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This paper presents an automated and noninvasive technique to discriminate COVID-19 patients from pneumonia patients using
chest X-ray images and artificial intelligence. The reverse transcription-polymerase chain reaction (RT-PCR) test is commonly
administered to detect COVID-19. However, the RT-PCR test necessitates person-to-person contact to administer, requires
variable time to produce results, and is expensive. Moreover, this test is still unreachable to the significant global population.
The chest X-ray images can play an important role here as the X-ray machines are commonly available at any healthcare
facility. However, the chest X-ray images of COVID-19 and viral pneumonia patients are very similar and often lead to
misdiagnosis subjectively. This investigation has employed two algorithms to solve this problem objectively. One algorithm
uses lower-dimension encoded features extracted from the X-ray images and applies them to the machine learning algorithms
for final classification. The other algorithm relies on the inbuilt feature extractor network to extract features from the X-ray
images and classifies them with a pretrained deep neural network VGG16. The simulation results show that the proposed two
algorithms can extricate COVID-19 patients from pneumonia with the best accuracy of 100% and 98.1%, employing VGG16
and the machine learning algorithm, respectively. The performances of these two algorithms have also been collated with those
of other existing state-of-the-art methods.

1. Introduction

On March 11, 2020, the World Health Organization (WHO)
declared the COVID-19 outbreak a pandemic [1]. Initially,
this unique virus emerged in Wuhan, China, and was named
a novel coronavirus. Later, the International Committee on
Taxonomy of Viruses renamed this virus as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Since
then, millions of people worldwide have been infected by
this coronavirus and its variants [2].

To prevent the spreading of this virus, control mecha-
nisms, including wearing facemasks and massive testing
campaigns, have been suggested [3]. Wearing masks have
been mandated in public places by many government and
private organizations worldwide. Even a convolutional neu-
ral network (CNN) based facemask detection algorithm has

been developed by researchers [4] to enforce wearing masks
in public places.

The reverse transcription-polymerase chain reaction
(RT-PCR) has been introduced to test the coronavirus and
is still considered the gold standard for testing this virus
[5]. However, there are some limitations of the RT-PCR test:
(a) it is not economical, (b) it needs variable time to produce
the results, (c) it necessitates person-to-person contact to
administer, and (d) it is not even reachable to the major
population due to a lack of healthcare facilities [6]. More-
over, the RT-PCR test is invasive and uncomfortable for
patients, specifically children. To overcome these limitations,
researchers strived to find an alternative to the RT-PCR test,
and they have recommended using noninvasive techniques
instead. Biomedical signals and radiological images are
recommended for this purpose.
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Biomedical signals, including speech, vowels, words,
phrases, and counting numbers, have been used to detect
several diseases [7–9]. Literature survey shows that these sig-
nals can be used to detect various diseases, including asthma
[10], Alzheimer’s disease [11], Parkinson’s disease [12],
vocal fold diseases [13], depression [14], schizophrenia [15,
16], autism [17, 18], dysphonia [19], abnormality in fetal
heart rate [20], and breast cancer [21]. Recent works have
also demonstrated that coughing sounds could detect
respiratory disorders in COVID-19 patients [22, 23].
However, biomedical signal-based disease diagnosis requires
sophisticated equipment to administer. In addition, only
trained technologists can perform the signal acquisition,
processing, and analysis tasks. Biomedical images can over-
come these limitations.

Biomedical images have been used for diagnosing
diseases in plants [24] and animals for a long time. The three
significant steps followed by these diagnoses are (a) prepro-
cessing, (b) image feature extraction, and (c) classification.
The preprocessing techniques may include image acquisi-
tion, image resizing, image enhancement, image segmenta-
tion, and extracting the region of interest (ROI). Then,
image features are extracted from the preprocessed
images. Finally, these features are applied to a classifier
for final diagnosis.

Recently, deep learning-based algorithms are playing an
essential role as classifiers. For example, an enhanced deep
learning-based CNN model with a leaky rectified linear unit
(ReLU) activation function has been proposed in [25] to
detect a skin disease called acne. The authors have used dif-
ferent image processing techniques in their work, namely, k
-means, texture analysis, and segmentation. The results
show that the deep learning-based algorithm can achieve a
higher accuracy (i.e., 97.54%) than the SVM algorithm while
detecting this disease.

Biomedical images, including computerized tomography
(CT) and X-ray images, are popularly used to diagnose lung
diseases like pneumonia [26–29], tuberculosis [30–32],

interstitial lung diseases [33], early lung cancer [34–37],
and pulmonary nodules [38–43]. The key advantages of
using radiological images are the following: (a) they can be
readily produced at any medical facility equipped with the
necessary instrument and (b) the physicians need consider-
ably less time to perform visual subjective diagnoses. The
chest CT image is generally computed by scanning tech-
niques, whereas the X-ray images are captured from differ-
ent angles and compiled to form a single image. The CT
scans provide physicians with more detailed information
about the patient for diagnoses compared to the X-ray
images. However, CT scans are more expensive than their
X-ray counterparts and are available only in specialized
healthcare facilities. This investigation considers the chest
X-ray images only. However, comparing the chest X-ray
images of patients with COVID-19 and other lung diseases
often leads to wrong diagnoses [44, 45]. For example, it is
hard to subjectively differentiate between the X-ray images of
a COVID-19 patient and a viral pneumonia patient, as shown
in Figure 1. However, early discrimination and isolation of
COVID-19 patients from pneumonia patients are vital to
prevent the pandemic’s spreading. It is also essential for
healthcare facilities to reduce their ever-increasing burden.

This work presents a noninvasive technique to detect
COVID-19 patients from chest X-ray images and artificial
intelligence. A deep CNN and several machine learning
algorithms have been used as classifiers. The CNN is trained
with original chest X-ray images. On the other hand, the
machine learning algorithms are matriculated with encoded
image features extracted from the chest X-ray images. The
main contributions of this work are as follows:

(a) To develop a classification model to differentiate
COVID-19 and pneumonia patients using lung
X-ray images based on machine learning and deep
learning approaches

(b) To extract encoded image features and investigate
their usefulness in identifying COVID-19 and

(a) (b)

Figure 1: The sample X-ray images of (a) a viral pneumonia patient and (b) a COVID-19 patient as collected from the Kaggle database [46].
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pneumonia patients using several machine learning
algorithms

(c) To reduce the computational burden and hence to fas-
ter the algorithm, using a data reduction technique

(d) To provide a detailed performance analysis of the
proposed classification systems in terms of statistical
performance parameters

(e) To compare the performances of the proposed tech-
niques with those of other state-of-the-art algorithms

The rest of the paper is organized as follows. Related
works are presented in Section 2. Materials and methods
are presented in Section 3. Simulation results are presented
in Section 4. The paper is concluded with Section 5. A list
of acronyms used throughout this paper is provided in
Table 1.

2. Related Works

Recently, COVID-19 patient detection, using X-ray images
and artificial intelligence, has drawn considerable attention
from researchers. One of the earliest works can be found
in [47]. The authors have used seven different architectures
of CNN to detect COVID-19 patients. They achieved the
best detection accuracy with the VGG19 (90%) and Dense-
Net (90%).

Two deep learning models, VGG19 and U-Net, have
been deployed in [48] to process the X-ray images and clas-
sify them as COVID-19 positive or COVID-19 negative. The
proposed system preprocessed the images by segmentation
and then categorized them using a transfer learning scheme.
The authors achieved a detection accuracy of around 97%.

An Android application was designed in [49] to identify
COVID-19 patients using X-ray images. For this purpose, a
CNN was developed and deployed on an Android mobile
phone. By employing a 5-fold cross-validation, the authors
achieved an average accuracy, sensitivity, specificity, preci-
sion, and F1-score of 98.65%, 98.49%, 98.82%, 98.81%, and
98.65%, respectively.

To overcome the limitation imposed by the small data-
set, a deep convolutional generative adversarial network
(DCGAN) has been used in [50]. The DCGAN regenerates
enough data from the limited existing data for the training
task and hence overcomes the constraint of a limited dataset.
The simulation showed that the DCGAN could successfully
classify the X-ray images into normal, pneumonia, and
COVID-19.

Supervised machine learning techniques have been used
in [51] to detect COVID-19 patients based on X-ray images.
The authors have extracted a color layout descriptor (CLD)
feature from the images. The results show that the CLD
can assist a machine learning algorithm in achieving a high
precision and recall value while discriminating COVID-19
from other pulmonary diseases.

A novel machine learning algorithm called the Siamese
CNN model was proposed in [52] to detect COVID-19 auto-
matically by utilizing X-ray images. The authors have used

three consecutive models in parallel to extract the image fea-
tures. The results showed that the proposed algorithm
achieved an accuracy of 96.70% while classifying the X-ray
images into COVID-19, non-COVID-19, and pneumonia.
In a similar work [53], common bacterial pneumonia,
COVID-19, and healthy subjects have also been investigated.
The authors have used a transfer learning scheme in their
work. They achieved the accuracy, sensitivity, and specificity
of 96.78%, 98.66%, and 96.46%, respectively.

In [54], the authors have introduced a novel network
architecture to detect COVID-19. They replaced the final
classifier layer in the DenseNet-201 with a new network con-
sisting of a global averaging layer, a batch normalization
layer, a dense layer with ReLU activation, and a final classi-
fication layer. They achieved an accuracy of 94% while
detecting COVID-19.

A pretrained Res-CovNet has been used in [55] to clas-
sify the X-ray images of healthy, bacterial pneumonia, viral

Table 1: The list of acronyms and their definition.

Acronyms Definition

AUC Area under the curve

CLAHE
Contrast limited adaptive
histogram equalization

CLD Color layout descriptor

CNN Convolutional neural network

CT Computerized tomography

DCGAN
Deep convolutional generative

adversarial network

DTL Deep transfer learning

FDR False detection rate

FN False negative

FNR False negative rate

FP False positive

IoMT Internet of Medical Things

kNN k-nearest neighbors

LDA Linear discriminant analysis

MADE
Multiobjective adaptive
differential evolution

PCA Principal component analysis

RSVM Reduced support vector machine

PPV Positive predictive value

ReLU Rectified linear unit

RF Random forest

ROI Region of interest

RT-PCR
Reverse transcription-polymerase

chain reaction

SARS-CoV-2
Severe acute respiratory
syndrome coronavirus

SURF Speeded-up robust feature

TN True negative

TP True positive

TPR True positive rate

WHO World Health Organization
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pneumonia, and COVID-19. The authors have introduced a
novel framework using the Internet of Medical Things
(IoMT) to collect X-ray images from remotely located
patients. The results showed that the proposed model could
discriminate COVID-19 patients from healthy patients with
an accuracy of 98.4%. However, the proposed model
detected COVID-19 patients from normal, bacterial pneu-
monia, and viral pneumonia with a lower accuracy (i.e.,
96.2%).

Fifteen (15) pretrained CNN models have been used in
[56]. The authors achieved the highest accuracy with the
VGG19.

Computer vision algorithms and medical image analysis
techniques have been used in [57] to identify COVID-19.
For this purpose, the authors have employed three state-of-
the-art deep learning models, namely, ResNet-V2, Incep-
tionNet-V3, and NASNetLarge. They have investigated two
techniques, namely, (a) with data augmentation and (b)
without data augmentation. They achieved 98.63% and
99.02% accuracies for these two cases, respectively.

A pretrained novel network model called ResNet-50 and
several image processing techniques, including augmenting,
enhancing, normalizing, and resizing, have been used in
[58] to detect COVID-19 patients. The results showed that
the proposed system outperformed other algorithms, includ-
ing VGG16, VGG19, and DenseNet.

In [59], the Apache Spark system has been utilized as an
extensive data framework to collect the X-ray images of
healthy and COVID-19 subjects. Three models, namely,
Inception-V3, TestNet-50, and VGG19, have been investi-
gated in their work. All these three models achieved an accu-
racy of 100% while discriminating COVID-19 samples from
healthy samples.

A large dataset of X-ray images has been investigated in
[60]. In this investigation, the authors used the X-ray images
of the COVID-19 patients from Github and the healthy
X-ray images from the Kaggle website. The authors
achieved an accuracy of 100%, and the credit went to this
large dataset.

A persuasive classification and reliable detection of the
COVID-19 algorithm have been presented in [61]. The
authors have used the existing state-of-the-art CNN algo-
rithms in their work. They also built a novel CNN from
scratch in this work. The achieved accuracy was 100% for
COVID-19 and healthy classifications. A classification accu-
racy of 93.75% was achieved to categorize healthy, COVID-
19, and pneumonia patients.

In [62], the authors have used three features, namely,
hand-crafted features, radionics features (specialized for
medical images), and deep features (extracted by a pre-
trained deep learning architecture). The authors have com-
bined these features and made shallow hand-crafted
features. They concluded that these shallow features per-
formed better than those individual feature sets. Four
models, namely, Inception-V3, MobileNet, Xception, and
DenseNet, have been used in [63] to detect COVID-19
patients using X-ray images. Based on the performance
parameters for accuracy, recall, and F1-score, the authors
recommend using MobileNet to detect COVID-19 patients.

CT and radiographic images (chest X-rays) have been used
in [64] to detect COVID-19. The authors have used two deep
learning algorithms for classification, namely, VGG19 and
ResNet-50. The simulation results showed that the X-ray
images have higher accuracy than the CT images.

Nine deep learning algorithms, namely, MobileNet-V2,
ResNet-50, Inception-V3, NASNet-Mobile, VGG16, Xception,
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Figure 2: The configuration of the VGG16-based algorithm.
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Inception, ResNet-V2, and DenseNet-121, have been used in
[65] to detect COVID-19 patients. The authors recommended
using these pretrained deep learning models as they are very
fast to produce results compared to the RT-PCR test. In [66],
the authors have used data processing techniques, including
dataset balancing, medical experts’ image analysis, and data
augmentation, to implement their algorithm. They achieved
an accuracy of 99%.

Unlike other works mentioned above, both chest X-ray
images and symptoms have been considered in [67] to detect
COVID-19. The symptoms included cough, fever, sore
throat, headache, and shortness of breath. These symptoms
were preprocessed and applied to a logistic regression ana-
lyzer to diagnose COVID-19 patients. Similarly, the chest
X-ray images were preprocessed to classify the samples as
normal, non-COVID-19-viral, bacterial, and COVID-19
positive. A decision tree algorithm combined the results of
logistic regression and multiclass classification for the final
classification. The proposed algorithm achieved an accuracy
of 78.88%, a specificity of 94%, and a sensitivity of 77%.

Both deep learning and machine learning algorithms
have been used in [68] to detect COVID-19 using chest X-
ray images. The authors conducted 38 experiments using
CNN, 10 experiments using five machine learning algo-

rithms, and 14 experiments using state-of-the-art pretrained
networks. They achieved a mean sensitivity, specificity, accu-
racy, and area under the curve (AUC) of 93.84%, 99.18%,
98.50%, and 96.51%, respectively.

In addition to the hyperparameter tuning, multiobjective
adaptive differential evolution (MADE) has been introduced
in [69] to detect COVID-19 using a CNN. The simulation
results showed that the proposed algorithm achieved an accu-
racy of 94.48%, which is higher than that of other machine
learning algorithms, including random forest (RF), CNN-
SVM, DarkNet-19, reduced support vector machine (RSVM),
DarkCOVIDNet, DeTrack, and deep transfer learning (DTL).

The abovementioned related works have used different
approaches and techniques to detect COVID-19 and
achieved varying accuracy levels. However, these works have
some limitations too. The major limitations of the above-
mentioned related works are as follows.

(a) The algorithms need a huge dataset to train the
classifiers

(b) The computational complexity of the algorithms is
very high as there are considerable parameters to
deal with
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Figure 3: The dimension reduction technique as visualized in VGG16 networks: (a) the 24th channel of the activation for the 1st layer of the
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(c) Most of the algorithms mainly apply image processing
techniques that are also computationally expensive

(d) The accuracy of the algorithms is still not very high
(in general), although a couple of algorithms
achieved an accuracy of 100%

3. Materials and Methods

3.1. Database. The X-ray images available on the Kaggle
website [46] have been used in this investigation. This data-
base is created to assist scientists, clinicians, and healthcare
experts in COVID-19 diagnosis. It is one of the most popu-
lar databases used by the scientific community. These X-ray
images are collected from different sources and stored in the
Kaggle database. This database contains the chest X-ray
images of 3616 COVID-19-positive cases, 10192 normal
(healthy) cases, 6012 lung opacity (non-COVID-19 lung
infection) cases, and 1345 viral pneumonia cases. This inves-
tigation uses 280 X-ray images of viral pneumonia and
COVID-19 samples. These images are randomly selected
from the Kaggle database. Seventy (70%) percent of these
X-ray images are used for training. The remaining 30% are
equally divided for validation and testing purposes.

3.2. Classification Algorithms. In this work, CNN and seven
machine learning algorithms have been used for COVID-
19 detection. CNN has been popularly used in image classi-
fication tasks. The unique characteristic of CNN is that it can
recognize patterns in an image irrespective of its orientation
[70]. However, CNN requires a large dataset for the training.
On the other hand, the publicly available databases, includ-
ing Kaggle, provide a limited dataset. Hence, a transfer
learning approach has been used in this work. A pretrained
network model called VGG16 has been used for this investi-

gation. The VGG16 network is already trained on large data-
sets (i.e., 22000 categories of images) and is also available as
prepackaged with the Keras. The VGG16 used in this work
consists of a stack of 13 convolutional layers followed by
three fully connected layers, as shown in Figure 2. All hidden
layers use the ReLU activation function, and the final layer
uses the Softmax activation function. The original X-ray
images are rescaled to a fixed size of 224 × 224. Five max-
pooling layers carry out spatial pooling to reduce the dimen-
sion of the data. This kind of dimension reduction technique
is illustrated in Figure 3. As demonstrated in this figure, the
image features vary at the different network levels and
become more abstract as the layer increases. The detailed
steps used by the VGG16 are illustrated in Algorithm 1.
The network model was implemented in Google Colab [71].

The investigated 7 machine learning algorithms are
available with the Statistics and Machine Learning Toolbox
of MATLAB 2020. These seven algorithms were selected
among the available machine learning algorithms as they

Figure 4: The discriminative SURF features extracted from the
X-ray image.

1: Load images for training, testing, and validation I
2: Rescale the images to (224, 224, 3)
3: Normalize the pixel values of the images between 0 and 1
4: Load the pre-trained VGG16 model
5: Freeze the base network
6: Flatten the network
7: Add two dense network layers on top of the base network
8: Split the images, I into training, validation, and testing set in the ratio of 70:15:15
9: Extract the feature map, F from the images using pre-trained VGG16
10: Set the epoch, N
11: Set the counter, i
12: do while i <N
13: Select the initial hyperparameter values (e.g., learning rate, batch size, etc)
14: Train the classifier using the training dataset
15: Evaluate VGG16 performance with the validation data
16: end
17: Choose the best weight matrix that provides minimum validation error rate
18: Compute prediction scores, P based on testing samples
19: Classify samples as COVID-19 or pneumonia using P
20: Identify the best-trained model using the test images

Algorithm 1: Steps to classify the X-ray images using VGG16.
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provided the best accuracies. The chosen machine learning
algorithms are (a) linear discriminant analysis (LDA), (b)
fine tree, (c) logistic regression, (d) coarse Gaussian support
vector machine, (e) cosine k-nearest neighbors (kNN), (f)
ensemble subspace discriminant, and (g) linear SVM.

These machine learning algorithms use the speeded-up
robust features (SURF) [72–75] extracted from the X-ray
images. The SURF is a fast and robust approach that has
been popularly used in implementing computer vision algo-
rithms [76–80]. It is computed by using two main steps,
namely, (a) feature extraction and (b) feature description.
The feature extraction step consists of three stages, namely,
(a) integral image formation, (b) Hessian matrix-based
interest point detection, and (c) scale-space formation. The
integral image at location x = ðx, yÞT represents the sum of
all pixels in the input image I within a rectangular image
formed by

Isum xð Þ = 〠
i≤x

i=0
〠
i≤y

j=0
I i, jð Þ: ð1Þ

The integral image formation expedites the computation
of the SURF feature. The SURF feature then uses the Hessian
matrix to find the interest points in the integral image. The
Hessian matrix Hðx, σÞ in x at scale σ is defined as

H x, σð Þ =
Lxx x, σð Þ Lxy x, σð Þ
Lxy x, σð Þ Lyy x, σð Þ

" #
, ð2Þ

where Lxxðx, σÞ is the convolution of the Gaussian second-
order derivative with the image I at point x in the x-direc-

tion. Similarly, Lxyðx, σÞ is the convolution of the Gaussian
second-order derivative with the image I at point x in the
x-direction and y-direction, and Lyyðx, σÞ is the convolution
of the Gaussian second-order derivative with an image I in
the y-direction.

To calculate the determinant of the Hessian matrix, first,
the convolution is applied with the Gaussian kernel, and
then, the second-order derivative is calculated. To reduce
the computational cost, the SURF uses approximation
approaches using box filters to compute convolution and
second-order derivatives. In this work, a box filter of size 8
× 8 is used. Denoting the approximation of the Hessian
defined by Dxx , Dxy , and Dyy, the derivative of Hðx, σÞ can
be approximated by

det Happrox
À Á

=DxxDyy − 0:9Dxy

À Á2
: ð3Þ

Then, the scale spaces are implemented by image pyramids.
The images are repeatedly smoothed with a Gaussian function
and are subsampled to achieve a higher-level representation in
the image pyramid. The scale space is analyzed by upscaling the
filter size. By increasing the filter size and doubling the
sampling intervals for the interest point extraction, the upscal-
ing of the filter is accomplished at a constant rate.

The creation of the SURF descriptor takes place in two
steps, namely, (a) orientation assignment and (b) descriptor
extraction. By using the orientation assignment, the SURF is
made rotation invariant. To achieve this, the SURF feature
calculates the Haar wavelet response in the x-direction and
y-direction. This is done in a circular neighborhood of
radius 6σ and around the key points, where σ is the scale
at which the key points are detected, as shown in Figure 4.
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Then, the sum of vertical and horizontal wavelet responses
in a scanning area is calculated.

To extract the descriptor, the first step consists of con-
structing a square region centered around the key points and
oriented along with the orientation mentioned above. Then,
the region is split into smaller 4 × 4 square subregions. A few
features are computed for each subregion at regularly spaced
sample points. Assuming that HðxÞ is the Haar wavelet
response in the horizontal direction and HðyÞ is the Haar
wavelet response in the vertical direction, then HðxÞ and
HðyÞ are weighted by a Gaussian centered at the key point.
The wavelet responses HðxÞ and HðyÞ are summed up over
each subregions, and a feature vector is formed. To cope
with the intensity changes, the absolute sum of the HðxÞ
and HðyÞ is also calculated. Hence, each subregion has a
four-dimensional descriptor vector, V = ðHðxÞ,HðyÞ, jHðxÞj,
jHðyÞj Þ. This results in a descriptor vector for all 4 × 4 subre-
gions of length 64. To further reduce the computation cost,
eighty percent (80%) of the most important features were
selected from the X-ray images, and the rest of them were dis-
carded. Then, a 500-word visual vocabulary is formed by using
a k-means clustering algorithm. The encoded visual word
occurrences for the X-ray images of a COVID-19 patient and
a pneumonia patient are shown in Figure 5. This figure demon-

strates that the visual word occurrences for COVID-19 and
pneumonia patients are distinctly different. Finally, the feature
vectors are formed for the chest X-ray images, and the dimen-
sions are reduced further by principal component analysis
(PCA) with a covariance of 0.95. The computation of the steps
mentioned above is illustrated in Figure 6. Once the feature
vectors are formed, they are applied to the machine learning
algorithms for classification. The detailed steps for the
classification of the X-ray images by using machine learning
algorithms are illustrated in Algorithm 2.

4. Results and Discussion

As stated earlier, the proposed algorithm discriminates the
X-ray images of COVID-19 patients from pneumonia
patients. The performances of the proposed system are eval-
uated with the commonly accepted measures of accuracy,
precision, recall/sensitivity, and F1-score as described in
the following equations [81, 82]. The evaluation parameters
used in the equations are as follows: (a) TP (true positive):
the X-ray image belongs to COVID-19, and the algorithm
correctly diagnoses it as COVID-19; (b) TN (true negative):
the X-ray image belongs to pneumonia, and the algorithm
correctly evaluated it as pneumonia; (c) FP (false positive):
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Coarse Gaussian SVM 

Cosine kNN

Ensemble sunspace
discriminant
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(iv)
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Figure 6: The system model employing the machine learning algorithms.
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the X-ray image belongs to pneumonia, but the algorithm
wrongly diagnosed it as COVID-19; and (d) FN (false neg-
ative): the X-ray image belongs to COVID-19, but the
algorithm wrongly diagnosed it as pneumonia. The perfor-
mance measures investigated are defined as follows.

Accuracy is the ratio of the correctly predicted observa-
tions to the total observations. It is defined by

Accuracy =
TP + TN

TP + FP + FN + TN
: ð4Þ

Precision/positive predictive value (PPV) is the ratio of
correctly predicted positive observations to the total pre-
dicted positive observations. It is defined by

Precision/PPV =
TP

TP + FP
: ð5Þ

Recall/true positive rate (TPR) is the ratio of correctly
predicted positive observations to all observations in the
actual class. It is defined by

Recall/TPR =
TP

TP + FN
: ð6Þ

The false detection rate (FDR) is the expected ratio of
false positive observations to the total number of positive

Table 2: The best-trained model parameters for VGG16.

Hyperparameters

Optimization method RMSprop

Training mode Auto

Patience (early stopping) 10

Dropout 25%

Batch size 10

Learning rate 0.0001

Epoch 30

Minimum detectable loss 0.00001

Learning reduction rate 0.1

Training loss
Epoch

Lo
ss

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30

Validation loss

Figure 7: The training and validation losses for VGG16.

1: Load images for training, I
2: Load images for testing, T
3: Set grid step size / ∗ dimension to [8,8] ∗/
4: Set block width /∗ dimension [32,64,96,128] ∗/
5: Extract features using SURF algorithm /∗10240 features ∗/
6: Apply the k-mean clustering algorithm /∗ number of cluster 500 ∗/
7: Select the 80% strongest features /∗ 8192 features ∗/
8: Compute the histogram
9: Form dictionary /∗ 500 words ∗/
10: Split the images, I into training and validation set in the ratio of 7:3
11: Set the epoch, N
12: Set the counter i
13: do while i <N
14: Select the initial hyperparameter values (e.g., learning rate, batch

size, etc.)
15: Train the machine learning algorithm using the training dataset
16: Validate the results of the machine learning algorithms
17: end
18: Choose the best candidate, typically with a minimum validation error rate
19: Generate prediction scores, P based on testing samples
20: Use prediction scores, P to classify samples as COVID-19 or pneumonia
21: Test the performances of the algorithms using the test samples

Algorithm 2: Steps to classify the X-ray images using machine learning algorithms.
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observations. It is defined by

FDR =
FP

FP + TP
: ð7Þ

A false negative rate (FNR) is the test’s probability of
missing a true positive. It is defined as

FNR =
FN

FN + TP
: ð8Þ

F1-score is the weighted average of precision and recall.
Therefore, this score takes both false positives and false neg-
atives into account. F1-score is defined by

F1‐score = 2 ∗ Recall ∗ Precision
Recall + Precision

: ð9Þ

The geometric mean, G-mean, reveals the contribution
of sensitivity and specificity. It is formulated as

G‐mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity ∗ Specificity

p
: ð10Þ

Matthew’s correlation coefficient considers all evaluation
parameters into account, as defined by

MCC =
TP ∗ TN − FP ∗ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp :

ð11Þ

The performance of the system model with VGG16 was
optimized with the parameters listed in Table 2. The training
and validation losses are plotted in Figure 7. The perfor-
mance metrics are summarized in Table 3. It shows that
the system model with VGG16 achieves the optimum values
for the precision, recall, F1-score, G-mean, and MCC all
equal to 1.0. The table also shows the log loss score of
0.0373 only. The receiver operating characteristic (ROC) is
shown in Figure 8. The ROC demonstrates that the AUC
is 1.0, indicating that the VGG16 could correctly distinguish
the X-ray images of the COVID-19 patients from pneumo-
nia patients with an accuracy of 100%.

The simulations were repeated with the encoded SURF
features employing seven top-performing machine learning
algorithms as mentioned in the previous section. The perfor-
mances of these machine learning algorithms are listed in
Tables 4 and 5. These tables list the performances in terms

Table 3: The performance of the system model with VGG16.

Pathology/performance measures Precision Recall F1-score FDR/FNR G-mean MCC

COVID-19 1.0 1.0 1.0 0 1.0 1.0

Pneumonia 1.0 1.0 1.0 0 1.0 1.0

Accuracy 1.0
1.0
1.0

0.0373

Macroaverage

Weighted average

Log loss

Tr
ue

 p
os

iti
ve

 ra
te

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4

Receiver operating characteristic (ROC)

False positive rate
ROC curve (area = 1.00)

0.6 0.8 1.0

Figure 8: The ROC characteristics of VGG16.
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of TPR, FNR, PPV, FDR, and F1-score. Table 4 shows that
the coarse Gaussian SVM provides the highest TPR of
98.8%, the lowest FNR of 1.2%, and the highest F1-score of
98.15% while detecting COVID-19 patients. The linear
SVM provides the highest PPV of 98.70% and the lowest
FDR of 1.3%.

Table 5 presents the performances of the machine learn-
ing algorithms for detecting pneumonia. This table shows
that the highest TPR of 98.8% is achieved by the linear
SVM and cosine kNN algorithms. The linear SVM also pro-
vided the highest F1-score of 98.14%. The coarse Gaussian
SVM algorithm provides the highest PPV of 98.70%. The
performance comparison of the machine learning models
is presented in Table 6, which shows that the linear SVM
and coarse Gaussian SVM provide the highest accuracy of
98.10%. But the coarse Gaussian SVM demonstrates the fast-
est prediction rate (2.04ms/prediction). Also, the corre-
sponding AUCs are displayed for each machine learning

algorithm. Based on the simulation results presented in
Tables 4–6, it can be concluded that the SVM provides
the best performance in terms of accuracy, prediction rate,
and AUC.

Finally, the proposed method’s performances are
compared with those of the recently published works. The
comparison results are listed in Table 7. This table shows
that the highest accuracy of 100% was achieved with the pre-
trained VGG16 which is comparable to the works presented
in [59–61, 63], as listed in Table 7. This table also shows that
two machine learning algorithms, linear SVM and coarse
Gaussian SVM, also achieve an accuracy of 98.1% with the
SURF features. This accuracy is higher than that of the algo-
rithms presented in [47, 48, 52–54, 56, 62, 65, 67] in Table 7.
Although the accuracy is a little less than that achieved with
the VGG16, considering the lowest training and prediction
rate (09.72 seconds and 2.04 milliseconds), the system jus-
tifies its viability with the SURF feature to differentiate

Table 4: The classification performance for COVID-19 with SURF features.

Classifier model TPR/recall (%) FNR (%) PPV/precision (%) FDR (%) F1-score (%)

Fine tree 90.00 10.00 85.70 14.30 87.80

Linear discriminant 97.50 2.50 97.50 2.50 97.50

Logistic regression 97.50 2.50 97.50 2.50 97.50

Linear SVM 97.50 2.50 98.70 1.30 98.10

Coarse Gaussian SVM 98.80 1.20 97.50 2.50 98.15

Cosine kNN 78.80 21.30 98.40 1.60 87.51

Ensemble subspace discriminant 97.50 2.50 97.50 2.50 97.50

Table 5: The classification performance for pneumonia with SURF features.

Classifier model TPR/recall (%) FNR (%) PPV/precision (%) FDR (%) F1-score (%)

Fine tree 85.00 15.0 89.50 10.70 87.20

Linear discriminant 97.50 2.50 97.50 2.50 97.50

Logistic regression 97.50 2.50 97.50 2.50 97.50

Linear SVM 98.80 1.20 97.50 2.50 98.14

Coarse Gaussian SVM 97.50 2.50 98.70 1.30 98.10

Cosine kNN 98.80 1.20 82.30 17.70 89.80

Ensemble subspace discriminant 97.50 2.50 97.50 2.50 97.50

Table 6: The performance comparison (machine learning models).

Classifier model Accuracy (%) Training rate (sec) Prediction rate (ms/prediction) AUC

Fine tree 87.5 09.72 3.22 0.88

Linear discriminant 97.5 10.20 3.33 0.99

Logistic regression 97.5 14.57 3.22 0.99

Linear SVM 98.1 11.07 2.70 0.99

Coarse Gaussian SVM 98.1 15.47 2.04 0.99

Cosine kNN 88.8 20.24 2.50 0.98

Ensemble subspace discriminant 97.5 20.24 5.26 0.99

11International Journal of Biomedical Imaging



Table 7: The performance comparison.

Study Features Classifier Best Results/Findings

Hemdan [47] Chest X-ray VGG19, DenseNet
Accuracy: 90% (VGG19)
Accuracy: 90% (DenseNet)

Arias-Garzón et al. [48]
Chest X-ray, lung
segmentation

VGG19, U-Net Accuracy: 97.05% (VGG19)

Bushra et al. [49] Chest X-ray images CNN
Accuracy: 98.65%, sensitivity: 98.49%,

specificity: 98.82%, precision: 98.65%, and
F1-score: 98.6%

Sharmila and Florinabel [50] Chest X-ray DCGAN-CNN Accuracy: 98.6%

Brunese et al. [51] Color layout descriptor Machine learning Precision: 0.965, recall: 0.965

Abugabah et al. [52] Chest X-ray COVID-3DS-CNN
Accuracy: 96.70%, specificity: 95.55%, and

sensitivity: 96.62%

Apostolopoulos and
Mpesiana [53]

Chest X-ray
VGG19

MobileNet-V2
Accuracy: 96.78%, sensitivity: 98.66%, and

specificity: 96.46%

Manokaran et al. [54] Chest X-ray DNN Accuracy: 94%

Madhavan et al. [55] Chest X-ray Res-CovNet Accuracy: 98.4% (binary), 96.2% (multiclass)

Rahaman et al. [56] Chest X-ray images
VGG16, VGG19, ResNet,

DenseNet, MobileNet, Xception,
and Inception

Highest accuracy: 89.3% (VGG19)

Albahli and Albattah [57] Chest X-ray images
ResNet-V2, InceptionNet-V3,

and NASNetLarge
Accuracy: 99.02% (InceptionNet)

Gouda et al. [58] Chest X-ray images ResNet-50
Accuracy: 99.63%, precision: 100%, recall:
98.89%, F1-score: 99.44, and AUC:100%

Awan et al. [59] Chest X-ray images
Inception-V3
ResNet-50
VGG19

Highest accuracy: 100% (binary)

Mahesh et al. [60] Chest X-ray images CNN Accuracy: 100%

Sarki et al. [61] Chest X-ray images CNN Accuracy: 100% (binary), 93.75% (multiclass)

Ho and Gwak [62]
Handcrafted features
Radiomic features
Deep features

LDA, kNN, GNB, SVM,
AdaBoost, RF, ensemble

XGBoost, and NN

Accuracy: 89.2%, precision: 89.2%, recall:
89.2%, and F1-score: 89.2%

Rawat et al. [63] Chest X-ray
Inception-V3, MobileNet,
Xception, and DenseNet

Accuracy: 100% (InceptionV3)

Zouch et al. [64]
Chest X-ray
CT scan

VGG19 and ResNet-50
Accuracy: 99.35% (VGG19), 96.77%

(ResNet50)

Aggarwal et al. [65]
Contrast-limited adaptive
histogram equalization

(CLAHE)
Pretrained CNNs Accuracy: 81%

Reshi et al. [66] Chest X-ray CNN
Accuracy: 99, precision: 1.0, sensitivity: 0.990,
specificity: 1.0, F1-score: 0.994, and AUC:

0.990

Attaullah et al. [67]
Chest X-ray

COVID-19 symptoms
Logistic regression and CNN

Accuracy: 78.88%, specificity: 94%, and
sensitivity: 77%

Proposed method I Chest X-ray images VGG16
Accuracy: 100%, precision: 100%, recall:

100%, F1-score: 100%, G-mean: 1.0, MCC:
1.0, and AUC: 1.0

Proposed method II SURF features Machine learning algorithms

Accuracy: 98.1% linear/coarse Gaussian
SVM)

AUC: 0.99 (linear/course Gaussian SVM)
Recall: 98.80% (linear SVM, cosine kNN)
Precision: 98.70% (linear/coarse Gaussian

SVM)
F1-score: 98.15% (coarse Gaussian SVM)
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COVID-19 patients from pneumonia using chest X-ray
images with the machine learning algorithms.

5. Conclusion

This paper presented a noninvasive, automated detection
algorithm to identify COVID-19 patients from viral pneu-
monia patients based on the X-ray images objectively. A
deep pretrained CNN model, VGG16, and several machine
learning algorithms were investigated. Despite the visual
similarities between the X-ray images of pneumonia and
COVID-19 patients, it is shown that wisely selected machine
learning algorithms and extraction of discriminative features
from the images could successfully discriminate them.
Among the investigated machine learning algorithms, the
SVM was able to differentiate the X-ray images of COVID-
19 patients from viral pneumonia patients with the highest
accuracy of 98.1%. It was also shown that the deep pre-
trained VGG16 achieved an accuracy of 100% even with
the limited data samples.

In the future, other pulmonary diseases like asthma, bacte-
rial pneumonia, and lung opacity that can strongly correlate
with COVID-19 will be considered to optimize the proposed
algorithms. The proposed model can be easily extended to a
multiclass classifier for discriminating COVID-19 from other
pulmonary diseases mentioned above. Also, the variable mor-
phology of airways and lung dimensions that can alter the
diagnoses for different genders will be examined.

Data Availability

The data can be found in https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database.
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