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Cardiovascular diseases are reported as the leading cause of death around the world. Automatic segmentation of the left ventricle
(LV) from magnetic resonance (MR) images is essential for an early diagnosis. An enhanced ResUnet is proposed in this paper to
improve the performance of extracting LV endocardium and epicardium from MR images, improving the accuracy of the model
by introducing a medium skip connection for the contracting path and a short skip connection for the residual unit. Also, a depth-
wise separable convolution replaces the typical convolution operation to improve training efficiency. In the MICCAI 2009 LV
segmentation challenge test dataset, the percentages of “good” contours, dice metric, and average perpendicular distance of
endocardium (epicardium) are 99:12% ± 2:29%ð100% ± 0%Þ, 0:93 ± 0:02 ð0:96 ± 0:01Þ, and 1:60 ± 0:42mm ð1:37 ± 0:23mmÞ,
respectively. Experimental results demonstrate that the proposed model obtains promising performance and outperforms state-
of-the-art methods. By incorporating these various skip connections, the segmentation accuracy of the model is significantly
improved, while the depth-wise separable convolution also improves the model efficiency.

1. Introduction

Cardiovascular diseases are the leading cause of death world-
wide [1]. With the rapid development of medical imaging
technology, high-resolution images for noninvasive assess-
ments of the function and structure of the cardiovascular
system can be provided by magnetic resonance (MR) [2].
Segmentation of the left ventricular (LV) endocardium and
epicardium from MR images is crucial for cardiologists to
evaluate LV functional parameters quantitatively. However,
the automatic segmentation of LV remains challenging due
to the interference of noise, causing feature boundaries to
be blurred and the introduction of outflow tract problems
in some MR images [3]. Many models and methods have
been proposed [4–6] that can be categorized as traditional
segmentation methods [7, 8], deep learning-based methods,
or a combination of each. Traditional methods [9, 10] typi-
cally require manual design and extraction of features that
represent the target. These approaches also suffer from low
accuracy and limited robustness.

Recently, convolutional neural networks (CNN), such as
LeNet [11], AlexNet [12], and GoogleNet [13], were intro-
duced to solve image classification problems. Some CNN
models solve the problem of image segmentation by obtain-
ing the classification information of each pixel to achieve a
pixel-level classification [14, 15]. U-Net is an architecture
based on a fully convolutional neural network (FCN) pro-
posed for biomedical image segmentation [16].

Many researchers have demonstrated good progress
leveraging CNN models, including U-Net, to segment LV
from MR images [17, 18]. Abdeltawab et al. achieved LV
segmentation with U-Net featuring a loss function com-
posed of binary cross-entropy and the sum of the sensitivity
and specificity [19]. This technique was performed with
good segmentation accuracy on LV segmentation without
improvements to the U-Net model structure, and opportu-
nities exist for enhancements. Yuan et al. implemented a
multiscale fusion learning framework and obtained better
LV segmentation accuracy based on CNN regression [20].
However, this approach also has room for improvement in
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utilizing the original image features. Tao et al. developed a
fully automated cine MRI analysis system with moderate
results in LV segmentation [21]. The changes introduced
to the network model in this work are insufficient, leaving
opportunities for improving segmentation accuracy. Moradi
et al. concatenated the feature maps of each level of the
U-Net decoding path and achieved ideal results in echocar-
diography [22]. However, this method does not strengthen
the encoding ability of the model. Kerfoot et al. proposed
the residual U-Net (ResUnet), which significantly improved
the performance of the original U-Net by introducing resid-
ual blocks [23] in the convolution process of downsampling
and upsampling. However, this enhancement does not
reuse enough features of the original graph and increases
the complexity of the network. To alleviate excessive time
and memory consumption during training, Han et al. pro-
posed a ghost module that reduces the time and memory of
convolution network training by a depth-wise separable
convolution [24]. By combining a multiscale segmentation
network and a co-discrimination network, Wu et al. pro-
posed a GAN model for LV segmentation that guarantees
the ground truth and unlabeled samples are trained in the
segmentation network [25]. However, the training efficiency
and stability of GAN networks have always been a trouble-
some issue. Avendi et al. developed a fully automatic LV
segmentation tool by combining a deep learning model
with a deformable model [26]. Although these methods
have demonstrated good performance in left ventricular
segmentations, some gaps remain in the accuracy and effi-
ciency required for clinical application. The accurate endo-
cardium and epicardium segmentation plays a crucial role
in the calculation of ejection fraction (EF) and left ventric-
ular mass (LVM), which are important indicators for eval-
uating whether the heart is healthy.

In this paper, we propose an enhanced ResUnet for
improving the accuracy and efficiency of the endocardium
and epicardium extracting process from cardiac MR images.
The designed architecture is based on ResUnet with the
layers of the contracting and expanding paths defined using
residual units, making full use of the features in each layer,
especially the original image features. Specifically, in addi-
tion to the long skip connections between the contracting
and expanding paths, medium skip connection is introduced
for the contracting path. In addition, a short skip connection
is introduced for the residual unit to improve the sensitivity
of the model to gradient changes and the recoverability of
spatial information lost during downsampling. Also, a
depth-wise separable convolution is incorporated to replace
the typical convolution operation to improve training effi-
ciency. The proposed model is evaluated on the MICCAI
2009 and LVQuan18 datasets, with results suggesting the
effectiveness and advantages provided by the implementa-
tion of our proposed model.

2. Materials and Methods

2.1. Datasets and Evaluation. Our experiments were per-
formed on the cardiac short-axis cine MR images provided
by the MICCAI 2009 [27] and LVQuan18 [28] challenge

datasets. Forty-five MR cases are included in MICCAI
2009, with four cases of heart failure with ischemia (HF-I),
four cases of heart failure without ischemia (HF-NI), four
hypertrophy (HYP) cases, and three cases of normal (N).
These datasets are divided into training, validation, and test-
ing sets, each containing an average of 15 cases. For each
case, approximately six to 12 short-axis cine images with a
specific dimension of 256 × 256 pixels and thickness of 8–
10mm are obtained from the atrioventricular ring to the
apex. The endocardium of all slices in the end-diastole
(ED) and end-systole (ES) cardiac phases is drawn and con-
firmed by two cardiologists, and the epicardium of all slices
is drawn only in the ED cardiac phase. These manual anno-
tations provide the ground truth of the segmentation for
evaluation purposes.

To verify the effectiveness and adaptability of our model,
we also evaluated with another updated dataset, LVQuan18,
consisting of 145 cases, each with 20 frames. The ROIs of the
80 × 80 pixels in the LVQuan18 set originate from three hos-
pitals affiliated with two healthcare centers, St. Joseph’s
Healthcare and London Healthcare Center. For each frame,
the ground truth of the segmentation is provided for evalu-
ation purposes.

We evaluate the segmentation performance with three
measures in the MICCAI 2009 challenge set, including the
percentage of “good” contours (PGC), the average perpen-
dicular distance (APD), and the dice metric (DM) of the
“good” contours. APD measures the similarity between the
automatically segmented contour and the corresponding
ground truth by calculating the average distance between
all contour points [25]. A segmentation is classified as
“good” if the APD is less than 5mm [26]. Only the slices
with good segmentation participate in the calculation of
DM, which is defined as the similarity between the area of
the auto-segmented contour As and the area of the ground
truth Ag, expressed as

DM= 2
As ∩ Ag
� �

As + Ag

� � : ð1Þ

The resulting DM is between 0 and 1, such that a greater
DM value corresponds to the automated segmentation result
being closer to the ground truth.

The EF and LVM are important indexes to evaluate if the
heart is healthy. These two measures are calculated based on
the autosegmentation results, defined as

LVM = VED
epi −VED

end

� �
∗ 1:05, ð2Þ

EF = VED
end − VES

end
� �

VED
end

∗ 100%, ð3Þ

where VED
epi and VED

end are the epicardial and endocardial vol-

umes in the ED phase, respectively, and VES
end is the endocar-

dial volume in the ES phase.
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2.2. Method. The proposed segmentation method is shown
in Figure 1. To reduce memory consumption and computing
time, the ROIs with a size of 128 × 128 pixels are extracted
(as illustrated in Figure 2) by the ROI cropping method
based on k-means clustering and a threshold adjustment
[29]. Due to the limited number of images available in the
MICCAI 2009 dataset, data augmentation is applied to
improve the training effect of the model. As shown in
Figure 3, the ROIs are rotated 45, 90, 135, 180, 225, 270,
and 315 degrees clockwise, then flipped horizontally and
vertically. This augmentation increases the number of
images in the training dataset to ten times the original
quantity.

These cropped ROIs are input to the improved ResUnet
model, as presented in Figure 1. The model comprises con-
tracting and symmetric expanding paths, which are defined
using residual units. Compared with the residual U-Net,

our model is enhanced through two features. First, various
types of skip connections are introduced to improve the
accuracy of the model, and second, a depth-wise separable
convolution is introduced to improve efficiency.
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Figure 1: The proposed segmentation model with labels Add (addition), Conv (convolution), DW-Conv (depth-wise convolution), BN
(batch normalization), and ReLU (rectified linear unit).

⁎

Figure 2: ROI cropping. The image on the left is the original slice,
and the white box represents the ROI containing the LV. The image
on the right is the corresponding cropped ROIs.
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Also shown in Figure 1, short, medium, and long skip
connections are applied for propagating information to
improve the performance of the network. Each residual unit
of the contracting path consists of a residual function and
two short skip connections represented by a thin blue and
black arrow, respectively. These short skip connections copy
features from the beginning to the subsequent layer of the
current step to enhance feature reuse, enrich the feature
diversity of the network, and improve the sensitivity of the
network to gradient changes. For the residual function,
batch normalization (BN) and a rectified linear unit (ReLU)
are implemented after the convolution layers.

A medium skip connection, represented by the blue
arrow in Figure 1 and starting from the input of the model,
is introduced to the contracting path to enhance feature
reuse and improve the representation capability of the net-
work. For each step in the contracting path, the input of
the model is concatenated with the output from the down-
sampling of the previous step through the medium skip con-
nection. To match the inputs and outputs, the input of the
model is processed by a 1 × 1 convolution, represented by
the thin blue arrow in the figure, to adjust the number and
spatial resolution of the feature maps.

Following the contracting path, a residual unit is incor-
porated as transition layers for the subsequent expanding
path, implemented with residual units and up convolution.
To recover spatial information lost during downsampling,
long skip connections, represented by thin black arrows in
Figure 1, connect low-level features in the contracting path
with high-level features in the expanding path. At the end
of the expanding path, a 1 × 1 convolution and SoftMax
function, represented by the horizontal black arrow in the
figure, obtain the segmentation result consistent with the
spatial resolution of the input image.

With the introduction of these skip connections, the per-
formance of the network is improved while increasing the
time cost of the training process due to the additional
parameters. Therefore, a depth-wise separable convolution
(followed by a BN and ReLU) replaces the typical convolu-
tion, as shown in Figure 4, to improve the training efficiency.

For example, suppose the size of the input features is m × n
× c1, and the output is m × n × c2. First, the 3 × 3 convolu-
tion is applied to the input features to obtain the feature
map S1 with a size of m × n × c2/2. Then, the separable con-
volution with a kernel of 3 × 3 is applied on S1 to obtain fea-
ture maps S2 with a size of m × n × c2/2. Finally, the features
S1 and S2 are concatenated to form the output with a size of
m × n × c2.

3. Experimental Results

3.1. Environment. Our experiments were implemented on
Windows 10 using TensorFlow with cuDNN 7.0 and CUDA
9.0, equipped with an Intel® Core 2.6GHz CPU, 32GB of
RAM, and Nvidia GeForce GTX1660 (6GB RAM). The
learning rate of the network model was dynamically and lin-
early adjusted from an initial value of 0.001 to 0.0001 at the
120th epoch.

To facilitate comparisons with previous models, we
applied the same dataset division method recommended
by MICCAI 2009, as used in the relevant literature. The
training and validation sets of 30 cases trained our model,
and the test set of 15 cases was used for testing model
performance.

3.2. Results. Figure 5 illustrates the segmentation results of
our proposed model (solid green line) and ground truth
(dotted red line) for four types of patients. Each row, ori-
ented from the top to bottom of the figure, corresponds to
a case of N, HF-I, HF-NI, and HYP, respectively. The first
and second columns are the segmentation results of the
basal slice in the ED cardiac phase and ES cardiac phase,
respectively. The third and fourth columns include the
results for the corresponding middle slice, and the fifth and
sixth columns for the apical slice. Because the epicardium
contour in the ES phase is not used in the calculations of
LVM and EF, the corresponding ground truth and segmen-
tation results are omitted. For each case in Figure 5, the con-
sistency between the segmentation results and the ground
truth is very high, whether a basal slice, middle slice, or api-
cal slice in the ED cardiac phases or ES phases.

To analyze our segmentation results quantitatively, the
PGC, APD, and DM values of the segmentation results of
the endocardium and epicardium for 15 test cases are listed
in Table 1. Our model achieves 100% PGC for epicardium
segmentation in all test cases. This result suggests that epi-
cardium segmentation in all slices of all cases is “good” (an
APD value less than 5mm). For the endocardium segmenta-
tion, 13 of 15 cases achieve 100% PGC, and only a few slices
in the SC-HYP-37 and SC-N-07 failed to achieve “good”
segmentation results. The mean ± SD value of APD for the
endocardium and epicardium are 1:60 ± 0:42mmand 1:37
± 0:23mm, respectively, while the DM values are 0:93 ±
0:02 and 0:96 ± 0:01, respectively.

Assessing the usefulness of our segmentation results in
the two clinical indicators of the LVM and EF is considered
in the regression of LVM and EF shown on the left of
Figure 6. The coefficients of determination R2 for the LVM
and EF are close to 0.95 and 0.97, respectively, and the slopes

⁎

Figure 3: Data augmentation. The image on the left is the
corresponding cropped ROI, and those on the right are
augmented ROIs.
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are approximately 1.03 and 0.89, respectively. The Bland-
Altman analysis results are plotted on the right of Figure 6.
For the difference between the automatic and manual
LVM/EF results, the mean ± 1:96 SD value is −2:1 g ± 22:4
g/0:5 ± 7:2, the p values of mean bias is 0.1518/0.5291, and
the confidence interval is (-24.5 g, 20.3 g)/(-7.7, 8.7), respec-
tively. The number of cases outside the confidence intervals
for the LVM is 0/15 (0.0%) and 1/15 (6.7%) for EF. The
regression and Bland-Altman analysis suggest that the seg-
mentation results of the proposed model are in good agree-
ment with the ground truth and the accuracy and clinical
applicability for the automatic evaluation of LV function.

We also tested the improved ResUnet model on the
LVQuan18 dataset, which originates from different equip-
ment operated at multiple hospitals featuring a variety of
resolutions. Images provided by LVQuan18 have ROIs with
a size of 80 × 80 pixels that are extracted from 145 cases. Of
the 145 cases, 130 are provided as the training set and the
remaining 15 cases as the test set. The PGC, DM, and
APD values of the endocardium/epicardium for the segmen-
tation results on LVQuan18 are 100.00%/100.00%, 0.97/0.97,

and 1.25mm/1.37mm, respectively. These results confirm
the good adaptability of our proposed model to various data
sets.

3.3. Comparisons. To verify the superiority of our proposed
model in segmentation accuracy, we compared our results
with Lu et al.’s image-driven method [5], Long et al.’s FCN
model [14], Ngo et al.’s hybrid method of level set and deep
learning [30], Kerfoot et al.’s residual U-Net method [23],
Hu et al.’s combination of deep learning and dynamic pro-
gramming method [9], and Wu et al.’s GAN model [25]
on the same dataset of MICCAI 2009. Table 2 lists the values
of PGC, DM, and APD for each of these methods. The APD
of the endocardium and epicardium with our model is
1.60mm and 1.37mm, respectively, which are better than
the best APD values of 1.71mm and 1.64mm reported by
others [25]. For the value of PGC, our proposed model is
higher compared to the traditional algorithms, deep
learning-based methods, and their combinations and 1.78%
higher than the state-of-the-art model for the endocardium
and 1.79% for the epicardium. The higher the PGC value,

Input

Conv

Output

S1

……

S2

S1

Figure 4: Depth-wise separable convolution.

HF-I

HF-NI

HYP

N

Basal, ED Basal, ES Mid, ED Mid, ES Apical, ED Apical, ES

Figure 5: Automatic segmentation (solid green line) and ground truth (dotted red line) in the basial slice, midslice, and apical slice for four
types of patients, labeled with Basal (basal slice), Mid (midslice), Apical (apical slice), ED (end-diastole), ES (end-systole), N (normal), HF-I
(heart failure with ischemia), HF-NI (heart failure without ischemia), and HYP (hypertrophy).
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Table 1: Segmentation results on all 15 test cases.

Patient id
Endocardium Epicardium

PGC (%) DM APD (mm) PGC (%) DM APD (mm)

SC-HF-I-05 100.00 0.96 1.20 100.00 0.97 1.00

SC-HF-I-06 100.00 0.94 2.00 100.00 0.97 1.23

SC-HF-I-07 100.00 0.94 1.27 100.00 0.96 1.17

SC-HF-I-08 100.00 0.95 1.62 100.00 0.97 1.28

SC-HF-NI-07 100.00 0.92 2.25 100.00 0.97 1.40

SC-HF-NI-11 100.00 0.93 2.04 100.00 0.96 1.30

SC-HF-NI-31 100.00 0.93 1.51 100.00 0.96 1.16

SC-HF-NI-33 100.00 0.94 1.29 100.00 0.95 1.16

SC-HYP-06 100.00 0.91 1.25 100.00 0.95 1.39

SC-HYP-07 100.00 0.92 1.19 100.00 0.95 1.67

SC-HYP-08 100.00 0.91 1.61 100.00 0.96 1.43

SC-HYP-37 92.31 0.86 2.65 100.00 0.94 1.99

SC-N-05 100.00 0.91 1.44 100.00 0.95 1.36

SC-N-06 100.00 0.93 1.43 100.00 0.94 1.50

SC-N-07 94.44 0.93 1.32 100.00 0.94 1.54

MEAN 99.12 0.93 1.60 100.00 0.96 1.37

STD 2.29 0.02 0.42 0.00 0.01 0.23

PGC: percentage of good contours; DM: dice metric; APD: average perpendicular distance; MEAN: mean of all cases; STD: standard deviation; SC-HF-I: heart
failure with ischemia; SC-HF-NI: heart failure without ischemia; SC-HYP: hypertrophy; and SC-N: normal.
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the more slices are involved in calculating the DM value. In
this case, our endocardium and epicardium DM values of
0.93 and 0.96, respectively, are still higher than most other
methods and the same as the most advanced method.

The p values of the Student’s t-test for the distribution of
the APD, PGC, and DM metrics for our model and Lu
et al.’s, Kerfoot et al.’s, and Hu et al.’s algorithms are all less
than 0.01. This result suggests that the segmentation results
of our model are significantly different from those of these
other algorithms. For Long et al.’s, Ngo et al.’s, and Wu
et al.’s methods, due to the lack of relevant details, these algo-
rithms cannot be reproduced, as we cannot give the p values
between the results of our model and the others at this time.

All experimental results presented here show that our
proposed model displays good segmentation performance
and robustness, with superior metrics compared to other
algorithms.

4. Discussion

The quality of the convolution features impacts the perfor-
mance of the CNN model. In our proposed model, the skip

connection enhances the reuse of features and increases the
sensitivity of the network to gradient changes. To compare
the difference between our model and the residual U-Net
[18], Figure 7 shows the units of the first down sampling
in both models. As seen in this figure, the primary difference
is that our model enhances the reuse of the input image of
the model (blue arrow) and the initial feature of each step
(black arrow) by introducing skip connections, which signif-
icantly enrich the information contained in the feature map.
Also, in Figure 7, one of the real feature maps is selected
from the convolution features after the first downsampling
to observe its distribution. Here, the LV contour in our fea-
ture map is clearer compared to the residual U-Net. Corre-
spondingly, the final segmentation result (solid green line)
of our method is closer to the ground truth (dotted red line)
compared to the residual U-Net, which is also consistent
with the results in Table 3.

The effect of the depth-wise separable convolution on
improving the efficiency of the model is verified by replacing
the depth-wise separable convolution in the proposed
“improved ResUnet” model with the ordinary convolution
and recording the replaced model as the “ResUnet+skip

Table 2: Comparison of segmentation results on MICCAI 2009.

Methods
Endocardium Epicardium

PGC (%) DM APD (mm) PGC (%) DM APD (mm)

Lu et al.∗ (2009) 77.63 (16.89) 0.89 (0.03) 2.07 (0.59) 85.68 (13.58) 0.94 (0.02) 1.91 (0.61)

Long et al. (2015) 95.23 (-) 0.80 (-) 1.95 (-) 95.62 (-) 0.85 (-) 2.14 (-)

Ngo et al. (2017) 95.91 (5.28) 0.88 (0.03) 2.34 (0.46) 94.65 (6.18) 0.93 (0.02) 2.08 (0.60)

Kerfoot et al.∗ (2018) 97.98 (4.56) 0.91 (0.03) 1.91 (0.47) 98.28 (4.07) 0.95 (0.02) 1.76 (0.32)

Hu et al.∗ (2019) 96.80 (7.0) 0.90 (0.03) 1.95 (0.48) 98.40 (6.5) 0.93 (0.02) 1.98 (0.53)

Wu et al. (2021) 97.34 (-) 0.93 (-) 1.71 (-) 98.21 (-) 0.96 (-) 1.64 (-)

Ours 99.12 (2.29) 0.93 (0.02) 1.60 (0.42) 100 (0.00) 0.96 (0.01) 1.37 (0.23)

PGC: percentage of good contours; DM: dice metric; APD: average perpendicular distance. Symbol ∗ denotes the p value for the distributions of this metric
between our model and the corresponding method is lower than 0.01. Number format: mean value (standard deviation).
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Figure 7: Comparison of units between the residual U-Net and our model. The solid green line represents the segmentation result, and the
dotted red line represents the ground truth.
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connection.” Table 3 presents the segmentation results of the
residual U-Net [23] (denoted as ResUnet), “ResUnet+skip
connection,” and “improved ResUnet” (our model). As seen
in Table 3, the ResUnet+skip connection enhances the reuse
of features and improves the quality of the convolutional
features compared to the original ResUnet. This practice
improves the segmentation accuracy while increasing train-
ing time. Compared with the ResUnet+skip connection,
the improved ResUnet introduces a depth-wise separable
convolution, resulting in a lower cost of convolution and
reduced training times for the endocardial segmentation
from 354 s to 260 s/epoch and the epicardium from 200 s
to 146 s/epoch. The PGC of the endocardium segmentation
is also improved. Therefore, by introducing separable convo-
lution into our model, we significantly reduce the training
time and improve the efficiency of the model while ensuring
sufficient segmentation accuracy.

Although our model achieved promising performance in
LV segmentation, some issues remain that offer opportuni-
ties for further research, such as the segmentation of small
and fuzzy LV from the apical slices in the ES phase. As illus-
trated in Figure 8, the top includes three difficult slices, and
the bottom includes the corresponding segmentation results

(solid green line) and ground truth (dotted red line). From
left to right are the slices IM-0001-0127 in SC-HYP-37,
IM-0001-0147 in SC-HYP-37, and IM-0001-0186 in SC-N-
37. The APD for the left slice is 4.85mm, which is consid-
ered a good segmentation, but the dice coefficient of 0.59 is
relatively low. The APD for the middle slice is 6.25mm,
which is considered a poor segmentation. The right slice is
not correctly segmented. All slices presented here are from
the apical slices in the ES phase, with a very small blood pool
area and endocardium that are not obvious. Improving the
segmentation performance for such small targets will be
addressed in future work.

5. Conclusion

An enhanced ResUnet model was proposed to improve the
accuracy and efficiency of the endocardium and epicardium
extraction process from cardiac MR images. Our contribu-
tions include introducing various skip connections to
enhance feature reuse, improve the sensitivity of the model
to gradient changes, and recover spatial information lost
during down sampling for improving segmentation accu-
racy. Also, we introduced a separable convolution to further

Table 3: Comparison of the effects of skip connection and separable convolution on MICCAI 2009.

Models
Endocardium

PGC (%) DM APD (mm) TIME (s/epoch)

ResUnet [18] 97.98 (4.56) 0.91 (0.03) 1.91 (0.47) 290

ResUnet+skip connection 98.60 (2.63) 0.92 (0.03) 1.57 (0.42) 354

Improved ResUnet 99.12 (2.29) 0.93 (0.02) 1.60 (0.42) 260

Models
Epicardium

PGC (%) DM APD (mm) TIME (s/epoch)

ResUnet [18] 98.28 (4.07) 0.95 (0.02) 1.76 (0.32) 152

ResUnet+skip connection 100 (0.00) 0.96 (0.01) 1.36 (0.24) 200

Improved ResUnet 100 (0.00) 0.96 (0.01) 1.37 (0.23) 146

PGC: percentage of good contours; DM: dice metric; APD: average perpendicular distance. Number format: mean value (standard deviation).

Difficult
slice

Segmentation
result

Figure 8: Segmentation results (solid green line) and ground truth (dotted red line) of three difficult slices.

8 International Journal of Biomedical Imaging



improve the model’s efficiency. Our proposed method out-
performed other baseline and state-of-the-art methods in
terms of multiple assessment metrics. The comparison
between our model and others (including the state-of-the-
art method) suggests that the results of our model are highly
consistent with the ground truth. Furthermore, our model
achieves strong performance on the LVQuan18 dataset,
which validates the promising adaptability of our model to
various datasets.
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