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Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern
during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to
assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the
maximum likelihood method is used to differentiate between normal and abnormal features. The proposed method was applied on
a dataset of 27 cases from normal subjects and patients. Results. The developed method achieved 81.5%, 85%, and 88.5% accuracy
for identifying abnormal contractility in the basal, midventricular, and apical slices, respectively. Conclusions. A novel feature
vector, namely, the normalized wall thickness, has been introduced for detecting myocardial regional wall motion abnormality.
The proposed method provides assessment of the regional myocardial contractility for each cardiac segment and slice; therefore,
it could be a valuable tool for automatic and fast determination of regional wall motion abnormality from conventional cine MRI

images.

1. Introduction

Imaging the heart using cine magnetic resonance imaging
(MRI) is a powerful tool for assessing cardiac global and
regional functions [1]. In cine MR imaging, a series of cardiac
images are acquired at different cardiac phases (about 25
timeframes per cardiac cycle) [2]. The imaging sequence is
repeated several times to image multiple cross sections of
the heart, for example, basal, midcavity, and apical short-axis
planes, as shown in Figure 1. The first step to assess the cardiac
function is to delineate the inner and outer myocardial con-
tours, namely, the endo- and epicardium, of the left ventricle
(LV). To assess global heart function, parameters such as the
LV volume, mass, and ejection fraction (EF) are calculated
using the areas/volumes enclosed by the different contours
[1]. In many cases, global functional parameters cannot reflect
subtle wall motion abnormalities. In such cases, assessment
of regional cardiac wall motion is required. The latter is
usually done by visual evaluation of the heart wall motion [3],
which is highly subjective and requires experienced graders.

Therefore, a quantitative method for assessing regional wall
motion abnormalities is needed. While tagged MRI might
provide such quantitative measurements, the technique is not
usually implemented on a clinical routine basis because, in
addition to the extra scan time, it requires sophisticated and
time-consuming analysis [4].

Several methods have been proposed for the quantifica-
tion of the myocardial wall motion from standard cine MRI
images. These methods can be classified into intensity-based
and contour-based methods. Intensity-based methods utilize
the fact that the blood pool signal intensity is much higher
than that of the myocardium, and thus the myocardium
contraction is accompanied by a significant change in the
overall intensity within a neighborhood around the heart. For
example, the intensity histogram at each cardiac phase has
been used as a key feature to represent the intensity variations
within a fixed area enclosed by the epicardium contour of
the initial timeframe [5]. Another example includes seg-
mentation of the blood cavity at each cardiac phase using
simple thresholding method, then using its area as a feature
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FIGURE 1: Segmentation example in a normal case showing (a) basal, (b) midventricular, and (c) apical slices.

to detect motion abnormality [6]. Nevertheless, the intensity-
based methods are limited by a number of factors. First,
the assumption of high blood signal intensity makes such
techniques inapplicable for black-blood images, for exam-
ple, those acquired with stimulated echo acquisition mode
(STEAM) sequences [7]. Further, the intensity-based features
are not reliable for processing low-quality images. Finally,
the resulting quantities calculated from the blood cavity do
not represent the myocardial thickness and thickening. Such
parameters are of utmost clinical importance as they are
affected by altered regional myocardial function.

The contour-based methods can avoid some of the above-
mentioned limitations. They start off by (manually) identify-
ing the myocardium contours at two or more cardiac phases
to detect wall motion abnormalities. In one method, these
contours are used to build a finite element model representing
the LV deformation at two cardiac phases: end diastole (ED)
and end systole (ES) [8]. Based on this model, global variation
of the LV function is measured by estimating longitudinal
shortening, wall thickening, and twisting. Nevertheless, this
approach does not provide information about the specific
location of wall motion abnormality. One solution, though, is
to use statistical shape analysis to detect wall motion abnor-
mality [9]. Nevertheless, this approach has another drawback
that the implemented statistical model is usually built from
normal cases only, which makes it not suitable for accounting
for potential overlapping between different pathologies and
normal wall motion patterns. In such cases, analysis of the
wall motion pattern during the whole cardiac cycle may be
necessary [10], although information about the location of the
regions with abnormal wall motion, as well as information
about wall thickening, is still missing [8, 10].

The aim of the proposed work is to develop a technique
that can capture the variations in myocardial thickness during
the cardiac cycle and provide an accurate method for assess-
ment of regional myocardial wall motion from nontagged
cine MRI images. Using a dataset of normal and abnormal
cases, segmented manually, we extract regional changes in
myocardial thickness during the whole cardiac cycle based
on standard American Heart Association (AHA) 17-segment
model [11]. The extracted thickness pattern is normalized

relative to the average radius of the epicardium. The resulting
patterns are then mapped to lower dimensions using princi-
pal component analysis (PCA). The last step of the processing
algorithm is feature classification using the maximum likeli-
hood (ML) criterion with leave-one-patient-out method [12].
It is worth noting that although the normalized LV thickness
is used as a clinical measure in echocardiography [13, 14], it
has not been used before for the assessment of cardiac MR
images.

2. Methods

2.1. Dataset and Image Preprocessing. An image dataset from
14 normal subjects and 13 patients (4 with myocardium
infarction (MI), 5 with pulmonary hypertension (PH), and
4 with hypertrophic cardiomyopathy (HCM)) was used to
train and test the proposed method. Three short-axis (SAX)
slices (basal, midventricular, and apical), each with 23-25
timeframes, were acquired for each subject using standard
cine steady-state free precession (SSFP) pulse sequence [13],
resulting in total of 1863 image. The cine images were acquired
using the following imaging parameters: matrix = 320 x 320,
resolution = 1.13 x 1.13 mm?, slice thickness = 8 mm, flip angle
= 60°, and repetition time (TR)/echo time (TE) = 2.8/1.4 ms,
readout bandwidth = 1140 Hz/pixel, parallel acceleration fac-
tor = 2.5, views per segment (turbo factor) =12, and # averages
=1. Only the first 23 timeframes in all cases were processed for
consistency. In addition to the cine images, delayed enhance-
ment (DE) MRI [15] images were acquired for the patients
with MI. This data was used to validate the ability of the
proposed method to identify regional wall motion abnormal-
ity. The imaging parameters of the DE images were matrix =
576 x 576, resolution = 0.625 x 0.625 mm?, slice thickness =
8 mm, flip angle = 25°, and TR/TE = 5.4/2.48 ms, readout
bandwidth = 1140 Hz/pixel, parallel acceleration factor = 2.5,
views per segment (turbo factor) =19, and # averages = 3.
All the images were manually segmented to extract the
epicardium and endocardium. The papillary muscles were
excluded from the myocardium. Each contour was then
resampled at equiangular spaces to a standard vector length
of 60 points in the mid and basal slices and 40 points in
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FIGURE 2: Normalized wall thickness (NWT') throughout the cardiac cycle for all segments in a midventricular slice from (a) normal volunteer

and (b) patient with hypertrophic cardiomyopathy (HCM).

the apical slices. A fixed anatomical landmark was defined
at the intersection between the right ventricle and septum to
identify the location of each segment.

2.2. Normalized Wall Thickness (NWT). At any given time-
frame, wall thickness was calculated at the kth contour point
as the radial distance connecting the kth point on the endo-
cardium to the corresponding one in the epicardium, as pre-
viously explained [9]. The myocardial wall thickness was then
normalized by dividing the calculated distances by the mean
radius of the epicardium (at the initial timeframe). This step is
needed to avoid interpatient variability due to different heart
sizes.

2.2.1. Segmental NWT. The three SAX images in each dataset
were segmented by a faculty in radiology with 13 years of
experience in cardiac MRI using the QMass software (Medis
medical imaging systems, Leiden, Netherlands) based on the
AHA 17-segment model [11]. The apical cap was removed
as no useful segmentation results are available from this
segment. The normalized wall thickness values of all contour
points within each segment were averaged to represent each
segment by one normalized wall thickness (NWT) value. That
is, each segment is represented by a NWT vector, f; ; repre-
senting the average thickness of the ith segment (i = 1:16)
at different 23 cardiac phases (or timeframes). The subscript
j represents the jth patient (j = 1:27). Figure2 shows
an example of normal and abnormal NWT patterns in a
midventricular SAX slice.

2.3. Feature Vector and PCA

2.3.1. Training. The leave-one-patient-out method [12] was
applied to build 16 independent elements training data for

each segment position of N — 1 case, where N is the number
of cases in the dataset (N = 27). That is, one of the 27
cases is selected to perform the test while the remaining
datasets are used for training. The process is then repeated by
selecting another test case and performing the training using
the remaining cases, and so forth until all the 27 cases are
tested. The error mean and standard deviation resulting from
the 27 cases is then calculated. For each of the 16 segments,
all the NWT vectors of the 26 training subjects t;were used to
construct a matrix T (of size = 23 x 26), as follows:

T:[t1|t2|"'|tN—1]' @

PCA was applied on the T' matrix to find the directions of the
data variations, which correspond to the eigenvectors of the
covariance matrix: COV = T-T7 [16]. The firstn eigenvectors,
v;, corresponding to the maximum n eigenvalues, are then
stacked to form the matrix V' representing the directions of
the data variation and their associated eigenvalues e

V=lnlnle il

) @
e=e,....e,] .
The feature vectors that represent the contraction pattern of a
given segment are then created by projecting its NWT vector,
t,, on the subspace formed by the obtained n eigenvectors;
that is,

F=V-T, (3)

where F is an n x N — 1 matrix whose ith column rep-
resent the feature vector of the ith subject. The number of
principal components, 1, was selected experimentally as will
be discussed below. Repeating the training phase for all the
myocardium segments yields 16 sets of features vectors, each
will be used to build a classifier as will be discussed below.



2.3.2. Testing. Givena NWT vector, t, of the jth segment, the
feature vector, f;, is created by projecting the vector ¢ on the
selected n eigenvectors; that is,

fi=V-t. (4)

Then, the vector f; (length = n x 1) is fed to Naive Bayes’
classifier to determine whether the jth segment is normal or
abnormal as described below.

2.4. Classification. Naive Bayes classifier was applied to
assign a label, ¢, to each segment (normal or abnormal) [17],
where equal prior probability was assumed for both classes.
That is, given a vector, f;, then segment j is assigned the label
¢ that maximizes the likelihood function P(f; | C = c¢).
Assuming a multivariate Gaussian distribution f13], the latter
is given by

P(fj|C=c;pt,Z)

1 -1 T __ )
= Wexp(j(fj—ﬁ) z l(fj—#))’

where p and X are the mean vector and covariance matrix of
the feature vectors of the training set, that is, columns of the
matrix F, representing class c.

2.5. Experiments

2.5.1. Experiment 1. 'This experiment was designed to deter-
mine the minimum value of parameter “#” (the number of
principal components) that achieves the best performance.
First, the classification process was conducted using# = 1 and
the performance was measured using the F1 score, defined as

follows [18]:

2TP

ls —
(2TP + FP + FN) ©

where the true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) values are calculated using the
leave-one-patient-out method for each segment with clinical
diagnosis as the gold standard. The experiment was then
repeated for n = 2,3. The F1 score for each value of n was
recorded, and the value that yielded the maximum score was
used for final classification.

2.5.2. Experiment 2. After determining the optimal » value
from Experiment 1, a second experiment was conducted to
evaluate the overall performance of the proposed method
using the leave-one-patient-out method. Classification was
applied using 16 independent classifiers representing different
segment location; slice abnormality was determined based on
the results gathered from the 16 classifiers by determining the
number of abnormal segments at each slice, where a slice was
considered abnormal if it contained one or more abnormal
segments.

The algorithm’s sensitivity, specificity, and accuracy for
identifying patients (with abnormal contraction pattern)
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TaBLE L: The effects of the number of principal components (PC) on
F-score for 3 slice levels: basal, mid, and apical.

Slice 1-PC 2-PC 3-PC
Basal 0.84 0.72 0.75
Mid 0.80 0.8 0.8

Apical 0.87 0.73 0.73

were determined using the following equations, based on the
clinical diagnosis of these patients:

e TP
Sensitivity = ———,
(TP + FN)
TN
Specificity = ———,
pecificity (TN + FP) 7)
(TP + TN)
Accuracy = .
(TN + FN + TP + FP)

In addition, for patients with DE images, the hyperenhanced
segments from the DE images were compared to those
identified by our method as abnormal.

3. Result

The results of Experiment I are summarized in Table 1, where
the F-score of the classification process is listed for one, two,
and three principal components. As can be shown, the highest
F-score (i.e., highest accuracy) occurred when only one
principal component was used. Consequently, the parameter
n was set to 1 in Experiment 2. It is worth noting that in this
experiment the largest component captured about 89% of all
data variations. Table 2 summarizes the results obtained from
Experiment 2, where 92% true positive (TP) and 79% true
negative (TN) were achieved for the basal slices, and 77% TP
for the mid and apical slices. The sensitivity and specificity for
each slice level are also illustrated in the table. The calculated
overall system accuracy was found to be 81.5%, 85%, and
88.5% for the basal, mid, and apical slices, respectively.

The hyperenhanced segments in the DE images (first row
in Figure 3) correspond to the abnormal segments (pointed
to by white arrows in the figure) detected by the proposed
method. However, it can be shown in the figure that some
segments (e.g., segment 1 in Figure 3(e), indicated by green
arrow) are classified as abnormal while it has normal intensity
in the DE image (Figure 3(b)). This may be explained by the
fact that the DE images show only the infarcted regions, not
regions with abnormal wall motion (e.g., the peripheral
zone).

4. Discussion

We proposed a novel feature vector, namely, the normalized
wall thickness, which can be used to detect wall motion
abnormality. This feature considers the variations between
normal and abnormal contraction by tracking the normalized
thickness of all segments between the endo- and epicardium
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TaBLE 2: Classification results according to one principal component, values represented as percentages.

Slice TP Fp TN FN Sensitivity Specificity Accuracy
Basal 92 8 79 23 92% 77% 85%
Mid 77 23 86 14 77% 86% 81.5%
Apical 77 23 100 0 77% 100% 88.5%
FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Basal slice Mid slice Apical slice

Delayed enhanced

(a)

Basal slice

The proposed method

(d)

(b)
Mid slice

(©
Apical slice

()

FIGURE 3: Comparison between (a—c) infarcted regions using delayed enhancement (DE) MRI and (d-f) regions with motion abnormality

detected using the proposed method.

during the whole cardiac cycle. The proposed method pro-
vides a simple tool for the assessment of the regional abnor-
mality for each segment in each slice; therefore, it could be a
valuable tool for automatic and fast determination of regional
wall motion abnormality from conventional untagged cine
images.

The proposed method’s higher specificity relative to sen-
sitivity reflects its tendency for true identification of normal
cases over abnormal cases. Among the different groups of
patients, it was observed that the proposed method was able
to detect the abnormal cases with MI and HCM with better
accuracy than the cases with the PH. This could be explained
by the fact that PH is manifested mainly by RV, rather than
LV, remolding. This capability could be added to the current
algorithm using the Lunar Index, as previously described [19].

One limitation of the proposed study is the small number
of studied subjects. However, we focused in this pilot study on
proofing the concept of work of the new proposed technique.
Future steps include collaboration studying a larger number

of subjects with different disease stages and stratifying the
results based on heart disease to confirm the results in the
current study.
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