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Iris has specific advantages, which can record all organ conditions, body construction, and psychological disorders. Traces related
to the intensity or deviation of organs caused by the disease are recorded systematically and patterned on the iris and its
surroundings. The pattern that appears on the iris can be recognized by using image processing techniques. Based on the
pattern in the iris image, this paper aims to provide an alternative noninvasive method for the early detection of DM and HC.
In this paper, we perform detection based on iris images for two diseases, DM and HC simultaneously, by developing the
invariant Haralick feature on quantized images with 256, 128, 64, 32, and 16 gray levels. The feature extraction process does
early detection based on iris images. Researchers and scientists have introduced many methods, one of which is the feature
extraction of the gray-level co-occurrence matrix (GLCM). Early detection based on the iris is done using the volumetric
GLCM development, namely, 3D-GLCM. Based on 3D-GLCM, which is formed at a distance of d = 1 and in the direction of
0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°, it is used to calculate Haralick features and develop Haralick features which are
invariant to the number of quantization gray levels. The test results show that the invariant feature with a gray level of 256 has
the best identification performance. In dataset I, the accuracy value is 97.92, precision is 96.88, and recall is 95.83, while in
dataset II, the accuracy value is 95.83, precision is 89.69, and recall is 91.67. The identification of DM and HC trained on
invariant features showed higher accuracy than the original features.

1. Introduction

An image can be used as a medium to store data and it can
also store information. A visual image consists of an object
that is not easy to be interpreted by the eye and interpreted
by the brain. One way to recognize an image is to know the
features inherent in an object. Several features are often used
for feature extraction, including shape features, color features,

and texture features. Image texture can be characterized by
density, regularity, uniformity, frequency, directionality, and
roughness [1].

The feature extraction process obtains characteristics or
texture characteristics. Texture analysis plays an essential
role in digital image processing [2, 3]. Computerized texture
analysis is based on the statistical or structural properties of
spatial patterns. The statistical approach considers that a
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two-dimensional random field generates the intensity. This
technique is based on spatial frequencies and produces tex-
ture characteristics. Examples of methods include run
length, autocorrelation, co-occurrence, and edge frequency.
At the same time, structural techniques are related to the
preparation of small parts (primitives) of an image. The
structural analysis method describes the nature and place-
ment of texture elements; an example of the technique is
the fractal model.

Texture-based features are better than wavelet-based fea-
tures by classifying in general. Features based on first- and
second-order statistics characterizing textures were used
for brain image classification. Both are significantly better
than methods based on wavelet transform [4]. Ershad, S.F
extracted textural and statistical information from the
nucleus and cytoplasm on cell images. By combining the
Haralick features, global significant values and time series
features are used for feature extraction. This study is efficient
for detecting cervical cancer using pap-smear images [5].

The medical use of image textures has been reported in
the previous studies. Examples are early detection of Alzhei-
mer’s disease [6], dengue fever [7], osteoarthritis [8, 9], and
lung cancer [10, 11], while research on disease diagnosis
based on iris image feature extraction is used to diagnose
kidney disease [12] and heart disease [13], detect Alzhei-
mer’s [14], detect stomach disorders [15], and others.

There are many texture information approaches. The
approaches include the convolutional neural network, the
local binary pattern, the wavelet, the multiscale patch-based
recognition method, and the gray-level co-occurrence matri-
ces (GLCM). Haralick texture features calculated from GLCM
have been successfully applied in disease classification and
detection. The examples are the detection of brain tumors
[16]; lung diseases [17]; classifying kidney images such as nor-
mal, kidney stones, kidney cysts, and kidney tumors [18]; and
COVID-19 detection [19].

2D texture information cannot represent the actual tex-
ture of 3D objects in 3D space. The textures reflect varia-
tions or repetitions of spectral values in the area, and the
relative positions of primitives in the 2D image region can-
not reflect genuine relationships in the 3D space. Therefore,
the 3D texture will be more robust against variations in
viewing angles. In medical image processing, 3D gray-level
co-occurrence matrices (3D-GLCM) have been used to ana-
lyze renal cell carcinoma tissue [20], analyzing the state-of-
the-art art in 3D biomedical texture analysis to identify spe-
cific needs [21], classification of benign and borderline favor
types on follicular neoplasm images [22], identify the kind
of ovarian tissue [23], classification of polyps by CT colono-
graphy [24], and identification of DM and HC based on iris
image [25].

In this paper, we explore the potential of 3D-GLCM to
identify patients with diabetes mellitus (DM) and high
cholesterol (HC). It is an alternative to noninvasive detec-
tion of diabetic and/or high cholesterol patients. A com-
prehensive interpretation of 3D-GLCM-based texture
features modified asymptotically invariant to image quan-
tization in the context of DM and/or HC detection is
presented.

The modification of Haralick’s gray-level feature extrac-
tion in this study was applied to the image of the eye’s iris.
Furthermore, an evaluation of the original 3D-GLCM and
invariant 3D-GLCM feature extraction was carried out. In
addition, this feature extraction modification was also tested
for other image objects, namely, MRI of brain tumors and X-
ray of pneumonia, to determine the accuracy of the pro-
posed method. The remainder of this paper is organized as
follows. Section 2 describes the proposed feature extraction
materials and techniques; Section 3 describes the results of
the method process; Section 4 discusses the findings
obtained compared to previous related research. Finally,
conclusions are drawn in Section 5.

2. Material and Methods

The workflow of the proposed model consists of three
steps. The first step is to convert the RGB value of the iris
image into the gray-level value of the entire dataset. The
second step forms the 3D-GLCM image features from
the converted iris image, the result of step one. Finally,
in the third step, 3D-GLCM and 3D-GLCM Invariant
models identify the iris image. Details of the three phases
are presented below.

2.1. Grayscale Image Conversion. In computing, a grayscale
digital image is an image in which the value of each pixel
is a single sample. The displayed image of this type of image
consists of a gray color, where it varies for black at the weak-
est intensity and white at the most vigorous intensity, but the
color variations differ very much.

Grayscale images are often a calculation of the light
intensity of each pixel in a single band electromagnetic
spectrum.

In this study, the data source is an RGB image of type
.jpg. The image is converted to the function contained in
Matlab2019a, namely, the rgb2gray() function. The gray-
level scaling is a trade-off between reducing the disparity
and retaining sufficient information to identify the iris.
Therefore, the gray-level scaling is essential to improve
identification performance. This study used the adaptive
histogram equalization (AHE) method [26–28] for image
improvement. Figure 1 shows the results of the conversion
process of RGB iris images to grayscale iris images and the
enhancement of iris images using the AHE method.

2.2. 3D Gray-Level Co-occurrence Matrix (3D-GLCM). The
gray-level co-occurrence matrix (GLCM), commonly known
as 2D-GLCM, was first proposed by Haralick with 28 features
to explain spatial patterns [29]. GLCM can reflect comprehen-
sive information from the image area by computing the corre-
lation between the intensity of two pixels, namely, reference
and neighboring pixels, with a certain distance and direction.

GLCM uses texture calculations in the second order.
Texture measurements in the first order using statistical
analyses are based solely on the pixel values of the original
image, such as variance. They ignore the pixel adjacency
relationship. In the second order, the relationship between
pairs of two actual image pixels is taken into account, where
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it pays attention to the relationship between the reference
pixel and neighboring pixels.

PCOM i, j, k, d, θð Þ =N xn1, yn1ð Þ, xn2, yn2ð Þ, xn3, yn3ð Þð Þ
*

∈M1xM2xM3

max xn1 − xn2j j, yn1 − yn2j jð Þ = d

max xn2 − xn3j j, yn2 − yn3j jð Þ = d

Θ xn1, yn1ð Þ, xn3, yn3ð Þð Þ = θ

I xn1, yn1ð Þ = i

I xn2, yn2ð Þ = j

I xn3, yn3ð Þ = k

�������������������

+
:
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GLCM is a matrix with the size N ×N , where N is the
level of gray intensity in the image. The sum of the intensity
of the pixel pairs with a certain distance and direction
becomes the matrix element. Given that Gpði, j, k, θÞ repre-
sents the 2D-GLCM of pixel p with a distance and direction
θ, ði, jÞ is the number of rows and columns in the matrix.

The extension of 2D-GLCM to volumetric images has
been proposed in [30, 31], known as 3D-GLCM. The 3D-
GLCM is similar to the 2D-GLCM variant, but the displace-
ment vector is defined using three x, y, z coordinates and a
higher number of orientations. The relative distance is deter-
mined by vector d = ½d1, d2, d3�, where the vector points
from the reference pixel to the neighboring pixel. It can be
described in equation (1) [32].

PCOM is the 3D-GLCM matrix element; i is the reference
pixel value; j is the first neighbor pixel value; k is the second
neighbor pixel value; d is the distance between pixels, is the
direction formed by the reference pixel, and the second
neighbor pixel; N is the frequency of occurrence of the pair
of pixels; ðxn1, yn1Þ are the coordinates of the reference
pixels; ðxn2, yn2Þ are the coordinates of the first neighboring
pixel; and ðxn3, yn3Þ are the coordinates of the second neigh-
boring pixels. M1,M2, and M3 are the number of pixel
intensity levels for pixel i, pixel j and pixel k, and Iðxn1, yn1
Þ is the value of pixel i, Iðxn2, yn2Þ is the value of pixel j, Ið
xn3, yn3Þ is the pixel value of k.

The element of the three-dimensional co-occurrence
matrix is the frequency of occurrence of the gray value pair
of the original image at the specified direction and distance.
The number of possible neighboring pixels in the formation
of 3D-GLCM is strongly influenced by the size of the origi-
nal image used where the steps in building 3D-GLCM are
as follows [33]:

(1) Creating a frame matrix. The frame matrix shows
the possible combinations of gray levels of the image
and the position in the matrix

(2) Forming a co-occurrence matrix. The upper left co-
occurrence matrix elements will fill with the number
of times the pixel combination (0, 0, 0) occurs in the
image area where the combination of gray values is
based on the frame matrix results

(3) Transpose the co-occurrence matrix and make the
matrix symmetrical. Based on the co-occurrence
matrix generated in the second step, the matrix
transpose operation is performed. After getting the
results of the transpose matrix from the co-
occurrence matrix, then form a symmetric matrix.
The symmetric matrix is generated by adding the
co-occurrence matrix with the transpose matrix

(4) Normalization of the co-occurrence matrix. This
stage is done by adding up all the elements of the
symmetrical matrix. Then, the sum of all compo-
nents is used as a divisor for all elements in the sym-
metric matrix

2.3. Invariant Texture Feature. A valid descriptor must pos-
sess the invariant property based on a moment where invari-
ant is a characteristic that does not change or is unaffected
by a particular transformation. Two different approaches
can be used to meet the demand for invariance, namely,
the basic construction of the moment invariant and the nor-
malization of the moment [34, 35].

Equation (2) is the definition of a three-dimensional
order moment.

ð1
0

ð1
0

ð1
0
∅ i, j, k, g p∗ð Þð Þω p∗ i, j, kð Þð Þdidjdk: ð2Þ

(a) (b) (c)

Figure 1: Iris images: (a) original RGB iris images, (b) grayscale conversion iris images, and (c) iris image enhancement with AHE.
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The Riemann sum can approximate equations (2) and
(3) where Δi = Δj = Δk = 1/N is a differential and P is a 3D-
GLCM invariant [36].

〠
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j=1
〠
N
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∅
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N
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ΔiΔjΔk, ð3Þ

�P = X

∑N
i=1∑

N
j=1∑

N
k=1X i, j, kð ÞΔiΔjΔk

: ð4Þ

There are many approaches to extracting invariant fea-
tures [37–40], where the algorithm can only be used to
extract variant features in the similarity transformation.

2.4. Feature Extraction. The power of feature extraction is
the ability to measure basic patterns invisible to the human
eye. In addition, the physical construction and appearance
of known texture inserts make it possible to hypothesize
how some texture features might behave. In this study, feature
extraction was carried out using the 3D-GLCM method. The
feature extraction process has two subprocesses: the formation
of 3D-GLCM and the calculation of feature extraction with six
statistical characteristics, namely, max probability, entropy,
energy, correlation, contrast, and homogeneity.

The 3D-GLCM formation process is carried out with a
distance of d = 1, with directions 0°, 45°, 90°, 135°, 180°,
225°, 270°, and 315°. After getting each 3D-GLCM element,
it is used as a reference to calculate the value of these statis-
tical characteristics. The calculation method of the six statis-
tical attributes with the original 3D-GLCM is shown in
Table 1.

The calculation of extracting the asymptotically invari-
ant modified Haralick feature was based on the symmetric
matrix informing the 3D-GLCMmatrix without the normal-
ization process. The analysis of statistical features is shown
in Table 2, where x ði, j, kÞ is the i, j, k element in the 3D-
GLCM matrix, which is not normalized, and N is the num-

ber of gray levels in the image. Thus, when calculating the
statistical feature values (Table 2), we have

Δ = 1
N
, ð5Þ

Δij =
1
N2 , ð6Þ

Δijk =
1
N3 , ð7Þ
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2.5. Accuracy Assessment. The performance of learning algo-
rithms is generally measured in terms of prediction error,
which gives better predictability than an independent test
set. Therefore, accurate assessment of test errors is critical
because it provides a reliable model selection guide and eval-
uation of learning methods or models [27].

Furthermore, in analyzing the effectiveness of different
features, accuracy features are used to evaluate the identifica-
tion results quantitatively.

In evaluating the performance of the method in this
study, the reference confusion matrix is used. The confusion
matrix represents the predictions and actual conditions of
the data generated by the algorithm/method. The confusion
matrix provides information on comparing the system’s
identification results with the actual identification results.
The confusion matrix can measure performance in binary
identification problems and multiclass identification prob-
lems [41].

Evaluation of multiclass identification ability is carried
out for each class, such as evaluation for binary identifica-
tion. The use of the terms “positive” and “negative” is based
on predictive identification, while the terms “true” and
“false” are based on whether the prediction follows the
observations. Performance metrics used in the measurement
include accuracy, precision, and recall. Accuracy describes
how accurately the model can classify correctly, and the
accuracy value can be obtained by equation (11). Precision
describes the level of accuracy between the requested data
and the prediction results given by the model, and this value
can be obtained by equation (12). At the same time, recall
describes the success of the model in rediscovering informa-
tion. The recall value can be obtained by equation (13).

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi
, ð11Þ

Table 1: Texture features calculated from 3D-GLCM.

Feature 3D-GLCM expression

Max probability max pijk
� �
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Precisioni =
TPi

TPi + FPi
, ð12Þ

Recalli =
TPi

TPi + FNi
: ð13Þ

The given TPi indicates the number of correctly identi-
fied images with the ith category. FPi shows the number of
incorrectly identified images in the ith category. TNi shows
the number of incorrectly identified images correctly. At
the same time, FNi is the number of correct images identi-
fied as wrong images [42, 43].

2.6. Image Dataset. The data in the experiment consisted of
the dataset I, dataset II, brain tumor MRI dataset, and X-
ray pneumonia dataset. Dataset I consists of 100 images of
the right iris. Dataset II consists of 100 images of the left iris.

The source of dataset I and dataset II is from the iris of an
outpatient Internal Medicine Polyclinic, Airlangga Univer-
sity Hospital, Surabaya. The inclusion criteria of research
subjects from datasets I and II were male or female. In addi-
tion, the patient did not have cataracts, and the iris was
never injured or injured; the iris was not photographed after
eye surgery. There are four groups in datasets I and II,
namely, iris images of DM patients, HC images of patients
with irises, iris images of patients with DM and HC, and iris
images of normal patients. The image in the dataset is a
color image (RGB) with 320 × 240pixels, and the image is
saved with a .jpg file extension.

There are 215 MRI images for the MRI dataset, consist-
ing of 140 MRI images with brain tumors and 75 MRI
images with normal conditions. In addition, there are 95
X-ray images in the X-ray dataset, composed of 45 X-ray
images with pneumonia and 50 X-ray images with nonpneu-
monia. The source of the brain tumor MRI dataset and the
X-ray pneumonia dataset is from the dataset at http://
kaggle.com.

3. Result

3.1. Cross-Validation. Cross-validation is a statistical method
used to evaluate the performance of a model or algorithm,
where the data is separated into two subsets, namely, learn-
ing process data and validation or test data. The model or
algorithm is trained by the learning subset and validated
by the validation subset.

In k-fold cross-validation, the dataset is first partitioned
into k subsets or segments or folds of the same (or almost
the identical) size, k-folds, namely, D1,D2,⋯,Dk. Then,
the dataset is divided into learning data and test data. The
learning and testing process was repeated k times [44]. The
illustration of k-fold cross-validation data iteration is shown
in Figure 2.

The workings of k-fold cross-validation are as follows:

Table 2: Texture features calculated from 3D-GLCM invariant.

Feature 3D-GLCM invariant expression

Max probability max �pijk
� �

Entropy −〠
N

i=1
〠
N

j=1
〠
N

k=1
�pijk log2�pijk

� �
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〠
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〠
N

k=1
�p2ijkΔijk
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N

i=1
〠
N

j=1
〠
N

k=1
�pijk

i/N − �μxð Þ j/N − �μy

� �
k/N − �μzð Þ

�σx�σy�σz
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〠
N
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〠
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i
N

−
j
N
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Homogeneity 〠
N
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1k fold 2 3 4 k

First fold

Second fold

3th fold

4th fold

kth fold

= Testing data = Learning data

Dataset

Figure 2: Illustration of data iteration with k-fold cross-validation.
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(1) The total dataset is divided into k parts

(2) The 1st fold is when the 1st part becomes test data,
and the rest becomes training data. Then calculate
the accuracy based on that portion of the data

(3) The 2nd fold is when the 2nd part becomes test data,
and the rest becomes learning data. Then calculate
the accuracy based on that portion of the data

(4) And so on until it reaches the k-fold. Then, finally,
calculate the average accuracy of the k accuracy
pieces above. This average accuracy becomes the
absolute accuracy

The four datasets used in this study are divided into two
parts. The first data is used for the learning process by 80%
of the dataset, and the second data is used for testing, which
is 20% of the dataset. The testing process uses the concept of
5-fold validation. For example, in datasets I and II, the test is

carried out to identify the iris image with four classes,
namely, diabetes mellitus class, high cholesterol class, high
cholesterol and diabetes mellitus class, and normal class.
Furthermore, this study uses multiple categories to calculate
the method’s performance using equations (5)–(7).

The converted image to grayscale is stored in 8 bits
format for each image data, allowing as many as 256
intensities. In the testing process, the image data has been
tested with a smaller quantization so that the gray-level
varies. Therefore, the gray-level value is converted for each
dataset into 7 bits with 128 levels of gray, 6 bits with 64
levels of gray, 5 bits with 32 levels of gray, and 4 bits with
16 levels of gray.

The training process is done by finding the average value
of the training data for the parameters of max probability,
entropy, energy, correlation, contrast, and homogeneity.
The value obtained from the training process is used to ref-
erence the testing process. This study carried out the testing
process by looking for similarity values based on the

(a) (b)

(c) (d)

Figure 3: Iris image: (a) patients with DM; (b) patients with HC; (c) patients with DM and HC; (d) normal patient.

Table 3: Test results on the dataset I.

Method 3D-GLCM (original) 3D-GLCM invariant
Level
Grayscale

Acc Prec Recall Acc Prec Recall

16 69.79 33.80 39.58 73.44 50.94 47.92

32 69.27 35.94 45.83 71.88 53.08 52.08

64 71.35 34.11 37.50 75.00 51.04 54.17

128 72.92 40.31 45.83 82.81 65.10 75.00

256 96.88 95.31 93.75 97.92 96.88 95.83

Acc: accuracy; Prec: precision.

Table 4: Test results on the dataset II.

Method 3D-GLCM (original) 3D-GLCM invariant
Level
Grayscale

Acc Prec Recall Acc Prec Recall

16 71.88 41.67 43.75 73.96 45.01 47.92

32 66.25 69.44 57.50 78.75 80.71 63.5

64 71.25 76.52 62.50 71.88 82.19 75.58

128 73.75 79.89 65.00 87.50 90.18 85.00

256 83.75 83.13 85.00 95.83 89.69 91.67

Acc: accuracy; Prec: precision.

6 International Journal of Biomedical Imaging



Euclidean distance method. Euclidean distance is calculated
using equation (14) [25].

dij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

k=1
xik − xjk
� �2

:
2

s
ð14Þ

Figure 3 is an example of an iris image of a patient suf-
fering from DM, a patient suffering from HC, a patient suf-
fering from DM and HC, and a patient with normal DM and
cholesterol levels. The image is taken from dataset I. The
results of testing on the dataset I are shown in Table 3.

The results of the tests carried out on dataset II are shown
in Table 4. The tests were carried out by comparing two
methods, namely, the original 3D-GLCM feature extraction
method with invariant 3D-GLCM feature extraction. In addi-
tion to comparing the two approaches, this test compares the
differences in the gray level used in the input image.

From the testing of the dataset I and dataset II, it shows
that by using the proposed 3D-GLCM modification method,
namely, 3D-GLCM invariant, it gives the result that in data-
set I, the accuracy has an average increase of 5.75%, the pre-
cision has an average increase of 42.24%, and the recall has
an average increase of 29.01%. On the other hand, while
dataset II shows an average increase in accuracy of 11.14%,

precision has an average increase of 10.49%, and recall has
an average increase of 15.90%.

The test was also carried out on MRI-brain tumor
images; an example image is shown in Figure 4 and an
example of X-ray pneumonia image is shown in Figure 5.

Tables 5 and 6 are the results of tests on the MRI brain
tumor dataset and the X-ray pneumonia dataset. Tests car-
ried out on both methods also show an increase in accuracy,
precision, and recall when using the invariant 3D-GLCM
method.

4. Discussion

We have presented a modification of the Haralick texture fea-
ture, making it asymptotic invariant regarding the number of
gray levels in quantization by viewing 3D-GLCM as a discrete
approximation of the probability function on gray-level pairs
in the image. In addition, we have shown how original 3D-
GLCM feature extraction and 3D-GLCM feature extraction
are invariant with increasing gray levels. We have demon-
strated the benefits of the proposed asymptotically modified
features by training to separate the four groups, namely,
DM, CH, DM, and CH, as well as normal conditions in the I
and II datasets, and to separate the two groups of brain tumor
MRI images in dataset III and X-ray pneumonia images in
dataset IV only based on texture features.

(a)

(b)

Figure 4: Image of MRI-brain tumor: (a) image of brain tumor patient; (b) nonbrain tumor images.
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A classifier based on invariant features performs better
than the original feature in all data tests conducted in this
study. Furthermore, our proposed modification allows tex-
ture features to be reproduced regardless of quantization
since the same texture features will give similar values inde-
pendent of quantization.

Image requantization using fewer gray levels can pro-
duce similar images due to the limited dynamic range and

repetitive texture features. The number of gray levels in
quantization is essential for texture analysis because the
number of gray levels determines the size of the 3D-GLCM
matrix formed. Too many levels of gray can produce a sparse
matrix, and too few levels of gray can have too dense of the
matrix. In the statistical model built based on the number of
varying levels of gray, this dramatically affects the value of
the extraction feature for the max probability, entropy,
energy, correlation, contrast, and homogeneity features.

Research by Garpebring et al. highlights the importance
of selecting the optimal number of gray levels for texture fea-
ture calculations by showing that some GLCM-based fea-
tures can achieve minimum misclassification by changing
the size of the GLCM [45]. Scenarios to classify texture fea-
tures were calculated with different quantization, with gray
levels 16, 32, 64, 128, and 256. In this scenario, as in his
research [25, 46], the quantization level is chosen to increase
the features optimally in each image used. The calculation of
accuracy, precision, and recall shows the gray-level varia-
tions used in all texture features. At coarse quantization
where the image with a gray trim level will reduce identifica-
tion accuracy, and at more significant quantization, it can

(a)

(b)

Figure 5: Pneumonia X-ray image: (a) image of pneumonia sufferers; (b) nonpneumonia images.

Table 5: Test results on the brain tumor MRI dataset.

Method 3D-GLCM (original) 3D-GLCM invariant
Level
Grayscale

Acc Prec Recall Acc Prec Recall

16 60.83 61.22 65.00 90.00 87.67 95.00

32 60.83 61.40 65.00 92.50 87.91 100.00

64 70.00 69.19 70.00 92.50 89.77 96.67

128 81.25 79.32 85.00 96.67 95.39 98.33

256 87.50 87.47 88.33 97.50 97.06 98.33

Acc: accuracy; Prec: precision.
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increase accuracy and separability between groups. For all
datasets that have been tested, the best gray level is used at
256 gray levels.

We chose to study the behavior of invariant features
between and 256 gray-level quantization. Too little gray level
will result in a rough Riemann approximation to equation
(3). Choosing too many gray-level quantizations can result
in 3D-GLCM scattering. The invariant feature ignores the
same symptoms as the original feature, namely, oversensitiv-
ity to noise. Small image areas will result in sparse 3D-
GLCM, underlying the failure to represent texture informa-
tion properly.

In this study, we choose a global min-max limit when
quantizing images on each dataset to minimize variations
in feature values due to image noise or other structures in
the area of interest. In addition, the global boundary
approach requires that the image intensity is proportional
to all images in the dataset. In this case, it requires that the
image be obtained with the same hardware and imaging set-
tings. The invariant feature can analyze images with different
numbers of pixels or sizes, even to varying amounts of noise.
Whereby optimizing the quantization level of each image,
sambal still gets comparable texture features.

Compared to our previous research [25], the 3D-GLCM
invariant modification significantly increased accuracy, preci-
sion, and recall. The test results are shown in Tables 3 and 4.

There are shortcomings in this study that could have an
impact on feature repetition. The first drawback is the limited
iris image dataset. The iris dataset uses the right eye and the
left eye in the same patient. This limitation occurred because
of the time that did not allow for primary data collection dur-
ing the COVID-19 pandemic in Surabaya, Indonesia.

A larger image dataset size of a unique patient can
result in better performance. The second weakness is the
presence of noise in the iris image in the form of eye-
lashes, and the closing of the iris by the eyelids causes
missing information.

Image noise will affect the value of texture features [47],
but the quantization smoothing effect of the gray level can
reduce the impact on the resulting features. Some features
are more sensitive to noise, and more aggressive gray-
level quantization for feature invariant modification can
reduce the effect of noise while retaining the possibility to
compare feature values with values from images analyzed
at different quantization levels. This approach requires fur-
ther research.

5. Conclusions

This paper proposes a volumetric feature extraction tech-
nique, which considers the significant differences between
pixels derived from a GLCM-based feature extraction
method, called 3D-GLCM. By interpreting 3D-GLCM as a
discretized probability density function, it is possible to con-
struct a set of Haralick texture features. A collection of Har-
alick features is modified asymptotically invariant to image
quantization.

In 3D-GLCM feature extraction, the invariant retains its
original interpretation. We demonstrate that invariant 3D-
GLCM feature extraction can be used in different identifica-
tion settings, with results superior to the original 3D-GLCM
feature extraction definition. This indicates that invariant
Haralick texture features can be reproduced even when dif-
ferent gray-level quantization is used.

Data Availability

The datasets used in the research can be publicly
accessed through the bellow links: (1) dataset I (dataset
iris): https://www.kaggle.com/rincikembanghapsari/dataset-
i-iris; (2) dataset II (dataset iris): https://www.kaggle.com/
rincikembanghapsari/dataset-ii-iris; (3) MRI brain tumor:
https://www.kaggle.com/navoneel/brain-mri-images-for-
brain-tumor-detection; (4) X-ray pneumonia: https://www
.kaggle.com/paultimothymooney/chest-xray-pneumonia
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