result for each category.

3. Results

In this section, we evaluate the specular reflection algorithms
outlined in the previous sections.The evaluation is performed
on a dataset of 49 laparoscopic images taken from 27 patients.
The images contain 269 true specular reflections. Ground
truth segmentation of specular reflection is given by manual
segmentation of the specular reflections. The quality of the
resulting segmentation is determined using the Jaccard index
[18]:

𝐹Jacard =
𝑡
𝑝

𝑡
𝑝
+ 𝑓
𝑝
+ 𝑓
𝑛

, (11)

where 𝑡
𝑝
, 𝑓
𝑝
, and 𝑓

𝑛
are the true positives, false positives, and

false negatives.The Jaccard index is used tomeasure the over-
lap of a given segmentation with the ground truth segmenta-
tion. The advantage of this error metric is that the amount of
true negatives is not considered; in laparoscopic images, the
area of specular reflections is usually very small. Therefore,
the specificity might be high although the segmented area
is several times larger than the true specular reflection. The
parameters for the thresholding technique were determined
by maximizing the Jaccard index. Figure 3 shows the results
of the parameter optimization. One of the main advantages
of the hybrid segmentation is that it detects small reflections
which would be missed by thresholding techniques. As the
Jaccard index computes the overlap of the segmentation
with the ground truth, small reflections will give only slight
improvements. To demonstrate that many small reflections
are detected which would bemissed by thresholding, we state
the sensitivity in terms of specular reflections. As the num-
ber of true negative reflections is unknown—we only have
background and specular reflections—the specificity cannot
be computed. Therefore, we use the positive prediction value
(PPV) to consider the false positives:

PPV =

𝑡
𝑝

𝑡
𝑝
+ 𝑓
𝑝

, (12)

where 𝑡
𝑝
and 𝑓

𝑝
are the number of true and false reflections

detected by the segmentation algorithms. Furthermore, we
use the the average Jaccard index 𝐹Jacard and the quartiles𝑄1,
𝑄
3
of the distribution of the Jaccard index to determine the

robustness of the segmentation algorithms. The results are
given in Table 1.The results demonstrate the limited accuracy
that can be achieved by thresholding techniques for specular

reflection segmentation; the cause for this upper limit is an
overlap in the color space between specular reflections and
the brightest part of the tissue. However, even the adaptive
thresholding technique outlined in Section 2.1 just slightly
improves accuracy. One reason for that is the assumption that
the specular reflections are located in a single peak of the
histogram. This assumption is not fulfilled if reflections of
Type 1 and Type 3 are present in one image.

The hybrid approach using closed contours and thresh-
olding achieves the highest sensitivity and the best segmen-
tation results in terms of the Jaccard index. The sensitivity is
increased by 16% and𝑄

1
by 0.17 compared to the best thresh-

olding results. Small weak reflections are detected by their
closed contours and give rise to this improvement. Further-
more, the closed contours increase the accuracy of the seg-
mentation for specular reflections of Type 2 which explains
the higher Jaccard index. However, there are some closed
contours that are falsely classified as specular reflections and
cause the PPV to drop slightly compared to the specular peak
thresholding and the cone thresholding algorithm.

4. Conclusion

In this section, it was shown that using a hybrid approach
combining closed contours and thresholding significantly
improves the segmentation of specular reflection in laparo-
scopic videos. The closed contour computation is performed
using the Canny edge detector and themorphological closing
operation. This process has the disadvantage that not all the
contours of specular reflections will be closed and might
be missed. Using approaches that always produce closed
contours such as polar transformations and shortest path
computations [19, 20] could increase the sensitivity. However,
many open contours are not caused by specular reflections; in
a brief test, closing open contours using polar transformation
increased the false positives in a large scale. Therefore, we
apply morphological operations to obtain all contours that
contain only small gaps. This leads to a tradeoff between a
high sensitivity and an adequate PPV.

References

[1] S. A. Shafer, “UUsing color to separate reflection components,”
Color Research and Application, vol. 10, no. 4, pp. 210–218, 1985.

[2] T. Gevers and H. Stokman, “Classifying color edges in video
into shadow-geometry, highlight, or material transitions,”



6 International Journal of Biomedical Imaging

IEEE Transactions on Multimedia, vol. 5, no. 2, pp. 237–243,
2003.

[3] G. J. Klinker, S. A. Shafer, and T. Kanade, “The measurement of
highlights in color images,” International Journal of Computer
Vision, vol. 2, no. 1, pp. 7–32, 1988.

[4] J. B. Park and A. C. Kak, “A truncated least squares approach
to the detection of specular highlights in color images,” in
Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA ’03), vol. 1, pp. 1397–1403, Taiwan,
September 2003.

[5] A. Artusi, F. Banterle, and D. Chetverikov, “A survey of specu-
larity removal methods,” Computer Graphics Forum, vol. 30, no.
8, pp. 2208–2230, 2011.

[6] C. L. Novak and S. A. Shafer, “Anatomy of a color histogram,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition CVPR ’92, pp. 599–
605, IEEE, 1992.

[7] P. Tan, S. Lin, L. Quan, and H.-S. Shum, “Highlight removal by
illumination-constrained inpainting,” in Proceedings of the 9th
IEEE International Conference on Computer Vision, pp. 164–169,
October 2003.

[8] D. Stoyanov and G. Z. Yang, “Removing specular reflection
components for robotic assisted laparoscopic surgery,” in Pro-
ceedings of the IEEE International Conference on Image Process-
ing (ICIP ’05), pp. 632–635, September 2005.

[9] O. El Meslouhi, M. Kardouchi, H. Allali, T. Gadi, and Y.
Benkaddour, “Automatic detection and inpainting of specular
reflections for colposcopic images,” Central European Journal of
Computer Science, vol. 1, pp. 341–354, 2011.

[10] F. Vogt, D. Paulus, and H. Niemann, “Highlight substitution in
light fields,” in Proceedings of the International Conference on
Image Processing (ICIP ’02), vol. 1, pp. 637–640, September 2002.

[11] C.-A. Saint-Pierre, J. Boisvert, G. Grimard, and F. Cheriet,
“Detection and correction of specular reflections for automatic
surgical tool segmentation in thoracoscopic images,” Machine
Vision and Applications, vol. 22, no. 1, pp. 171–180, 2011.

[12] C. R. Brice and C. L. Fennema, “Scene analysis using regions,”
Artificial Intelligence, vol. 1, no. 3-4, pp. 205–226, 1970.

[13] M.Arnold, A.Ghosh, S. Ameling, andG. Lacey, “Automatic seg-
mentation and inpainting of specular highlights for endoscopic
imaging,” Eurasip Journal on Image and Video Processing, vol.
2010, article 9, Article ID 814319, 2010.

[14] J. Oh, S. Hwang, J. Lee, W. Tavanapong, J. Wong, and P. C. de
Groen, “Informative frame classification for endoscopy video,”
Medical Image Analysis, vol. 11, no. 2, pp. 110–127, 2007.

[15] T. H. Stehle, “Specular reflection removal in endoscopic
images,” in Proceedings of the 10th International Student Con-
ference on Electrical Engineering, Prague, Czech Republic, 2006.

[16] M. Ebner, Color Constancy, vol. 7, Wiley, New York, NY, USA,
2007.

[17] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 6, pp. 679–698, 1986.

[18] P. Jaccard, “Etude comparative de la distribution florale dans
une portion des alpes et des jura,” Bulletin Del La Societe
Vaudoise Des Sciences Naturelles, vol. 37, pp. 547–579, 1901.

[19] A. Mishra, Y. Aloimonos, and C. L. Fah, “Active segmentation
with fixation,” inProceedings of the 12th International Conference
on Computer Vision, pp. 468–475, IEEE, 2009.

[20] S. J. Chiu, C. A. Toth, C. B. Rickman, J. A. Izatt, and S.
Farsiu, “Automatic segmentation of closed-contour features in

ophthalmic images using graph theory and dynamic program-
ming,” Biomedical Optics Express, vol. 3, no. 5, pp. 1127–1140,
2012.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


