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Acute ischemic stroke represents a cerebrovascular disease, for which it is practical, albeit challenging to segment and differentiate
infarct core from salvageable penumbra brain tissue. Ischemic stroke causes the variation of cerebral blood flow and heat
generation due to metabolism. Therefore, the temperature is modified in the ischemic stroke region. In this paper, we
incorporate acute ischemic stroke temperature profile to reinforce segmentation accuracy in MRI. Pennes bioheat equation was
used to generate brain thermal images that may provide rich information regarding the temperature change in acute ischemic
stroke lesions. The thermal images were generated by calculating the temperature of the brain with acute ischemic stroke.
Then, U-Net was used in this paper for the segmentation of acute ischemic stroke. A dataset of 3192 images was created to
train U-Net using k-fold crossvalidation. The training time was about 10 hours and 35 minutes in NVIDIA GPU. Next, the
obtained trained model was compared with recent methods to analyze the effect of the ischemic stroke temperature profile in
segmentation. The obtained results show that significant parts of acute ischemic stroke and background areas are segmented
only in thermal images, which proves the importance of using thermal information to improve the segmentation outcomes in
MRI diagnosis.

1. Introduction

Ischemic stroke lesion is a neurovascular abnormality caused
by a sudden reduction of blood flow in some regions of the
brain due to an artery occlusion, which can cause the death
of cerebral tissue. It represents the commonest type of
stroke, accounting for approximately 80% of stroke cases
[1], and represents one of the most common reasons for
death and disability globally [2, 3]. Depending on the time
passed since onset, ischemic stroke can be partitioned into
three phases: acute (between 0 and 24 h), subacute (between
24 h and 2 weeks), and chronic (more than 2 weeks) [2]. In
the acute phase, ischemic stroke tissue can be separated into
three different areas based on the potential of tissue solvabil-
ity, which are infarct core, penumbra, and benign oligemia.
Oligemia is a tissue slightly hypoperfused but is not at risk
of death, penumbra is a tissue that is hypoperfused leading

to cell death but can be recovered if the perfusion is restored
rapidly, otherwise, will be destined for infarction, and infarct
core is an irreversible tissue which dies as a consequence of
ischemic stroke. The structure of ischemic stroke in the
acute phase is concentric, where the infarct core is located
at the center surrounded by penumbra, and oligemia is
located in the outer area [4].

The segmentation of acute ischemic stroke lesions from
MRI images is a complex and challenging problem, as its
appearance changes significantly over time. Ischemic stroke
lesions may not appear as homogeneous areas. Furthermore,
they can be located in different regions of the brain and take
different shapes [2]. Hence, effective acute ischemic stroke
lesion segmentation needs the combination of different
MRI modalities, as the lesion regions have diverse appear-
ances depending on the imaging modality [5]. Each MRI
modality provides different biological information, and
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combining different modalities provide additional informa-
tive data to have more accurate lesion borders delineation,
especially in the lesion boundaries where it is challenging
to differentiate between normal and abnormal pixels. In this
work, we attempt to use brain temperature distribution to
analyze the effect of temperature variations in acute ischemic
stroke region in segmentation towards creating a new MRI
modality named thermal image, which can be combined
with the existing modalities for more effective detection
and segmentation of acute ischemic stroke lesions.

Since manual segmentation of acute ischemic stroke is a
complex and time-consuming task, which takes on average
time about 15 minutes per case [2], automatic methods are
of high interest for acute ischemic stroke segmentation from
MRI scans. In 2015, Ischemic Stroke Lesion Segmentation
(ISLES) challenge was organized by the Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
conference [2], which provides a platform to develop and
compare methods for ischemic stroke lesion segmentation
from MRI scans. The first edition included penumbra esti-
mation in acute ischemic stroke (SPES) and subacute ische-
mic stroke lesion segmentation (SISS). McKinley et al. [6]
developed a fully automatic method based on a modified
random forest algorithm, image texture, and spatial features
for segmenting the ischemic penumbra. Maier et al. [7] cre-
ated a segmentation model using random forest classifier
combined with voxel-based hand-crafted features, and the
model received high ranks in ISLES 2015 and BRATS 2015
challenges. Deep learning automated algorithms mainly
convolutional neural networks (CNN) [8] were increasingly
used over the recent years for acute ischemic stroke segmen-
tation, due to the performance of deep convolutional neural
networks algorithms developed in several computer vision
tasks, which performed better than classical methods. CNN
models represent successive convolutional layers that con-
volve trainable filters with the input image to extract com-
plex features with minimal preprocessing.

In recent years, several models based on fully convolu-
tional neural networks have been developed in the literature
for ischemic stroke segmentation. Clèrigues et al. [9] pro-
posed a deep learning network based on U-Net [10]
designed for automatic acute/subacute ischemic stroke seg-
mentation from multimodal MRI. U-Net [10] is widely used
for medical image segmentation and becomes state of the art
for stroke segmentation [9]. Liu et al. [11] proposed a deep
learning architecture called Res-CNN for automatic acute
ischemic stroke segmentation from multiple MRI modalities,
and they obtained a dice score of 88.43 in SPES challenge by
integrating a residual unit into a similar U-shape network.
Abulnaga and Rubin [12] presented a fully CNN to segment
ischemic stroke lesions from CT perfusion images, and the
proposed architecture is inspired by PSPNet, which is a
model that employs pyramid pooling that makes region-
based context aggregation. The proposed network has been
trained using focal loss function to learn more complex
ischemic stroke lesion shapes. Karthik et al. [13] proposed
an architecture that correlates the context from multiscaled
feature maps for better segmentation of ischemic lesions.
The proposed architecture uses classification and segmenta-

tion functional heads to counter class imbalance problem. It
was evaluated on the ISLES 2015 SISS dataset and achieved a
mean dice coefficient of 0.775. Zhang et al. [14] presented a
review paper about recent deep learning methods developed
for ischemic stroke lesion segmentation. In the present
paper, we used U-Net architecture for acute ischemic stroke
penumbra estimation from temperature distribution, and
then the results were analyzed and compared with recently
developed algorithms to analyze the effect of temperature
on acute ischemic stroke segmentation.

The distribution of temperature in acute ischemic stroke
lesion area is altered as a consequence of reduced cerebral
blood flow [4]. Experimental measurement of brain temper-
ature is limited by some issues, such as safety and ethical
considerations in invasive procedures, and low accuracy of
noninvasive procedures [4], such as proton magnetic reso-
nance spectroscopy (MRS). In this work, we used Pennes
bioheat equation that may provide rich information about
temperature distribution changes in acute ischemic stroke
lesions. Several studies have applied Pennes equation for
modeling heat transfer in acute ischemic stroke lesions, by
reducing cerebral blood flow and metabolic heat production.
Konstas et al. [15] simulated temperature distribution in
acute ischemic stroke by reducing blood perfusion to 40%
and metabolic heat output to 50% of their baseline values
in the ischemic penumbra and reduced blood perfusion
and metabolic heat output to 25% and 30% of their baseline
values in infarct core. Lillicrap et al. [4] reduced blood perfu-
sion to 80% of its baseline value in oligemia, 40% of its base-
line value in Penumbra, and 20% of its baseline value in
infarct core. Due to the limited data on metabolic heat gen-
eration, they simulated three scenarios to consider different
potential possibilities. Lillicrap et al. [4] performed a com-
parative study between simulated temperature using Pennes
bioheat equation and in vivo data. The obtained results
showed that Pennes bioheat equation provides temperature
data corresponding to in vivo temperature for normal brain
but did not correspond to temperature data available for
acute ischemic stroke lesion tissue, especially in the penum-
bra, which is of high interest in diagnosis as it can be sal-
vaged by reperfusion. In this paper, we still use Pennes
equation, as our focus is the way the temperature is changed,
and how the temperature is changed in the lesion. In a recent
work [16], we proved that considering different temperature
profiles of the same lesion, the obtained segmentation still
accurate, which is the reason in this work we used Pennes
bioheat equation.

In this paper, we exploit thermal information for acute
ischemic stroke segmentation using simulated thermal
images. In a recent paper [17], we segmented brain ischemic
stroke lesions from temperature distribution. The ischemic
stroke lesion segmentation was carried out using U-Net neu-
ral network based on temperature changes in the lesion
zone. The temperature distribution in the brain with the
ischemic stroke was calculated using the Pennes equation.
Then, U-Net was used for ischemic stroke segmentation
from the generated thermal images. However, we considered
just a small dataset of 440 thermal images and 19 thermal
images to test the model. In this present paper, we used
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3192 thermal images with additional noise for training the
U-Net based fully CNN, which showed impressive results
in medical image analysis [18]. Furthermore, we use a mod-
ified version of Pennes equation by considering a heteroge-
neous thermal conductivity for more accurate temperature
calculation.

2. Methodology

2.1. Thermal Image Calculation. The heat transfer in a bio-
logical system is modeled using Pennes bioheat transfer
equation [19], which provides simplifying assumptions
about vascular architecture, blood perfusion, equilibration
site, and temperature of blood [20]. Accordingly, several
other models tried to overcome these limitations by consid-
ering more complex formulations [21–24]. Due to simplic-
ity, effectiveness, and ease of use, Pennes equation stills
commonly used in the literature for the calculation of tem-
perature distribution and interpretation of thermal data.
Pennes equation describes the effects of metabolic heat pro-
duction and blood flow on the heat energy equilibrium in
biological tissue. These two effects were added to the stan-
dard heat equation and were written in the following form:

ρCP
∂T
∂t

= ∇ κ∇Tð Þ + ωbρbCpb Ta − Tð Þ +Qm, ð1Þ

where ρ½kg/m3� is the density of the tissue, CP½J/kg°C� is
the specific heat of the tissue, κ½W/m°C� is the thermal con-
ductivity, ωb½ml/s:ml� is the blood perfusion rate, ρb½kg/m3� is
the density of the blood, Cpb½J/kg°C� is the specific heat of
the blood, Ta½°C� is the temperature of the artery, and Qm
½W/m3� is the metabolic heat generation.

To solve Eq. (1), we considered the normal body temper-
ature Ti = 37°C as an initial condition and 37°C as a bound-
ary condition. The blood temperature was set to Ta = 36:7°C
[25], and the remaining blood perfusion thermal properties
have been obtained from our recent paper [16]. Since Pennes
equation is a modified version of the standard heat diffusion
energy equation, it can be discretized based on numerical
methods, such as finite volume method (FVM) [26], lattice
Boltzmann method [27], and finite difference method
(FDM) [28]. In this work, we used FDM to solve the Pennes
bioheat equation numerically in a two-dimensional Carte-
sian grid. We consider Δt = 0:1s as a time step and Δx = Δ
y = 2mm as a spatial step (the same as the spatial resolution
of SPES images). The convergence of the FDM solver is
reached when the temperature difference at all nodes
between two successive iterations is less than 1 × 10−7. The
process of discretization is detailed in [29], and the obtained
discretized form is presented as follows:
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where n is the iteration number,Tn
i,j is the temperature

at (i, j) grid node, ðωbÞi,j is the blood perfusion rate at (i, j)
grid node, Qi,j is the metabolic heat generation at (i, j) grid
node, ρi,j, ðρbÞi,j is the density of tissue and blood at (i, j) grid
node, ðCPÞi,j, ðCPbÞi,j is the specific heat of tissue and blood
at (i, j, k) grid node, and ki+1/2,j represents the thermal con-
ductivity computed at the midpoint in piecewise homoge-
neous media using the following formula [29]:

ki+1/2,j =
2ki,jki+1,j
ki,j + ki+1,j

: ð3Þ

The thermophysical properties of normal brain tissues
(GM, WM, and CSF) and ischemic stroke tissues (penumbra
and infarct core) are presented in Table 1. In the present
work, we analyzed heterogeneous acute ischemic stroke
lesions, with two types of tissues, infarct area, which repre-
sents the region that has already infarcted and cannot be
recovered, and penumbra which is a hypoperfused tissue
leading to cell death but can be recovered if the perfusion
is restored rapidly [4]. The thermophysical properties of
infarct core and penumbra were obtained from white matter
by reducing the values of blood perfusion and heat genera-
tion due to metabolism. In the ischemic penumbra, blood
perfusion was reduced to 40% of its baseline value, and heat
generation due to metabolism was reduced to 70% of its
baseline value. For the ischemic infarct core, blood perfusion
was reduced to 20% of its baseline value, and heat generation
due to metabolism was set at 0 [4].

2.2. U-Net Architecture. In this study, we used U-Net convo-
lutional neural network for acute ischemic penumbra seg-
mentation. This architecture was introduced by
Ronneberger et al. [10] for the segmentation of biomedical
images and recently showed impressive results for biomedi-
cal image segmentation [30]. The architecture of U-Net is
created based on fully CNN proposed by Shelhamer et al.
[31] and was changed to be trained with fewer images and
modified in a way it produces precise segmentation for bio-
medical images. Figure 1 shows the U-Net network used in
this paper; it includes two paths: the first is the downsam-
pling (encoding) path, and its objective is to capture the con-
text of the input image. The second is the upsampling
(decoding) path, and its purpose is to enable accurate local-
ization using upsampling.

(i) The downsampling path contains 5 convolutional
blocks. Each block contains two 3 × 3 convolutional
layers, with a stride of 1, followed by ReLU (Rectified
Linear Unit) [32] activation function. After every
convolutional block, the number of feature maps is
doubled, which increases from 1 to 1024, and 2 × 2
max pooling is used after every block except the last
block for downsampling. Thus, the size of feature
maps was reduced from 96 × 96 to 6 × 6.
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(ii) The upsampling path includes a set of blocks. Every
block consists of an upsampling of the feature maps
with a 2 × 2 convolution, concatenated with the cor-
responding feature maps from the downsampling
path, and then two 3 × 3 convolution layers are
applied, each followed by a ReLU activation func-
tion. The last layer is a 1 × 1 convolution used to
reduce the number of feature maps from 64 to 2,
which represent the background and the penumbra
segmentation maps

Unlike the original U-Net paper, in this work, we used
zero padding to keep the input equal to the output feature
maps size for all the convolutional layers. The hyperpara-
meters used in this work for training U-Net architecture
are taken from [33], and stochastic gradient descent has
been used to minimize the cost function. Adaptive moment
estimator (Adam) [34] was adopted for the parameter esti-

mation with a learning rate of 0.0001. The batch size was
set to 22 due to the limited GPU memory, with 100 as the
maximum number of epochs. All the network weights were
initialized based on a normal distribution with a mean of 0
and 0.01 of standard deviation, and all the network biases
were fixed at 0. In the output layer, we used Dice coefficient
described in [35] as a loss function with a sigmoid activation
function. In total, the network consists of 34 layers and 31
030 593 parameters. Table 2 shows the details of each layer
where 2@Conv means that two consecutive convolution
layers are applied.

2.3. SPES Dataset. Towards the evaluation of the proposed
approach, we have used the public acute stroke penumbra
estimation subtask (SPES) dataset from ISLES challenge
2015 [2]. SPES dataset contains 30 training and 20 testing
cases. The images were stored as 3D volumes of 96 × 110 ×
71 dimensions with isotropic spatial dimension of 2 × 2 × 2

Table 1: Thermophysical properties of the brain and acute ischemic stroke tissues.

Material

Property

k
W
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m3
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J
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°
C

� �
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W
m3

� �
ωb
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s
� �

Refs

CSF 0.6 1000 4200 0 0 [55]

GM 0.565 1035.5 3680 16,229 0.013289 [55]

WM 0.503 1027.4 3600 4517.9 0.0036956 [55]

Penumbra 0.503 1027.4 3600 3162.53 0.00147824 [4, 55]

Infarct core 0.503 1027.4 3600 0 0.00073912 [4, 55]
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Figure 1: A schematic of U-Net architecture trained on thermal images. The input of the network is a normalized thermal 2D image, and
the output is the segmentation map using Dice coefficient as a loss function with sigmoid activation function. The architecture includes a
downsampling path and an upsampling path, with concatenation between the corresponding layers.
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Table 2: Detail of the architecture of U-Net.

Layers Architectures Output

Input Image (96 × 96) 96 × 96 × 1

conv1
2@Conv (3 × 3)/Relu padding = “same” 96 × 96 × 64

Max pooling stride = 2

conv2
2@Conv (3 × 3)/Relu padding = “same” 48 × 48 × 128

Max pooling stride = 2

conv3
2@Conv (3 × 3)/Relu padding = “same” 24 × 24 × 256

Max pooling stride = 2

conv4 2@Conv (3 × 3)/Relu padding = “same” 12 × 12 × 512

drop4
Dropout (p = 0:5)

Max pooling stride = 2

conv5 2@Conv (3 × 3)/Relu padding = “same” 6 × 6 × 1024
drop5 Dropout (p = 0:5)
up6 Upsampling conv (2 × 2)/Relu 12 × 12 × 512
Concatination [drop4, up6]

conv6 2@Conv (3 × 3)/Relu padding = “same” 12 × 12 × 512

up7 Upsampling conv (2 × 2)/Relu 24 × 24 × 256
Concatination [conv3, up7]

conv7 2@Conv (3 × 3)/Relu padding = “same” 24 × 24 × 256

up8 Up-sampling conv (2 × 2)/Relu 48 × 48 × 128
Concatination [conv2, up8]

conv8 2@Conv (3 × 3)/Relu padding = “same” 48 × 48 × 128

up9 Upsampling conv (2 × 2)/Relu 96 × 96 × 64
Concatination [conv1, up9]

conv9 2@Conv (3 × 3)/Relu padding = “same” 96 × 96 × 64

conv10 Conv (1 × 1) Sigmoid 96 × 96 × 1

Output Segmentation map 96 × 96 × 1

Vertical FlipHorizontal FlipOriginal

Penumbra
Infarct core

Rotation 90° Rotation 180° Rotation 270°

Figure 2: Data augmentation used to improve the network performance by increasing the size of training dataset using new images
generated artificially from the existing images in the dataset. Left: the original thermal image with ground truth. The rest are rotated and
flipped versions of the original thermal image.
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mm. For each case, seven modalities were provided includ-
ing anatomical (T1 contrast, T2), diffusion (DWI), and per-
fusion (CBF, CBV, TTP, Tmax) MRI.

The temperature distribution calculation using Pennes
bioheat equation needs the brain tissues segmentation, to
define thermal properties for each tissue, and we exploited
the work of Li et al. [36] to distinguish the brain tissues from
T1 MR images. The acute ischemic stroke ground truth is
provided by ISLES challenge 2015 for ischemic penumbra
and infarct core. The obtained segmentation of normal tis-
sues and the provided ground truth of acute stroke lesion
was used as an input to Eq. (2), which was implemented in
C language. We created a 2D array for each thermal prop-
erty of a size of 96 × 110, where each array element corre-
sponds to an image pixel. The result of solving Eq. (2) is a
2D array of temperature, where each element of the array
represents the temperature of the corresponding pixel, and
then was exported in a Mat file. The temperature data was
loaded in MATLAB and exported to 2D grayscale images
that were used for U-Net architecture training. To keep the
balance on the number of image slices for each patient, we
selected 19 2D images from each patient; all the images com-
prise an ischemic penumbra inside. A total of 532 grayscale
thermal images were created for training using K-fold cross-
validation, taken from the first 28 patients. Additional 38
grayscale thermal images were created from patients 29
and 30 to compare the trained network with other models
from the literature. We normalized the intensity of grayscale
thermal images between 0 and 1, and then the images were
cropped to 96 × 96 to allow U-Net to perform segmentation.

2.4. Data Augmentation. Image data augmentation is used to
improve the network performance by increasing the size of
the training dataset using new images generated artificially
from the existing images in the dataset. The main goal when
using data augmentation is to enhance the generalizability of
the model. In this paper, we performed a combination of
data augmentation techniques, namely, rotation in 90°,
180°, and 270°, besides horizontal and vertical flips. The final
dataset size generated for training the network is 3192
images. Figure 2 illustrates the data augmentation results.

We used K-fold crossvalidation approach to train the U-
Net network. Crossvalidation is a technique for evaluating
machine learning models by training multiple models on
subsets of the available input data and evaluating them on
the complementary subset of data. In this work, we consid-
ered five folds for crossvalidation, four folds for training,
and one fold for validation. We obtained five trained net-
works. We calculated the average of the output of the five
networks in test data, and the obtained result is compared
with other methods in the literature.

2.5. Implementation Details. The U-Net architecture has
been executed using Java language based on DeepLearning4J
(https://deeplearning4j.org/, version: 1.0.0-beta7) implemen-
tation, and it is an open-source deep learning framework for
Java and JVM languages. The experiments have been run on
a Windows 7 (64 bits, ultimate edition) operating system
with a CPU Intel i7-4770k with 4 cores of 3.50GHz, 8

threads, and 16GB of memory. The network training and
testing have been done using NVIDIA GeForce GTX 1060
(NVIDIA Corp, United States), which has 6.1 in computing
capability, 1280 Cuda cores, and 6GB in memory.

Towards the segmentation evaluation in thermal images,
we used the segmentation evaluation metrics available in
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Figure 3: Calculated temperature distribution of brain with
circular acute ischemic stroke lesion using Pennes bioheat
equation. (a) Brain without acute ischemic stroke. (b) Brain with
acute ischemic stroke lesion of spherical infarct core of 10mm of
diameter, surrounded by penumbra with 5mm thick.
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Figure 4: One-dimensional representation of temperature profile
on the path passes through the center of the acute ischemic
stroke lesion. The temperature is reduced in infarct core
compared to normal tissue. However, the temperature is warmer
in penumbra compared to normal brain tissue.
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DeepLearning4J, which are accuracy, precision, recall, and
Dice, presented in the following formulas [37]:

Accuracy =
TP + TNð Þ

TP + FN + TN + FPð Þ , ð4Þ

Precision =
TP

TP + FP
, ð5Þ

Recall =
TP

TP + FN
, ð6Þ

Dice =
2 ∗ TP

2TP + FP + FNð Þ , ð7Þ

where TP represents the true positives, FP denotes the false
positives, TN indicates the true negatives, and FN signifies
the false negatives.

3. Results

In this section, we present the temperature of the brain with
acute ischemic stroke by considering two cases, simplified
geometry and realistic geometry of the lesion. Next, we show
the obtained results of ischemic penumbra segmentation
from thermal images, and then the results are compared
with recent methods taken from the literature.

Figures 3(a) and 3(b) illustrate the brain temperature
distribution with and without acute ischemic stroke lesion,
by considering a simplified geometry of acute ischemic
stroke. We considered a spherical infarct core with a diame-
ter of 10mm, surrounded by 5mm thick of penumbra [4].
Figure 4 illustrates a one-dimensional representation of the
temperature distribution of the line passed in the lesion cen-
ter. One can observe that the temperature is reduced in the
infarct core compared with normal tissue; this can be
explained by the reduction in cerebral blood flow and zero
in metabolic heat production. However, the temperature is

Infarct core
Penumbra

(a) (b) (c)

36.95 37 37.05 37.1
Temperature (°C)

37.15 37.2

Figure 5: Thermal images taken from the dataset generated using Pennes bioheat equation of five patients with acute ischemic stroke lesion
of different volumes and located in different regions in the brain. (a) Ground truth of acute ischemic stroke lesion. (b) Thermal images in
color. (c) Grayscale thermal images.

Table 3: The segmentation evaluation metrics for U-Net segmentation in thermal images.

Accuracy Precision Recall Dice

Penumbra 0:99 ± 0:0004 0:92 ± 0:005 0:95 ± 0:006 0:93 ± 0:002
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warmer in penumbra compared with normal brain tissue, as
it is still a metabolic activity in this region. Figure 5 shows
the thermal images of five patients taken from the generated

Table 4: The percentage of ischemic penumbra and background
areas segmented in thermal images and not segmented using
methods from the literature in slices taken from subject 29.

Slice
No.

Method
Ischemic penumbra
area segmented only
in thermal images (%)

Background area
segmented only in
thermal images (%)

Slice 31

Clèrigues
et al. [9]

0.0 0.25

Maier
et al. [7]

2.25 0.36

McKinley
et al. [6]

0.61 0.21

Slice 32

Clèrigues
et al. [9]

3.47 0.46

Maier
et al. [7]

5.31 0.31

McKinley
et al. [6]

6.41 0.17

Slice 33

Clèrigues
et al. [9]

0.0 0.82

Maier
et al. [7]

2.06 0.17

McKinley
et al. [6]

2.62 0.11

Slice 34

Clèrigues
et al. [9]

0.0 0.78

Maier
et al. [7]

3.87 0.06

McKinley
et al. [6]

2.64 0.09

Slice 35

Clèrigues
et al. [9]

0.0 0.95

Maier
et al. [7]

2.66 0.06

McKinley
et al. [6]

3.16 0.15

Slice 36

Clèrigues
et al. [9]

0.0 1.28

Maier
et al. [7]

2.34 0.05

McKinley
et al. [6]

0.67 0.11

Slice 37

Clèrigues
et al. [9]

0.0 1.0

Maier
et al. [7]

2.49 0.0

McKinley
et al. [6]

1.87 0.05

Slice 38

Clèrigues
et al. [9]

0.31 0.65

Maier
et al. [7]

4.97 0.02

McKinley
et al. [6]

3.26 0.03

Table 4: Continued.

Slice
No.

Method
Ischemic penumbra
area segmented only
in thermal images (%)

Background area
segmented only in
thermal images (%)

Slice 39

Clèrigues
et al. [9]

0.0 0.46

Maier
et al. [7]

7.81 0.08

McKinley
et al. [6]

4.9 0.04

Slice 40

Clèrigues
et al. [9]

2.0 0.59

Maier
et al. [7]

10.8 0.02

McKinley
et al. [6]

6.83 0.01

Slice 41

Clèrigues
et al. [9]

0.63 0.71

Maier
et al. [7]

9.74 0.1

McKinley
et al. [6]

6.7 0.08

Slice 42

Clèrigues
et al. [9]

0.16 0.79

Maier
et al. [7]

8.66 0.03

McKinley
et al. [6]

3.69 0.08

Slice 43

Clèrigues
et al. [9]

0.96 1.0

Maier
et al. [7]

10.33 0.03

McKinley
et al. [6]

3.23 0.04

Slice 44

Clèrigues
et al. [9]

1.73 0.82

Maier
et al. [7]

12.8 0.01

McKinley
et al. [6]

4.84 0.08

Slice 45

Clèrigues
et al. [9]

1.04 0.51

Maier
et al. [7]

10.0 0.0

McKinley
et al. [6]

2.91 0.06

Average

Clèrigues
et al. [9]

0.69 0.74

Maier
et al. [7]

6.41 0.09

McKinley
et al. [6]

3.62 0.09
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dataset; the figure contains the ground truth of penumbra
merged with infarct core, the thermal images in color, and
grayscale thermal images. For training and testing U-Net

Table 5: The percentage of ischemic penumbra and background
areas segmented in thermal images and not segmented using
methods from the literature in slices taken from subject 30.

Slice
No.

Method
Ischemic penumbra
area segmented only
in thermal images (%)

Background area
segmented only in
thermal images (%)

Slice 27

Clèrigues
et al. [9]

2.29 0.86

Maier
et al. [7]

3.21 1.0

McKinley
et al. [6]

1.6 0.63

Slice 28

Clèrigues
et al. [9]

0.0 1.22

Maier
et al. [7]

0.23 1.02

McKinley
et al. [6]

0.0 0.72

Slice 29

Clèrigues
et al. [9]

0.45 1.37

Maier
et al. [7]

0.67 1.0

McKinley
et al. [6]

1.12 0.98

Slice 30

Clèrigues
et al. [9]

0.61 0.93

Maier
et al. [7]

7.56 1.19

McKinley
et al. [6]

2.24 0.79

Slice 31

Clèrigues
et al. [9]

0.40 0.92

Maier
et al. [7]

14.83 1.31

McKinley
et al. [6]

4.47 0.87

Slice 32

Clèrigues
et al. [9]

0.19 0.96

Maier
et al. [7]

15.29 1.19

McKinley
et al. [6]

4.58 0.85

Slice 33

Clèrigues
et al. [9]

1.34 0.97

Maier
et al. [7]

10.74 1.23

McKinley
et al. [6]

3.07 0.82

Slice 34

Clèrigues
et al. [9]

0.35 0.78

Maier
et al. [7]

6.57 1.05

McKinley
et al. [6]

2.66 0.57

Table 5: Continued.

Slice
No.

Method
Ischemic penumbra
area segmented only
in thermal images (%)

Background area
segmented only in
thermal images (%)

Slice 35

Clèrigues
et al. [9]

0.17 0.92

Maier
et al. [7]

2.38 1.01

McKinley
et al. [6]

1.02 0.44

Slice 36

Clèrigues
et al. [9]

0.15 0.56

Maier
et al. [7]

1.68 0.78

McKinley
et al. [6]

0.92 0.42

Slice 37

Clèrigues
et al. [9]

0.14 0.54

Maier
et al. [7]

1.56 0.56

McKinley
et al. [6]

0.56 0.37

Slice 38

Clèrigues
et al. [9]

0.0 0.86

Maier
et al. [7]

1.41 0.74

McKinley
et al. [6]

1.13 0.58

Slice 39

Clèrigues
et al. [9]

0.0 0.88

Maier
et al. [7]

2.56 0.83

McKinley
et al. [6]

0.99 0.68

Slice 40

Clèrigues
et al. [9]

0.0 1.13

Maier
et al. [7]

3.02 1.19

McKinley
et al. [6]

1.05 0.97

Slice 41

Clèrigues
et al. [9]

0.0 1.16

Maier
et al. [7]

2.98 1.31

McKinley
et al. [6]

1.56 1.09

Average

Clèrigues
et al. [9]

0.40 0.94

Maier
et al. [7]

4.98 1.03

McKinley
et al. [6]

1.8 0.72
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model, we used grayscale thermal images, obtained by trans-
forming the temperature distribution calculated using Eq.
(2) with 5% of Gaussian noise of the brain with acute ische-
mic stroke lesion to grayscale images.

We trained U-Net architecture in a dataset containing
3192 grayscale thermal images using K-fold crossvalidation
approach. The evaluation of segmentation is illustrated in
Table 3 using four metrics, namely, accuracy, precision,
recall, and Dice. One can observe that U-Net model yields
an accurate and precise ischemic stroke penumbra estima-
tion from thermal images.

Tables 4 and 5 give the results of acute ischemic penum-
bra estimation in thermal images compared with Clèrigues
et al. [9], Maier et al. [7], and McKinley et al. [6] methods,
the segmentation results of Maier et al. [7], and McKinley
et al. [6] were downloaded directly from ISLES 2015 plat-
form [38], for Clèrigues et al. [9], and were provided by
the authors of the paper. These tables illustrate the percent-
age of ischemic penumbra and background areas segmented
in thermal images and not segmented using the other
methods. The comparative study was performed in 30 2D
slices taken using DeepLearning4J from subjects 29 and 30
in the SPES training dataset. For Clèrigues et al. [9], we
obtained an average of 0.54% of ischemic penumbra area
segmented only in thermal images and an average of 0.84%
of background segmented only in thermal images. For Maier
et al. [7], we obtained an average of 5.7% of ischemic penum-
bra area segmented only from thermal images and an average
of 0.56% of background segmented only from thermal
images. For McKinley et al. [6], we obtained an average of
2.71% of ischemic penumbra area segmented only in thermal
images and an average of 0.81% of background segmented
only from thermal images. One can observe that significant
regions are segmented only from thermal images, which
proves the importance of temperature information to
increase the true positives and true negatives pixels and
improve segmentation in conventional MRI modalities.

4. Discussion

The human body temperature distribution is influenced by
several elements such as metabolic heat production, heat
exchange processes between skin tissues, blood perfusion,
circadian rhythm, and parasympathetic activity for main-
taining homeostasis [39]. In the presence of abnormality like
acute ischemic stroke, some of these factors change influ-
ences the distribution of temperature in the abnormality
region. Therefore, the change in human body temperature
can be interpreted by the presence of abnormality. The tem-
perature has been extensively used for characterizing several
abnormalities in the human body, based on changes in tem-
perature in the abnormality area compared with surround-
ing tissues. Infrared thermography has been used as a
screening tool to measure body surface temperature to eval-
uate breast tumors [40–42], skin tumors [43, 44], and eye
diseases [45, 46]. It is challenging to use infrared thermogra-
phy to measure the brain temperature, as it fails to measure
the temperature of deep organs of the human body due to its
limited depth penetration.

In previous years, different techniques were used for
brain temperature measurement, invasively by inserting
probes in brain tissue [47]. Invasive techniques may produce
local microlesions and inflammatory responses nearby the
probes, which might influence brain temperature [48]. Infra-
red thermal imaging (thermography) is a noninvasive tech-
nique, it has been used to measure brain temperature
under the name of intraoperative thermal imaging (ITI) to
delineate brain tumor borders [39, 49–51], and this tech-
nique is used during surgical resection of brain lesions.
Another technique used to measure the brain temperature
noninvasively is named magnetic resonance spectroscopy
(MRS), which has been used to measure brain temperature
in patients with brain tumors [52] and acute ischemic stroke
[53]. However, MRS is limited in terms of measurement
accuracy [54].

In this work, we used Pennes bioheat equation solved
using FDM to calculate the brain temperature with acute
ischemic stroke lesion. We created a dataset of synthetic
thermal images of acute ischemic stroke that have the same
resolution as other MR modalities used in the SPES dataset
with an isotropic spatial dimension of 2 × 2mm. Compared
with recent methods applied in conventional MR images, we
showed that some background pixels and abnormal pixels
are identified only from thermal images. The obtained
results can explore more studies in future works to create
accurate noninvasive MR thermal scans that can be com-
bined with other modalities such as T1c, T2, DWI, and
CBF for more accurate acute ischemic stroke segmentation.

5. Conclusion

In conclusion, we presented in this study a method utilizing
brain temperature to improve acute ischemic stroke segmen-
tation in MRI. Acute ischemic stroke lesions modify brain
temperature profiles due to the reduction of cerebral blood
flow and metabolic heat production. We used Pennes bio-
heat equation with FDM to create a dataset of 4032 thermal
images. Next, U-Net architecture was trained in the gener-
ated dataset. The trained model was compared with recent
methods and showed promising results. In future works,
we plan to create a tensorized version of Pennes bioheat
equation using diffusion tensor imaging (DTI) to calculate
more realistic brain temperature.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors of this publication confirm that there are no
conflicts of interest associated with this publication, and
there has been no significant financial support for this work
that could have influenced its outcome.

10 International Journal of Biomedical Imaging



References

[1] L. Chen, P. Bentley, and D. Rueckert, “Fully automatic acute
ischemic lesion segmentation in DWI using convolutional
neural networks,” NeuroImage: Clinical, vol. 15, pp. 633–643,
2017.

[2] O. Maier, B. H. Menze, J. Von Der Gablentz et al., “ISLES
2015-A public evaluation benchmark for ischemic stroke
lesion segmentation from multispectral MRI,” Medical Image
Analysis, vol. 35, pp. 250–269, 2017.

[3] V. L. Feigin, C. M. Lawes, D. A. Bennett, S. L. Barker-Collo,
and V. Parag, “Worldwide stroke incidence and early case
fatality reported in 56 population- based studies: a systematic
review,” Lancet Neurology, vol. 8, no. 4, pp. 355–369, 2009.

[4] T. Lillicrap, M. Tahtalı, A. Neely, X. Wang, A. Bivard, and
C. Lueck, “Amodel based on the Pennes bioheat transfer equa-
tion is valid in normal brain tissue but not brain tissue suffer-
ing focal ischaemia,” Australasian Physical & Engineering
Sciences in Medicine, vol. 40, no. 4, pp. 841–850, 2017.

[5] I. Rekik, S. Allassonnière, T. K. Carpenter, and J. M. Wardlaw,
“Medical image analysis methods in MR/CT-imaged acute-
subacute ischemic stroke lesion: Segmentation, prediction
and insights into dynamic evolution simulation models. A crit-
ical appraisal,”NeuroImage: Clinical, vol. 1, no. 1, pp. 164–178,
2012.

[6] R. McKinley, L. Häni, R.Wiest, andM. Reyes, “Segmenting the
ischemic penumbra : A decision forest approach with auto-
matic threshold finding,” in Brainlesion: Glioma, Multiple Scle-
rosis, Stroke and Traumatic Brain Injuries, vol. 2016, pp. 275–
283, Springer, Cham, 2016.

[7] O. Maier, M.Wilms, and H. Handels, “Image features for brain
lesion segmentation using random forests,” in Brainlesion: Gli-
oma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,
vol. 2016, pp. 119–130, Springer, Cham, 2016.

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[9] A. Clèrigues, S. Valverde, J. Bernal, J. Freixenet, A. Oliver, and
X. Lladó, “Acute and sub-acute stroke lesion segmentation
from multimodal MRI,” Computer Methods and Programs in
Biomedicine, vol. 194, article 105521, 2020.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation,”Medical
Image Computing and Computer-Assisted Intervention–MIC-
CAI 2015, vol. 9351, pp. 234–241, 2015.

[11] L. Liu, S. Chen, F. Zhang, F. X.Wu, Y. Pan, and J. Wang, “Deep
convolutional neural network for automatically segmenting
acute ischemic stroke lesion in multi-modality MRI,” Neural
Computing and Applications, vol. 32, no. 11, pp. 6545–6558,
2020.

[12] S. M. Abulnaga and J. Rubin, “Ischemic stroke lesion segmen-
tation in CT perfusion scans using pyramid pooling and focal
loss,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries, vol. 2019, pp. 352–363, Springer
International Publishing, 2019.

[13] R. Karthik, R. Menaka, M. Hariharan, and D. Won, “Ischemic
lesion segmentation using ensemble of multi-scale region
aligned CNN,” Computer Methods and Programs in Biomedi-
cine, vol. 200, article 105831, 2021.

[14] Y. Zhang, S. Liu, C. Li, and J. Wang, “Review: application of
deep learning method on ischemic stroke lesion segmenta-
tion,” Journal of Shanghai Jiaotong University (Science),
vol. 27, no. 1, pp. 99–111, 2022.

[15] A.-A. Konstas, M. A. Neimark, A. F. Laine, and J. Pile-Spell-
man, “A theoretical model of selective cooling using intracar-
otid cold saline infusion in the human brain,” Journal of
Applied Physiology, vol. 102, no. 4, pp. 1329–1340, 2007.

[16] A. Bousselham, O. Bouattane, M. Youssfi, and A. Raihani,
“Towards reinforced brain tumor segmentation on MRI
images based on temperature changes on pathologic area,”
International Journal of Biomedical Imaging, vol. 2019, 18
pages, 2019.

[17] A. Bousselham, O. Bouattane, M. Youssfi, and A. Raihani,
“Ischemic stroke lesion segmentation based on thermal analy-
sis model using U-Net fully convolutional neural networks on
GPUs,” in Advanced Intelligent Systems for Sustainable Devel-
opment (AI2SD’2019). AI2SD 2019. Advances in Intelligent Sys-
tems and Computing, vol 1106, M. Ezziyyani, Ed., pp. 99–106,
Springer, Cham, 2020.

[18] G. Litjens, T. Kooi, B. E. Bejnordi et al., “A survey on deep
learning in medical image analysis,” Medical Image Analysis,
vol. 42, pp. 60–88, 2017.

[19] H. Harry, “Analysis of tissue and arterial blood temperatures
in the resting human forearm,” Journal of Applied Physiology,
vol. 1, no. 2, pp. 93–122, 1948.

[20] M. Latif, Heat Conduction, pp. 303–307, Springer, 2009.

[21] A. Lakhssassi, E. Kengne, and H. Semmaoui, “Modifed pennes’
equation modelling bio-heat transfer in living tissues: analyti-
cal and numerical analysis,” Natural Science, vol. 2, no. 12,
pp. 1375–1385, 2010.

[22] K. Das and S. C. Mishra, “Study of thermal behavior of a bio-
logical tissue: an equivalence of Pennes bioheat equation and
Wulff continuum model,” Journal of Thermal Biology,
vol. 45, pp. 103–109, 2014.

[23] M. M. Chen and K. R. Holmes, “microvascular contributions
in tissue heat transfer,” Annals of the New York Academy of
Sciences, vol. 335, no. 1 Thermal Chara, pp. 137–150, 1980.

[24] S. Weinbaum, L. M. Jiji, and D. E. Lemons, “Theory and exper-
iment for the effect of vascular microstructure on surface tissue
heat transfer–part I: anatomical foundation and model con-
ceptualization,” Journal of Biomechanical Engineering,
vol. 106, no. 4, pp. 321–330, 1984.

[25] M. M. Elwassif, Q. Kong, M. Vazquez, and M. Bikson, “Bio-
heat transfer model of deep brain stimulation induced temper-
ature changes,” Journal of Neural Engineering, vol. 3, no. 4,
pp. 306–315, 2006.

[26] K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for
determination of the presence of a tumor and estimation of
its size and location in a tissue,” Journal of Thermal Biology,
vol. 38, no. 1, pp. 32–40, 2013.

[27] H. Zhang, “Lattice Boltzmann method for solving the bioheat
equation,” Physics in Medicine and Biology, vol. 53, no. 3,
pp. N15–N23, 2008.

[28] J. P. Agnelli, A. A. Barrea, and C. V. Turner, “Tumor location
and parameter estimation by thermography,” Mathematical
and Computer Modelling, vol. 53, no. 7-8, pp. 1527–1534,
2011.

[29] R. F. Reis, F. D. S. Loureiro, and M. Lobosco, “3D numerical
simulations on GPUs of hyperthermia with nanoparticles by
a nonlinear bioheat model,” Journal of Computational and
Applied Mathematics, vol. 295, pp. 35–47, 2016.

[30] Y. Choi, Y. Kwon, H. Lee, B. J. Kim, M. C. Paik, and J. Won,
“Ensemble of Deep Convolutional Neural Networks for Prog-
nosis of Ischemic Stroke,” in In International Workshop on

11International Journal of Biomedical Imaging



Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries, vol. 2016, pp. 231–243, Springer, Cham, 2016.

[31] E. Shelhamer, J. Long, and T. Darrell, “fully convolutional net-
works for semantic segmentation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–
651, 2017.

[32] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” January, 2010, https://www
.cs.toronto.edu/~fritz/absps/reluICML.pdf.

[33] H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo, “Automatic
brain tumor detection and segmentation using U-NET based
fully convolutional networks,” in In annual conference on med-
ical image understanding and analysis, pp. 506–517, Springer,
2017.

[34] D. P. Kingma and J. Ba, “Adam: AMethod for Stochastic Opti-
mization,” http://arxiv.org/abs/1412.6980.

[35] F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: fully convo-
lutional neural networks for volumetric medical image seg-
mentation,” in 2016 Fourth international conference on 3D
vision (3DV), pp. 565–571, Stanford, CA, USA, 2016.

[36] C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic
component optimization (MICO) for MRI bias field estima-
tion and tissue segmentation,” Magnetic Resonance Imaging,
vol. 32, no. 7, pp. 913–923, 2014.

[37] S. Sarhan, A. A. Nasr, and M. Y. Shams, “multipose face
recognition-based combined adaptive deep learning vector
quantization,” Computational Intelligence and Neuroscience,
vol. 2020, Article ID 8821868, 11 pages, 2020.

[38] L.S.T. ISLES 2015 - SICAS Medical Image Repository, ISLES
2015 - SICAS Medical Image Repository, Leaderboard: SPES
TrainingNovember, 2019, https://www.smir.ch/ISLES/
Start2015.

[39] B. Kateb, V. Yamamoto, C. Yu, W. Grundfest, and J. P. Gruen,
“Infrared thermal imaging: a review of the literature and case
report,” NeuroImage, vol. 47, pp. T154–T162, 2009.

[40] A. A. A. Figueiredo, H. C. Fernandes, and G. Guimaraes,
“Experimental approach for breast cancer center estimation
using infrared thermography,” Infrared Physics & Technology,
vol. 95, pp. 100–112, 2018.

[41] S. J. Mambou, P. Maresova, O. Krejcar, A. Selamat, and
K. Kuca, “Breast cancer detection using infrared thermal imag-
ing and a deep learning model,” Sensors (Switzerland), vol. 18,
no. 9, p. 2799, 2018.

[42] S. Hossain and F. A. Mohammadi, “Tumor parameter estima-
tion considering the body geometry by thermography,” Com-
puters in Biology and Medicine, vol. 76, pp. 80–93, 2016.

[43] C. Herman, “The role of dynamic infrared imaging in mela-
noma diagnosis,” Expert Review of Dermatology, vol. 8, no. 2,
pp. 177–184, 2013.

[44] M. Strąkowska, R. Strąkowski, M. Strzelecki, G. De Mey, and
B. Więcek, “Thermal modelling and screening method for skin
pathologies using active thermography,” Biomedical Engineer-
ing, vol. 38, no. 3, pp. 602–610, 2018.

[45] J. H. Tan, E. Y. K. Ng, U. Rajendra Acharya, and C. Chee,
“Infrared thermography on ocular surface temperature: a
review,” Infrared Physics & Technology, vol. 52, no. 4,
pp. 97–108, 2009.

[46] L. L. Tan, S. Sanjay, and P. B. Morgan, “Screening for dry eye
disease using infrared ocular thermography,” Contact Lens
Anterior Eye, vol. 39, no. 6, pp. 442–449, 2016.

[47] J. C. Lamanna, K. A. Mccracken, M. Patil, and O. Prohaska,
“brain tissue temperature: activation-induced changes deter-
mined with a new multisensor probe,” in Oxygen Transport
to Tissue, vol. 222, pp. 383-384, Springer, New York, NY, 1988.

[48] Z. Sun, J. Zhang, Y. Chen et al., “Differential temporal evolu-
tion patterns in brain temperature in different ischemic tissues
in a monkey model of middle cerebral artery occlusion,” Jour-
nal of Biomedicine & Biotechnology, vol. 2012, 8 pages, 2012.

[49] A. M. Gorbach, J. D. Heiss, L. Kopylev, and E. H. Oldfield,
“Intraoperative infrared imaging of brain tumors,” Journal of
Neurosurgery, vol. 101, no. 6, pp. 960–969, 2004.

[50] N. Hoffmann, F. Weidner, P. Urban et al., “Framework for 2D-
3D image fusion of infrared thermography with preoperative
MRI,” Biomedizinische Technik, vol. 62, no. 6, pp. 599–607,
2017.

[51] M. Kastek, T. Piątkowski, H. Polakowski et al., “Infrared cam-
era as a system visualisation of tumors during resection or
biopsy of human’s brain,” in Proceedings of the 2016 Interna-
tional Conference on Quantitative InfraRed Thermography,
pp. 383–388, Gdansk, Poland, 2016.

[52] R. Jayasundar and V. P. Singh, “In vivo temperature measure-
ments in brain tumors using proton mr spectroscopy,”Neurol-
ogy India, vol. 50, no. 4, pp. 436–439, 2002.

[53] B. Karaszewski, J. M. Wardlaw, I. Marshall et al., “Measure-
ment of brain temperature with magnetic resonance spectros-
copy in acute ischemic stroke,” Annals of Neurology, vol. 60,
no. 4, pp. 438–446, 2006.

[54] H. Odéen and D. L. Parker, “non-invasive thermometry with
magnetic resonance imaging,” in Theory and Applications of
Heat Transfer in Humans, D. Shrivastava, Ed., pp. 267–299,
Wiley, 2018.

[55] M.Menezes de Oliveira, P. Wen, and T. Ahfock, “Heat transfer
due to electroconvulsive therapy: influence of anisotropic ther-
mal and electrical skull conductivity,” Computer Methods and
Programs in Biomedicine, vol. 133, pp. 71–81, 2016.

12 International Journal of Biomedical Imaging

https://www.cs.toronto.edu/<fritz/absps/reluICML.pdf
https://www.cs.toronto.edu/<fritz/absps/reluICML.pdf
http://arxiv.org/abs/1412.6980
https://www.smir.ch/ISLES/Start2015
https://www.smir.ch/ISLES/Start2015

	Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model
	1. Introduction
	2. Methodology
	2.1. Thermal Image Calculation
	2.2. U-Net Architecture
	2.3. SPES Dataset
	2.4. Data Augmentation
	2.5. Implementation Details

	3. Results
	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest

