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We propose an enhanced method to accurately retrieve time-activity curves (TACs) of blood and tissue from dynamic 2-deoxy-2-
[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) cardiac images of mice. The method is noninvasive and
consists of using a constrained nonnegative matrix factorization algorithm (CNMF) applied to the matrix (A) containing the
intensity values of the voxels of the left ventricle (LV) PET image. CNMF factorizes A into nonnegative matrices H and W,
respectively, representing the physiological factors (blood and tissue) and their associated weights, by minimizing an extended
cost function. We verified our method on 32 C57BL/6 mice, 14 of them with acute myocardial infarction (AMI). With CNMF,
we could break down the mouse LV into myocardial and blood pool images. Their corresponding TACs were used in kinetic
modeling to readily determine the [18F]FDG influx constant (Ki) required to compute the myocardial metabolic rate of
glucose. The calculated Ki values using CNMF for the heart of control mice were in good agreement with those published in
the literature. Significant differences in Ki values for the heart of control and AMI mice were found using CNMF. The values
of the elements of W agreed well with the LV structural changes induced by ligation of the left coronary artery. CNMF was
compared with the recently published method based on robust unmixing of dynamic sequences using regions of interest
(RUDUR). A clear improvement of signal separation was observed with CNMF compared to the RUDUR method.

1. Introduction

It is well established that positron emission tomography
(PET) is a powerful imaging modality that measures the
local concentration of radiotracers. Thus, given a dynamic
sequence of PET images, one can visualize and precisely
quantify the involved metabolic processes following the
injection of radiolabeled compounds.

The mouse is increasingly being used as the preferred
animal model for many in vivo molecular imaging studies
[1, 2]. The use of well-validated tracer kinetic models with

dynamic PET sequences allows estimating physiological
parameters [3]; however, suitable corrections are required
to obtain the accurate blood and tissue time-activity curves
(TACs) needed in kinetic modeling, especially in mouse
studies. In fact, despite the improvement of the spatial reso-
lution of modern scanners (~1-1.5mm [4]), the partial vol-
ume effect (PVE) remains a major impediment for imaging
small structures [5, 6].

In dynamic cardiac PET studies, the input function
and tissue TACs, describing the arterial plasma and myo-
cardial wall radioactivity concentrations, are necessary for
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myocardial blood flow and metabolic rate measurements.
However, in the mouse model, due to the small size of the
heart, the measured TACs will inevitably lead to inaccurate
estimation of rate parameters if appropriate corrections are
not applied.

Manual blood sampling, considered as the gold standard,
is laborious and inherently unable to properly capture the
initial peak of the input function, especially during a rapid
bolus injection. Furthermore, only up to 10% (e.g.,
~0.2mL) of the total blood volume can be taken from a
mouse without significantly altering its physiologic condi-
tions [7], thus limiting longitudinal studies. Automated
blood sampling methods have been developed to determine
the input function [8, 9] with a potential for smaller blood
volumes. However, the input function from these methods
needs to be corrected for propagation delay and dispersion
[10]. A hybrid image and blood sampling method was devel-
oped to derive input function for quantification of micro-
PET mouse data [11]. This method used the recovered left
ventricle (LV) TAC peak linked with 5-6 optimally placed
blood sample points. Another hybrid image-derived input
function was proposed using the LV peak followed by the
remainder of the liver TAC normalized to a 60min arterial
blood sample [12]. Thorn et al. [13] have reported a meth-
odology for measuring [18F]FDG myocardial glucose uptake
using vena cava image-derived input function corrected for
PVE. They used contrast computed tomography (CT) and
modeling to determine the vena cava recovery coefficient
(RC). Two machine learning-derived input function models
have been recently proposed by Kuttner et al. [14]. These
models, when properly trained, can predict the real input
function. Despite their validation, none of these methods
address the myocardial TAC correction, which is also
affected by the PVE.

Fang and Muzic [15] proposed a simultaneous estima-
tion model to correct both the LV cavity (LVC) and the
myocardial TACs for PVE in small animal PET studies.
Their method assumes that the measured LV and myocar-
dial TACs can be expressed as a weighted sum of a modeled
blood and tissue activity. This model, while satisfactorily
describing the spillover issues, tries to estimate 15 parame-
ters simultaneously by minimizing a constrained objective
function and, as such, may lead to uncertainty in parameter
estimation. Li and Kundu have developed a hybrid optimiza-
tion method based on the artificial immune system algo-
rithm to reduce the uncertainty caused by guess values in
simultaneous estimation models [16]. Locke et al. [17]
applied the ordered subset expectation maximization—max-
imum a posteriori algorithm and “froze” the heart around
the diastolic phase to reduce the cross-contamination
between LVC and myocardium and then boosted the
obtained TACs by a predetermined RC. Their reconstruc-
tion, however, takes several hours per dynamic image, which
makes the approach cumbersome for high-throughput car-
diac research.

Various techniques have been investigated to separate
different physiological signals in PET images. These tech-
niques comprise independent component analysis (ICA)
[18], principal component analysis (PCA) [19], and factor

analysis of dynamic sequences (FADS) [20, 21]. These
approaches assume that, due to the PVE, the physiological
signals are mixed up in each voxel of the image and therefore
can be extracted separately in a mathematical framework.
Several versions have been developed in which, in addition
to the positivity constraint [20, 22], improvements have been
made to better separate the factors and thus reduce the
ambiguity on the solution, either with spatial regularization
[23], or by minimizing the overlap between the factor images
[24, 25] or else by incorporating a priori physiological
knowledge [26, 27]. These algorithms, however, need to be
validated in a high cross-contamination context such as in
cardiac mouse PET imaging.

Nonnegative matrix factorization (NMF) is another
technique to separate overlapped signals in dynamic PET
images. NMF was originally developed by Lee and Seung
in their Nature article [28] to learn parts of faces and semantic
features of text. They implemented update rules to minimize
the Euclidian distance and the Kullback-Leibler divergence
[29]. Various alternative minimization strategies have been
suggested to use with NMF [30, 31].

Lee et al. [32] reported in a preliminary study that NMF
would be feasible for image segmentation and factor extrac-
tion from dynamic PET image sequences in nuclear medi-
cine. Subsequently, several NMF-based approaches have
been suggested to extract the input curve from dynamic
PET images of mice [33–35].

Recently, robust unmixing of dynamic sequences using
regions of interest (RUDUR) algorithm was proposed in
which knowledge of regions of interest (ROIs) was inte-
grated as soft constraints in the objective function to over-
come nonuniqueness issues [36]. Compared to other
competitive methods [20, 24, 37, 38], RUDUR showed a sig-
nificant improvement of the source separation.

In this study, we present a method that uses a con-
strained NMF algorithm incorporating normalization and
regularization to properly extract LVC and myocardium
TACs from [18F]FDG PET cardiac mouse images. These
TACs, corrected for PVE and cross-contamination without
extra steps, were used to assess the myocardial [18F]FDG
influx constant Ki in normal and infarcted mice. The pro-
posed CNMF method was compared qualitatively on the
retrieved TACs and quantitatively on the calculated Ki con-
stants to the RUDUR method [36] as a validation in the
absence of reliable blood sampled input function.

2. Theoretical Background

2.1. Constrained Nonnegative Matrix Factorization. As a
matrix factorization method, NMF can be stated in general
form as follows: given a nonnegative matrix A (n ×m) and
a positive integer r < <min (n, m), find iteratively nonnega-
tive matrices W (n × r) and H (r ×m) such that A ≈WH
by minimizing an objective function f ðW,HÞ. In PET imag-
ing, the rows of H represent the physiological factors and the
columns of W contain their corresponding weights in each
voxel. n is the number of voxels included in A, r is the num-
ber of factors, and m is the number of time-frames. Because
of inevitable statistical uncertainties in the PET image, and
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in order to enforce desired smoothness in the computed
solution, we used the constrained NMF (CNMF) of Pauca
et al. [39]. Briefly, CNMF tries to find two positive matrices
W and H by minimizing the objective function:

f W,Hð Þ = 1
2

A −WHk k2F + α Wk k2F + β Hk k2F
À Á

: ð1Þ

A is the n ×mmatrix with elements Aij = Pij/∑
m
l=1Pil,

where Pij is the ij
th element of the matrix Pðn ×mÞ of PET

data from the whole LV ROI (including myocardium and
LVC), α and β are the positive regularization parameters
that balance the trade-off between the approximation error

and the constraints, and kXkF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1∑
m
j=1x

2
ij

q
is the Frobe-

nius norm [40] of X.
The minimization of (1) is performed by alternating

nonnegative least squares solution using the block principal
pivoting algorithm of Kim and Park [41] applied to itera-
tively solve
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, ð2bÞ

with fixed H. Ir is an r × r identity matrix, and 0r×m and 0r×n
are the zero matrices of size r ×m and r × n. Xt is the trans-
pose matrix of X.

Normally, the mixed signals in A are originating mainly
from the myocardium, the left and right ventricle cavities.
However, the right ventricle to left ventricle transit time in
~30 g mice was estimated to 1:01 ± 0:3 seconds [42]. Due
to the used frame sequence (≥5 s), we believe that only 2 fac-
tors need to be considered in this study, namely, the tissue
factor from the myocardium and the blood factor from the
LVC (i.e., r = 2).

As for any iterative algorithm, H and W must be initial-
ized. For this, we defined a n × r matrix M which is a binary
mask representing the myocardial and LVC ROIs as follows
[36]:

Mik =
1 if the ith voxel is in the kth ROI,

0 otherwise:

(
ð3Þ

H and W are then initialized as follows:

H 0ð Þ
kj =

∑iAij

∑iMik
, such thatMik = 1, ð4aÞ

W 0ð Þ
ik =

1
1 +min

j
distEuc i, jð Þ , such thatMjk = 1, ð4bÞ

〠
r

k=1
W 0ð Þ

ik = 1,∀1 ≤ i ≤ n, ð4cÞ

where distEucði, jÞ is the Euclidean distance between the ith

and jth voxels. In other words, H is initialized with the nor-
malized TACs obtained from crude ROIs drawn on myocar-
dium and LVC ROIs (Figure 1), while the Euclidian distance
between voxels and ROIs is considered for W initialization.

Specifically, Wð0Þ
ik = 1 if and only if the ith voxel is in the kth

ROI; otherwise, the greater the distance between the ith voxel

and the kth ROI, the smaller Wð0Þ
ik is. This initialization

ensures reasonable starting weights for the voxels according
to their distance to a region of interest.

Since the iterative algorithm of Equation (2a) does not
necessarily maintain the relationship of Equation (4c), we
applied the scaling procedure described in [43]. Briefly, a
vector v was calculated to rescale W and H. The jth element
(j = 1⋯ r) of the vector v is given by

vj = WtW
À Á−1 〠

i

Wij

 !t

: ð5Þ

In other words, the transposed vector vt is elementwise
multiplied with each row of W, and the inverse v−1 is ele-
mentwise multiplied with each column of H so that the
product WH will not change. This scaling step is useful
when applying the NMF algorithm to PET images so that
each row of W will sum to 1 (Equation (4c)), thus ensuring
that the various signals from different tissues coexist in each
voxel but with different weights. The matrix H can be
regarded as the physiological factors and W, as their corre-
sponding weights in each voxel.

Our objective is to extract the true activity of the factors
through CNMF. Owing to the normalized units of the
obtained factors, the true magnitude of the CNMF TAC of
the kth factor at time j was determined by

CNMFTACk jð Þ =Hkj
∑i∑

m
l=1Pil

∑iMik
, such thatMik = 1, ð6Þ

with P representing the n ×m matrix of measured PET data
from the LV ROI.

Since α and β are the parameters that control smooth-
ness and sparsity of W and H, respectively [41], they were
chosen such that the tail of the calculated CNMF blood fac-
tor of Equation (6) would match the activity value from the
blood sample. Thus, Equation (6) returned CNMF blood (CB
) and tissue (CT) TACs corrected for PVE and cross-
contamination. The unconstrained NMF (UNMF) data can
be extracted by setting α = 0 and β = 0.

For the RUDUR algorithm [36], the same starting point
Wð0Þ and Hð0Þ was used together with the same input matrix
A. Equation (6) was also applied to the RUDUR results to
obtain RUDUR blood and tissue TACs. We used MATLAB
programming language for algorithm implementation. The
source code is available at https://github.com/osarrhini/
CNMF.
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2.2. [18F]FDG Three-Compartment Kinetic Model. The three-
compartment model (3CM) is commonly used to assess the
[18F]FDG metabolism [44]. The mathematical representative
equations of this model are

dCf tð Þ
dt

= K1Cp tð Þ − k2 + k3ð ÞCf tð Þ + k4Cm tð Þ, ð7aÞ

dCm tð Þ
dt

= k3Cf tð Þ − k4Cm tð Þ, ð7bÞ

CT tð Þ = 1 − vBð Þ Cf tð Þ + Cm tð ÞÀ Á
+ vBCB tð Þ, ð7cÞ

where CpðtÞ, Cf ðtÞ, and CmðtÞ are, respectively, the
[18F]FDG concentration in plasma, the free [18F]FDG con-
centration in tissue, and the concentration of the metabo-
lized [18F]FDG-6-phosphate in tissue. CBðtÞ and CTðtÞ are
either the CNMF or RUDUR blood and tissue TACs. vB
(mL/g) is the tissue blood volume. K1 (mL/g/min) and k2
(min-1) are the rate constants characterizing the [18F]FDG
forward and reverse capillary membrane transport between
plasma and tissue; k3 (min-1) and k4 (min-1) are the rate con-
stants depicting the phosphorylation of [18F]FDG and the
dephosphorylation of [18F]FDG-6-phosphate. The plasma
[18F]FDG activity CpðtÞ was determined from CBðtÞ by apply-
ing blood-to-plasma activity conversion as described in [8]

Cp tð Þ = CB tð Þ 0:386e−0:19t + 1:165
À Á

: ð8Þ

Once the parameters (K1, k2, k3, k4, and vB) are estimated by
least squares fitting using PMOD’s dedicated tools (Version

3.9, PMOD Technologies, Switzerland), we calculated the
[18F]FDG influx constant Ki = K1k3/ðk2 + k3Þ.

3. Materials and Methods

3.1. Animal Model. Thirty-two C57BL/6 mice (30:4 ± 2:4 g),
on a Teklad-irradiated global soy, protein-free extruded diet
(Inotiv, catalog no T2920X.10), were divided into two groups:
healthy control mice (CTRL) (n = 18) and mice with acute
myocardial infarction (AMI) (n = 14) induced by surgical
occlusion of the left coronary artery [45]. The AMI group
was itself divided into two subgroups: mice scanned for 3 days
(AMI3d) (n =8) and mice scanned for 14 days (AMI14d)
(n = 6) after AMI induction. During PET measurements, the
mice were maintained under mild anesthesia (~1.0-1.5% iso-
flurane and 1.0-1.5L/min oxygen), and their body tempera-
ture was controlled with a heating pad. All mouse
experiments were conducted in accordance with the recom-
mendations of the Canadian Council on Animal Care and
with the approval of the University of Sherbrooke Ethics Com-
mittee for Animal Experiments (Protocol No. 199-13R).

3.2. PET Measurements. PET data were acquired in list-
mode using the Triumph™ dual modality platform (Gamma
Medica, Inc., Northridge, CA), consisting of a LabPET8 ava-
lanche photodiode-based digital PET scanner with 7.5 cm
axial and 10 cm transaxial field of view and a high-
resolution X-ray CT scanner. The spatial resolution mea-
sured at 5mm from the center of the PET scanner was
1.51mm and 1.62mm in the radial and tangential direction,
respectively, with 2D-filtered back projection reconstructed
images. Since the LabPET8 scanner design is optimized for
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Figure 1: [18F]FDG images of control (first row) and AMI (second row) C57BL/6 mice showing typical ROIs used in cardiac [18F]FDG PET
image analysis. The liver ROI is presented in the third row on the transaxial (left) and coronal (right) views. The ROI names are given in the
legend.
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iterative reconstruction algorithm, hot spots down to 1mm
can be resolved in iteratively reconstructed 3D images [46].

Each mouse was positioned on the scanner bed, head
first supine, making sure that the heart is approximately at
the center of the scanner field of view. The 45-minute list-
mode acquisitions were started 30 s before administration
in the tail vein of 7:9 ± 1:8MBq in 100μL of [18F]FDG at a
rate of 200μL/min using an automatic pump. One blood
sample of 15:6 ± 7:4μL was manually collected in a pre-
weighted tube from the caudal artery 9:3 ± 3:2min after
the end of the acquisition. Radioactivity in the blood sample
was measured in a gamma counter, which was cross-
calibrated with the scanner, and used as a reference for the
CNMF and RUDUR image-derived blood TACs. Images
were reconstructed on a 120 × 120 × 128 matrix with a 0:5
mm × 0:5mm × 0:6mm voxel size using 20 iterations of
the 3D maximum likelihood expectation maximization algo-
rithm implementing a 3D model of the physical detector
response [47]. Frame durations for the reconstructed images
were 16 × 5 s, 7 × 10 s, 8 × 30 s, 1 × 60 s, 5 × 150 s, and 5 × 300
s. All PET images were corrected for 18F physical radionu-
clide decay, dead time, and variations in crystal detection
efficiency. A calibration factor was determined using a
3 cm diameter cylindrical phantom loaded with known
activity and was used to convert image counts/s/voxel to per-
cent of injected dose per gram (%ID/g) assuming a tissue
density of 1 g/cm3.

3.3. Regions of Interest Delineation. The reconstructed images
were reoriented to short axis using the PMOD cardiac PET
tool. The last 5 frames of the reoriented images were averaged
and used to draw, by thresholding, a region of interest around
the mouse heart using PMOD. The threshold was visually set
so that only the whole LV was included in the ROI. The LV
ROI was then applied to the dynamic reoriented image series,
and the obtained intensity of voxels was reorganized into a
matrix ðn ×mÞ, which in turn was normalized to obtain the
n ×m matrix A with n voxels and m frames. Each row of A
sums to 1 and contains the normalized activity of a voxel as
a function of time. This matrix was used as the input of the
CNMF algorithm. Two other ROIs were drawn over the myo-
cardial wall and the LVC. For the latter ROI, an ellipse of
1.3mm× 1:3mm× 3mm was manually centered in the LVC
while an interactive thresholding was used to delineate appro-
priate hot myocardial contours. These two ROIs are used to
estimate spillover and RC values in the myocardium and the
LVC. Before image reorientation, a liver ROI was also drawn
by thresholding the transaxial plane crossing approximately
the middle of the liver. Figure 1 shows typical ROIs used in
this study.

3.4. Comparison of CNMF and RUDUR. The CNMF and
RUDUR TACs of Equation (6) were compared for each
mouse using the root mean square error (RMSE) defined as

RMSEk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

t=1 CNMFTACk tð Þ − RUDURTACk tð Þð Þ2
m

r
,

ð9Þ

where k denotes blood or tissue TAC. We also compared, for
each group of mice, the mean values of CNMF and RUDUR
weights (elements of matrix W) in LVC and in the myocar-
dium. The relationship between the CNMF and RUDUR Ki
was assessed through the linear regression and Bland-
Altman plots.

4. Statistical Analysis

All values are reported as mean ± standard deviation. Differ-
ences in Ki values between CNMF and RUDUR were evalu-
ated for statistical significance using paired Student’s t-test.
The mean values of weights (W matrix) in myocardium
and LVC ROIs were compared using one-way ANOVA with
a Tukey’s multiple comparison test. To highlight the effect of
the AMI on the myocardial metabolism of glucose, we used
one-way ANOVA with a Tukey’s multiple comparison test
to compare the Ki values between CTRL, AMI3d, and
AMI14d groups obtained either with CNMF or RUDUR
algorithms. Equal variances were assumed for all analyses.
A p value of less than 0.05 was considered statistically signif-
icant. All statistical analyses were performed using Graph-
Pad Prism version 8.3.1 (GraphPad Software, San Diego
CA, http://www.graphpad.com).

5. Results

Figures 2(a) and 2(b) show an example of dynamic PET
images of a CTRL and an AMI mouse LV. We note the
increased [18F]FDG uptake in the myocardium as a function
of time. However, this uptake is markedly reduced for the
infarcted segment of the myocardium (Figure 2(b)). W and
H were obtained for the images of all 32 mice. W was
reshaped into the original image grid to show the distribu-
tion of weights. Thus, blood and tissue components can be
easily distinguished as illustrated in Figures 2(c) and 2(e)
for a CTRL mouse and in Figures 2(d) and 2(f) for an
AMI mouse. As can be seen from the profiles across the W
matrix for the blood component in Figures 2(c) and 2(d)
and the tissue component in Figures 2(e) and 2(f), the
CNMF algorithm works well in isolating the two compo-
nents even for the AMI mouse (see Figures 2(g) and 2(h)).

Figure 3 shows the plot of theWH product, as a function
of time, for each factor (blood and tissue) and averaged over
the whole LV voxels. Blood and tissue factors, from UNMF
(first column), CNMF (second column), and RUDUR (third
column), for a CTRL (upper row) and an AMI mouse (bot-
tom row), are clearly separated and show the expected
trends. Moreover, the sum of the two factors agrees well with
the mean of the measured activity over the whole LV for all
three methods. There is, however, a clear unmixing
improvement when using CNMF, especially for the CTRL
mouse (Figure 3(b)), but to a less extent for the AMI mouse
due to myocardial hypertrophy.

Typical blood (BTAC) and tissue (TTAC) time-activity
curves calculated using the three same methods are shown
in Figure 4 together with the measured TACs for a CTRL
(upper row) and an AMI mouse (bottom row). When visu-
ally comparing the measured tissue (MEAS MYO) and
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blood (MEAS LVC) to their respective calculated counter-
parts, we can see that all three methods reduce cross-
contamination by recovering the signals in the early BTACs
and late TTACs. However, the corrected CNMF TTACs
show significantly reduced initial peaks due to the contami-
nation from the LVC, while the corrected CNMF BTACs
drop normally after 2 to 3min postinjection, closely follow-
ing the measured liver TAC and nearly intercepting the
blood sample, unlike the UNMF BTACs (Figures 4(a) and
4(d)). For this reason, the measured liver TAC could be con-
sidered as an appropriate approximation for the CNMF
solution at time beyond ~5-10min and a safe reference
beyond ~20-40min postinjection where [18F]FDG retention
in the liver can be considered negligible. The RUDUR
method performs almost the same as CNMF approach, but
with a slightly larger early peak in the RUDUR TTAC and

a slightly poorer agreement of the extrapolated RUDUR
BTAC with the late blood sample. The difference between
CNMF and RUDUR TACs is reported in Figure 5 in terms
of RMSE (Equation (9)).

Since the weights in W can be assimilated either to the
RCs or to the spillover fractions at the voxel scale, we calcu-
lated the mean ofW over the myocardium and LVC for each
CNMF and RUDUR factor. The results of this calculation
are summarized in Figure 6. The AMI3d and AMI14d sub-
groups were merged for this analysis since these subjects
should have experienced similar structural changes after sur-
gery. Thus, WT⟶T and WB⟶B are, respectively, the mean
of the tissue factor weights over the myocardium and the
mean of the blood factor weights over the LVC. They repre-
sent the RC in the myocardium and in the LVC. In the same
way, WT⟶B and WB⟶T are, respectively, the mean of the
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Figure 2: Typical short axis slice of [18F]FDG dynamic PET images of a CTRL mouse heart (a) and a mouse with AMI (b) showing the
progression of the radiotracer from the vasculature (0-20 s) to the cardiac ventricular chambers (20-30 s) through the lungs (30-80 s) and
finally its accumulation in the myocardium. The last frame (1200-2700 s) shows clearly that the [18F]FDG cardiac uptake is uniform in
the CTRL mouse, while the AMI mouse shows an infarcted area of absent uptake. (c–h) depict an example of CNMF application to a
CTRL mouse (c, e, g) and AMI mouse (d, f, h). Typical slices of basis images (W matrix) are shown for blood (c, d) and tissue factors (e,
f), taken approximately every 1mm from the basal plane (left) towards the apex (right). (g, h) display the profiles across the matrix W
and the last frame (1200-2700 s) at the positions indicated by the corresponding colored lines. (g, h) The left y-axis is for W profiles
while the right y-axis is for the measured images profile.
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Figure 3: The mean of WH product over the whole LV voxels is calculated and displayed as a function of time for a CTRL (a, b, c) and an
AMI3d mouse (d, e, f) using UNMF (a, d), CNMF (b, e), and RUDUR (c, f). The mixed signals in PET images (Meas whole LV) are
separated into blood (UNMF blood, CNMF blood, and RUDUR blood) and tissue (UNMF tissue, CNMF tissue, and RUDUR tissue)
factors. As can be seen, the sum of the factors (either from UNMF, CNMF, or RUDUR) agrees well with the measured data. The semilog
chart is used to better display the difference between the various curves.
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Figure 4: Time-activity curves obtained from dynamic images of a CTRL (a, b, c) and an AMI3d mouse (d, e, f). The measured TACs
(MEAS LVC, MEAS MYO, and MEAS Liver) are obtained by means of ROIs drawn on the respective organs while UNMF (a, d),
CNMF (b, e), and RUDUR (c, f) TACs were obtained with their respective methods. The last blood sample (blood sample) is used as a
reference to adjust the CNMF solution via the α and β parameters, while the RUDUR solution is adjusted via its own regularization
parameters [36]. The tail of the liver TAC can also be used instead of the blood sample. The semilog chart is used to better display the
difference between the various curves. The same figure in which the curves were zoomed around the one-minute time points is provided
in Supplemental Data to better show the difference between the different curves.
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tissue factor weights in the LVC and the mean of the blood
factor weights in the myocardium. They represent the spill-
over fraction from myocardium to LVC and vice versa.
There is a fairly good agreement for most of the weights
between CNMF and RUDUR, with the noteworthy excep-
tion of a significantly lower WB⟶T concomitant with a
higher WT⟶T in the CTRL mice with the latter method.
WT⟶T is larger for CTRL than for the AMI group
(0:799 ± 0:027 vs. 0:698 ± 0:023 with CNMF and 0:868 ±
0:015 vs. 0:716 ± 0:021 with RUDUR) while WB⟶B shows
the opposite trend (0:562 ± 0:016 vs. 0:779 ± 0:022 with
CNMF and 0:552 ± 0:017 vs. 0:782 ± 0:021 with RUDUR)
(p < 0:0001). These results are in a good agreement with
the observed structural changes, namely, myocardial wall
thinning and LVC dilatation, following myocardial infarc-
tion induction in mice [48]. For the spillover fractions,
WT⟶B shows a significant difference (p < 0:0001) between
the CTRL (0:385 ± 0:019 with CNMF and 0:402 ± 0:027
with RUDUR) and AMI groups (0:319 ± 0:019 with CNMF
and 0:315 ± 0:023 with RUDUR). No significant difference
was seen between the CTRL and AMI groups for WB⟶T
with CNMF (0:295 ± 0:042 vs. 0:276 ± 0:026; p = 0:3672),
whereas, with RUDUR, WB⟶T displayed a significant dif-
ference (p < 0:0001) between the CTRL and AMI groups
(0:195 ± 0:037 vs. 0:257 ± 0:024). All comparisons of mean
values of W are summarized in Tables 1 and 2.

Typical 3CM curve fitting plots are shown in Figure 7 for
CNMF (left column) and RUDUR blood and tissue TACs
(right column). The calculated [18F]FDG influx constant Ki
for CTRL and AMI mice at 3 days and 14 days postinfarc-
tion is summarized in Figure 8. Paired Student’s t-test
revealed no significant difference between the CNMF and
RUDUR calculated Ki values. This is further illustrated with
the linear regression (Figure 8(a)) and Bland-Altman
(Figure 8(b)) plots. As can be seen in Figure 8(c), Ki values
are found to be significantly higher in AMI3d mice under
acute myocardial infarction, compared to CTRL mice
(p < 0:0001), whereas the AMI14d mice that progressed to
a chronic condition show approximately the same values of

Ki as the CTRL mice. Detailed results are reported in Sup-
plemental Data (available here).

6. Discussion

In cardiac mouse PET imaging, TACs can be obtained by
drawing ROIs on the LVC and on the myocardium. How-
ever, due to the small size of the mouse heart, PVE and
cross-contamination between these two adjacent regions
are expected. Accordingly, the signals from LVC and myo-
cardium coexist in each voxel of the heart PET images, espe-
cially for tracers that show physiological uptake in the
myocardium, such as [18F]FDG [49], 13NH3 [50], and

11C-
acetate [51]. Thus, adequate correction of PVE and cross-
contamination in TACs is a requirement before using kinetic
models [52, 53].

In the present work, we explored the utilization of the
CNMF algorithm to retrieve the left ventricle blood and
myocardial tissue TACs from PET images of the mouse
heart. The dynamic PET image series of the LV were used
to construct the input matrix A for CNMF, and as a result,
two matrices, W and H, were calculated under the assump-
tion that two physiological factors are mixed in each voxel.
W is the matrix of the weights (identified to RCs and spill-
over fractions), and H contains the two physiological factors
(blood and tissue factors).

As NMF returns results in arbitrary units, we conducted
a normalization in two steps: (1) scaling (see Equation (5))
which ensures that the sum of the elements of W for each
voxel is 1. In fact, this step ensures that the mixed signals
sum up to the measured intensity in each voxel and, at the
same time, allows the elements of W to be interpreted as
weights. (2) Regularization parameters α and β (see Equa-
tions (1) and (2)) are chosen so that the calculated CNMF
blood TAC coincides with the late blood activity. Usually,
optimal values of α and β are not available without ground
truth. In practice, we test a few values of these parameters
and choose those that produce a CNMF blood TAC whose
tail crosses the late blood sample. The model is rather insen-
sitive to the exact values of α and β once the tail coincides
with the blood sample, and no elaborate methods were
needed to select appropriate values. In this study, the values
used for α and β are, respectively, 1:9E − 05 ± 2:7E − 05 and
6:6E − 03 ± 1:4E − 02 (mean ± SD). As the liver is highly
vascularized [54] and has relatively low [18F]FDG retention
[12, 55], a large portion of the liver activity is contained in
the blood. Consequently, the liver TAC is a reasonable
approximation of the [18F]FDG activity in blood at the
~40min postinjection mark. Therefore, the late portion of
the liver TAC can be used as a reference of the CNMF blood
factor if a blood sample is not available during measurement.
These two normalization steps together ensure, to within a
multiplicative constant (see Equation (6)), that the factors
returned in H represent the tissue and blood TACs corrected
for PVE and ensuing spill-in/spill-out cross-contamination,
as can be clearly seen in Figure 4. Compared to CNMF,
the solution obtained with UNMF (α = 0 and β = 0) is not
optimal as evidenced by the TACs in Figures 4(a) and
4(d). Indeed, the extrapolation of the UNMF blood TAC tail

Blood TACs Tissue TACs
0

2

4

6

RM
SE

CTRL
AMI

Figure 5: Mean with SD bar plot of RMSE between CNMF and
RUDUR TACs as determined from Equation (9). Blood TACs
showed less difference between CNMF and RUDUR compared to
tissue TACs. Better agreement between the two methods is
observed in the AMI groups.
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does not coincide with the late blood sample, especially for
the CTRL mouse (Figure 4(a)).

In this paper, we compared the results of CNMF with
those of the RUDUR method on the 32 studied mice. This
choice is motivated by the fact that the latter had demon-
strated an improvement in sources separation compared to

4 other factor analysis methods [24, 37, 38] and [56]. One
of them [24], in order to overcome the nonuniqueness prob-
lem, had introduced a term penalizing voxels containing a
mixture of structures and as such is prone to bias in a high
cross-contamination context, whereas the computed factors
by the other methods are sensitive to noise outside of their
proper location [36]. The comparison with RUDUR was
essentially focused on the TACs (proportional to H rows),
the weights (elements of the W matrix), and the values of
Ki. Regarding the TACs, the best agreement between the
two methods was observed in blood TACs compared to tis-
sue TACs especially in the AMI group (Figure 5). Although
the two methods considerably reduce the peak of activity in
the myocardium due to the contamination from LVC (~30–
40 s postinjection), there is a clear improvement with CNMF
compared to RUDUR, especially in the CTRL group
(Figures 3 and 4). Another important advantage of CNMF
over RUDUR is that CNMF uses only 2 regularization
parameters (α and β) whereas the objective function pro-
posed in RUDUR uses 6 [36].

Unlike the partial volume correction method based on
the geometric transfer matrix [52, 57], which might be vul-
nerable to small errors in region of interest delineation,
CNMF operates on each voxel and uses temporal
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Figure 6: Mean value of CNMF and RUDUR weights (W matrix) as determined for CTRL (a) and AMI mouse hearts (b). The difference
between the CTRL and AMI weights is displayed in (c) for CNMF and (d) for RUDUR. Wi⟶j is the mean value of the ith basis image over
the jth ROI (i, j = T , B). WT⟶T and WB⟶B can be assimilated to the myocardial and LVC RCs, respectively, while WT⟶B and WB⟶T
represent the spill-in fraction from the myocardium to LVC and the spill-out fraction from the LVC to the myocardium, respectively. In
this figure, we have pooled together the AMI3d and AMI14d groups. ∗∗∗∗ denotes p < 0:0001.

Table 1: p values of CNMF vs. RUDUR weight comparison in the
CTRL and AMI groups using one-way ANOVA with Tukey’s post
hoc multiple comparison test.

Group WT⟶T WB⟶B WT⟶B WB⟶T

CTRL <0.0001 0.3948 0.1091 <0.0001
AMI 0.1359 0.9676 0.9790 0.4574

Table 2: p values of CTRL vs. AMI comparison of CNMF and
RUDUR weights using one-way ANOVA with Tukey’s post hoc
multiple comparison test.

Method WT⟶T WB⟶B WT⟶B WB⟶T

CNMF <0.0001 <0.0001 <0.0001 0.3672

RUDUR <0.0001 <0.0001 <0.0001 <0.0001
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information to calculateW and H matrices. The elements of
W, for both CNMF and RUDUR, were averaged over the
previously drawn ROIs on the LVC and myocardium to
get recovery coefficients (WT⟶T and WB⟶B) and spill-in
fractions from one region to another (WT⟶B and WB⟶T)
(see Figure 6). It was found that infarcted mice displayed
marked myocardial wall thinning and LVC dilatation [48]
compared to CTRL mice. The calculated RCs WT⟶T and
WB⟶B, with both CNMF and RUDUR, are in good agree-
ment with this structural change induced by ligation of the
left coronary artery. Therefore,WT⟶T of AMI mice is lower
than that of CTRL mice, and the reverse is observed for
WB⟶B. Compared to RUDUR, significant difference was
observed between the two methods only in WT⟶T and
WB⟶T for the CTRL group (Figure 6(a)). These differences
are very consistent with the calculated TACs. In the CTRL
group, WB⟶T is higher in CNMF, and consequently, the
remaining contamination from the LVC peak activity to
the tissue TAC is reduced in CNMF compared to RUDUR.
On the other hand, WT⟶T is lower in CNMF compared
to RUDUR in the CTRL group; hence, myocardial activity
is more efficiently recovered in CNMF compared to RUDUR
(Figures 4(b) and 4(c)).

It should be noted that the assumption that the sum of
the W values for each voxel is 1 can be fully satisfied only
if it is assumed that the signal measured in each voxel is
derived exclusively from the activity in the myocardium

and in the LVC. In reality, noise and surrounding tissues
can contribute even marginally to the signal measured in
each voxel. As a result, the constraint is expressed in Equa-
tion (5) and which should result in the following: WT⟶T
+WB⟶T = 1 and WB⟶B +WT⟶B = 1 are not completely
satisfied. In this study, we have found for the sum WT⟶T
+WB⟶T1:09 ± 0:02 and 0:97 ± 0:02 (mean ± SD), respec-
tively, for the CTRL and AMI groups, and for WB→B
+WT→B, we have found 0:95 ± 0:02 and 1:10 ± 0:02
(mean ± SD), respectively, for CTRL and AMI groups. These
values are comparable to those found with the RUDUR algo-
rithm. Precisely, we found for WT→T+WB→T 1:06 ± 0:03
and 0:97 ± 0:02 (mean ± SD), respectively, for CTRL and
AMI groups, and for WB→B+WT→B, we have found 0:95 ±
0:03 and 1:10 ± 0:02 (mean ± SD), respectively, for CTRL
and AMI groups.

Reliable determination of physiological parameters,
especially the [18F]FDG influx constant Ki and the metabolic
rate of glucose, provides important information in drug
research and development as well as medical diagnosis. We
demonstrated in this study that CNMF is able to underline
significant differences in Ki values between CTRL and
AMI groups, hence highlighting metabolic changes caused
by myocardial infarction. The observed increase of Ki on
day 3 after coronary artery ligation likely indicates the pres-
ence of inflammation in the myocardium. On day 14, Ki
becomes normal as compared to CTRL mice. Similar results
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Figure 7: 3CM curve fitting plot examples for a CTRL (a, b) and for an AMI3d mouse (c, d) using CNMF (a, c) and RUDUR TACs (b, d).
Both methods show comparable fitting results.
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were reported by Lee et al. in their study of inflammation in
myocardial infarction [58]. Moreover, the calculated Ki
values for the CTRL group using CNMF are in a good agree-
ment with myocardial Ki values in literature [8, 15, 17]. No
significant difference was observed between the CNMF and
RUDUR Ki (two-tailed paired t-test p = 0:425), thus bring-
ing more confidence in the CNMF method.

It is worth mentioning that in the current literature, it is
widely believed that NMF can lead only to a local minimum
because of the nonconvexity of f ðW,HÞ in both W and H
[59]. Nevertheless, the uniqueness of the solution still
remains an open subject despite some recent attempts to
address the issue [60–62]. In practice, even local minima
can provide desirable properties depending on the problem.

As NMF algorithms are based on an iterative minimiza-
tion process, it is well known that they are sensitive to the
initialization of W and H. Currently, only very little work
has been done on determining a good initialization for W
and H [63], and it is standard practice to initialize NMF with
random matrices. More details about NMF initialization
issues can be found in [64, 65]. In this work, we initialized
H with the scaled TACs of the ROIs drawn on the myocar-
dium and on LVC (Figure 1 and Equation (4a)) while forW,

we introduced the Euclidean distance between voxels and
ROIs (Equation (4b)). This initialization is a reasonable
starting point for both CNMF and RUDUR and ensures
the stability of the solution. It must be noted that we had
tested the random numbers as a starting point and, some-
times, several tests are necessary before choosing the best
solution. Obviously, this will be less convenient for large
data matrices.

Although the CNMF method described in this paper has
been applied to cardiac [18F]FDG PET images of mice, it can
be generalized to other tracers, organs, and species. CNMF
could be especially useful for images of large animals and
in humans. Despite the large size of their heart, such images
are, very often, obtained from lower resolution scanners
compared to the high-resolution preclinical scanners. Thus,
CNMF could certainly improve the quality of image-
derived time-activity curves.

Actually, not including any physiological constraint (e.g.,
monotonous growth of the tissue curve) may make CNMF
an almost universal algorithm for separating mixed signals
in voxels in a high cross-contamination context due to poor
spatial resolution. However, a late blood sample is useful as a
reference to compare with the CNMF solution. In the case of
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Figure 8: Correlation between [18F]FDG influx constant Ki determined from the 3CM analysis using CNMF and RUDUR: linear regression
(a) and Bland-Altman plot (b). Both methods show significant difference in Ki values between CTRL and AMI3d groups (p < 0:0001) and
between AMI3d and AMI14d (p < 0:005 for CNMF and p < 0:0005 for RUDUR), but no difference was seen between CTRL and AMI14d
groups as shown in (c).
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[18F]FDG, the tail of the liver TAC can be used as a more
reliable surrogate for the late blood sample. In fact, the liver
TAC tail is a more stable reference for adjusting the CNMF
results since the blood sample is more prone to measure-
ment errors.

One limitation of this study is the lack of validation
against the arterial blood samples. Indeed, capturing the
peak of the input curve under the conditions of a rapid bolus
injection, as is the case in this study, presents very significant
technical challenges, and our attempts to do so were unsuc-
cessful due to mouse motion resulting from the blood sam-
pling during the scans. Experiments with arterial blood
samples in which the bolus injection is slower would be
needed to compare with CNMF but at the expense of less
accurate estimation of kinetic parameters.

7. Conclusion

In this study, we have demonstrated the ability of con-
strained nonnegative matrix factorization CNMF to accu-
rately extract tissue and blood time-activity curves from
[18F]FDG PET cardiac dynamic images of mice. Despite
the small size of the mouse heart relative to the spatial reso-
lution of PET, the CNMF algorithm was able to efficiently
separate the mixed signals in image voxels. The incorpora-
tion of regularization parameters in the cost function and
the scale constraint was useful in finding a solution that
reflects the inherent characteristics of the desired signals
and, as a result, in providing weighting factors to correct
for partial volume effect and cross-contamination. Even in
the mice with myocardial infarction, CNMF was able to iso-
late signals from different tissues. In comparison to a
recently introduced approach that was advantageously vali-
dated against other competitive methods, we have observed
a clear improvement of the signal separation with CNMF
especially for the myocardium of normal healthy mice and
also for mice with acute and chronic myocardial infarction.
[18F]FDG influx constants were successfully assessed for
the heart of both CTRL and infarcted mice using CNMF,
providing realistic physiological data.
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