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Functional connectivity MRI (fcMRI) is a technique used to study the functional connectedness of distinct regions of the brain by
measuring the temporal correlation between their blood oxygen level-dependent (BOLD) signals. fcMRI is typically measured with
the Pearson correlation (PC), which assumes that there is no lag between time series. Dynamic time warping (DTW) is an
alternative measure of similarity between time series that is robust to such time lags. We used PC fcMRI data and DTW fcMRI
data as predictors in machine learning models for classifying autism spectrum disorder (ASD). When combined with dimension
reduction techniques, such as principal component analysis, functional connectivity estimated with DTW showed greater
predictive ability than functional connectivity estimated with PC. Our results suggest that DTW fcMRI can be a suitable alternative
measure that may be characterizing fcMRI in a different, but complementary, way to PC fcMRI that is worth continued
investigation. In studying different variants of cross validation (CV), our results suggest that, when it is necessary to tune model
hyperparameters and assess model performance at the same time, a K-fold CV nested within leave-one-out CV may be a
competitive contender in terms of performance and computational speed, especially when sample size is not large.

1. Introduction

Functional MRI is a noninvasive imaging technique that
uses changes in blood oxygenation levels in the brain, called
the blood oxygenation level-dependent (BOLD) signals, to
detect regional brain activity. Brain regions that are activated
during resting state or by cognitive tasks consume greater
amounts of energy and oxygen due to metabolic activity.
Following the activation, blood flow to the region is
increased in order to replenish the region’s supply of oxy-
genated blood. BOLD results from this outflow of deoxygen-
ated hemoglobin and the inflow of oxygenated hemoglobin,
and the phenomenon is detected by functional MRI due to
the difference in magnetic properties between oxygenated
and deoxygenated hemoglobin [1, 2]. The BOLD signals that
are measured over the course of an MRI scan are used as an
indirect measurement of localized brain functional activity

[2], hence allowing for noninvasive study of brain functional
activity patterns in the presence or absence of stimuli.

Functional connectivity MRI (fcMRI) is a specific appli-
cation of functional MRI analysis that looks at the temporal
associations between functional activity from distinct
regions of the brain in order to study nondirectional connec-
tivity patterns [2, 3]. The strength of temporal associations
between the measured BOLD signals from distinct, function-
ally related regions of the brain has been the subject of
research interest as a measure of “brain system integrity”
[3], especially in how brain systems might differ between
typically developing (TD) brains and those with develop-
mental disorders. Interest in fcMRI research has steadily
grown in part due to the applications of its findings towards
developing a deeper understanding of how neurodevelop-
mental and neuropsychiatric disorders, such as autism spec-
trum disorder (ASD), affect the brain and its development.
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ASD is thought to be caused in part by disruptions of the
normal range of functions that can be found in typically
developing brains [4–6]. Although there are a number of
other techniques, such as positron emission tomography
(PET) and electroencephalography (EEG) that are used for
neuroimaging research, functional MRI allows for noninva-
sive, high-resolution imaging of the brain, which makes it
well poised for examining these potential differences.
Beyond this, deeper understanding of brain system disrup-
tions caused by developmental disorders can lead to more
robust characterizations of the disorders themselves that
may have significant clinical applications such as aiding in
diagnosis through identification of disease biomarkers [3,
4]. Reliable diagnostic biomarkers could prove highly impor-
tant in assisting with accurate clinical diagnosis of neurode-
velopmental disorders that are primarily diagnosed through
behavioral assessments and symptom observation that may
leave room for subjectivity and misdiagnoses.

ASD is one such neurodevelopmental disorder that is
diagnosed mainly through behavioral assessments. Current
ASD diagnostic procedures can potentially be prone to sub-
jectivity on the part of the clinician and may be affected by
sociocultural factors [7], leading to either delayed diagnoses
or misdiagnoses. In view of the generally accepted neurobio-
logical nature of ASD, however, identification of reliable bio-
markers is critical. Biomarkers can also provide a biological
basis for further research into possible phenotypic subtypes
of ASD [8, 9] and identify symptomatic differences that
may exist among them.

Studies aimed at building highly accurate machine learn-
ing classification models of ASD with functional MRI data
have been growing in popularity. Accurate classifiers that
can reliably distinguish between typically developing
participants and those with ASD can aid in efforts to identify
potential imaging biomarkers of ASD by highlighting brain
networks and functional connections that have the strongest
discriminatory ability to differentiate the two groups. Some
recent ASD classification studies that utilized machine learn-
ing methods with fcMRI data have achieved diagnostic classi-
fication accuracies above 70% [8, 10–13], suggesting that these
data-driven models are able to capture diagnostically informa-
tive patterns and information. Although the results have been
promising, biomarkers from individual classification studies
have often failed to replicate in subsequent research.

1.1. Dynamic Time Warping as a Measure of Functional
Connectivity. Resting-state functional connectivity (FC)
between distinct regions of the brain is traditionally mea-
sured with Pearson’s correlation (PC) coefficient. The intui-

tion behind resting-state FC is that distinct brain regions are
deemed “functionally connected” if their respective BOLD
signals show high levels of coactivation [3]. As the chosen
measure for quantifying the level of coactivation, PC works
well in instances where the compared signals are highly syn-
chronous. However, if the compared signals exhibit time lags
with regard to their activations or autocorrelation, the mea-
sured PC values are biased in ways that do not truly reflect
the underlying similarity of the two signals. For example,
Figure 1 depicts two instances in which measurements of
PC between a signal and the same signal with a slight time
lag can result in significantly lowered PC values. The poten-
tial for time lags and autocorrelations to result in low (or
even negative) PC-estimated FC between otherwise highly
similar time series is problematic. Hemodynamic responses,
and by extension the measured BOLD signals, can vary
across different regions of the brain with lags varying up to
±2 seconds within and between regions for reasons unre-
lated to neuronal activity [14]. These biological phenomena
are potential cause for biases in the use of PC-measured
FC between distinct resting-state brain networks that may
obscure findings from functional connectivity studies.

Resting-state functional MRI studies of ASD have been
subject to inconsistencies in results and general lack of rep-
licability [15] due to methodological differences between
studies such as data acquisition processes, data preprocess-
ing pipelines, and the statistical models used for inference.
These issues compound the potential drawbacks from using
PC to measure FC in the presence of naturally occurring
time lags and autocorrelated signals, motivating a need for
alternative methodology with increased robustness in regard
to these areas in order to increase the consistency of results
from functional MRI ASD research.

Initially developed for speech recognition purposes [16],
dynamic time warping (DTW) has been utilized in studies that
analyze time series data for classification and clustering pur-
poses [17, 18]. DTWhas been proposed as a suitable alternative
measure for functional connectivity between distinct brain
regions that has been successfully employed in studies using
electroencephalography (e.g., Karamzadeh et al. [19]), func-
tional near-infrared spectroscopy (e.g., Eken [20]), and fMRI
(e.g., Meszlényi et al. [21, 22]) to better understand clinical con-
ditions such as fibromyalgia [23] and depression [24]. Unlike
the Pearson correlations, DTW, when applied to fMRI time
series, can take into account naturally occurring resting-state
network BOLD signal time lags and autocorrelation as well as
increased robustness to variations in preprocessing procedures
with respect to global signal regression [21, 22, 25]. For these
reasons, DTW is a potential candidate for use as an alternative
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Figure 1: (a) Two plotted time series of a single BOLD signal; one plotted with a lag of 2 time points. The two time series have a PC of r = 0 49.
(b) Two plotted time series of a single BOLD signal; one plotted with a lag of 3 time points. The two time series have a PC of r = 0 13.
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measure of FC that is better suited to handle the aforemen-
tioned variations in hemodynamic responses and data prepro-
cessing procedures and importantly potentially being able to
improve consistency and replicability of functional MRI find-
ings in ASD. Additionally, machine learning models trained
on DTW-measured FC data have been found to yield greater
prediction accuracies than those trained on PC-measured FC
in classification studies utilizing resting-state fcMRI data [21,
22, 25], suggesting that DTW may be characterizing FC in a
more informative way than PC for classification purposes. For
these reasons, investigation into the efficacy of using DTW as
the measure for FC may prove beneficial for our efforts to iden-
tify reliable brain imaging biomarkers of ASD.

1.2. Differences between Variants of Cross Validation. Many
machine learning classification studies utilize fcMRI datasets
with extremely high dimensionality in which the features
greatly outnumber the sample size. For functional MRI
ASD studies, recent developments and efforts such as the
Autism Brain Imaging Data Exchange (ABIDE) [26] have
been successful at increasing the number of large sample
studies, but many studies still feature sample sizes ranging
in the low hundreds while occasionally numbering in the
tens [4] due to the additional complications and cohort
effects that are introduced when using combined samples.
When utilizing such low sample size in a machine learning
study, the use of resampling methods to estimate model per-
formance is necessary in place of traditional training-test set
splits.

Cross validation (CV) is a technique that can be used for
“honestly” estimating a model’s performance, without the
use of an external test set. In CV, a part of the dataset is
“held out” while the remaining data is used to train the
model. The trained model is then tested on the observations
that were originally held out. These steps are repeated itera-
tively until all of the observations have been a part of the
held-out set once. The model’s performance is then esti-
mated by its average performance over the various held-
out sets. Many variants of CV, in addition to other resam-
pling methods, have been applied to fcMRI machine learn-
ing studies as a way to utilize all of data to obtain unbiased
estimates of model performance when working with low
sample sizes [4, 11, 12, 27, 28]. The different variants of
CV, such as K-fold CV and leave-one-out CV (LOOCV),
function identically, but their model performance estimates
differ due to the bias-variance trade-off. For example,
LOOCV achieves approximately unbiased estimates, but at
the cost of greater variance in comparison to K-fold CV
for small values of K [29]. Beyond the bias-variance trade-
off, some CV procedures can even introduce a bias into
model performance estimates, hence producing optimisti-
cally biased results [30]. Given that these methods are
heavily applied in fcMRI machine learning studies and that
the prediction accuracy of the classifiers is one of the main
measures used to assess how informative the features are, it
is worth considering how directly comparable the results
from different CV variants are and if the same inferences
can be derived from the data and models regardless of which
variant of CV was used. Understanding the extent of bias

and variance associated with different implementations of
CV is important in assessing the true predictive capabilities
of the reported models and important features.

Our current study, based on the M.S. thesis work by one
of the authors [31], seeks to investigate two main questions:
(1) Does resting-state functional connectivity estimated with
DTW have greater predictive ability for classifying partici-
pants with ASD in comparison to standard functional con-
nectivity estimated by PC? (2) Do the different variants of
CV produce similar model performance estimates and result
in the same inferences? With the ultimate goal of identifying
robust ASD imaging biomarkers, we use various machine
learning methods to examine an alternative similarity mea-
sure for functional connectivity with the potential to be
more informative for classification purposes, and we investi-
gate the differences among the various CV procedures used
to estimate model performance and assess how directly com-
parable these procedures are for inferences.

2. Data and Methods

In this section, we provide brief descriptions of our in-house
data, dynamic time warping, the machine learning methods
used including random forest and support vector machines,
various methods of cross validation, and the design of our
comparative study.

2.1. Data and Dynamic Time Warping. As our study builds
upon previous work done by Linke et al. [25], we utilized
the same dataset for our study. Each MRI scan was quality
assessed through manual visual inspection by trained staff
members. We selected a sample of participants that had
high-quality scan data, while ensuring that our ASD and
TD samples were matched for participant age, nonverbal
IQ (NVIQ), and participant head movement during the
MRI scans. Head movement was measured as the total root
mean squared distance (RMSD) of each respective scan. This
resulted in a final working sample of 99 participants (49
ASD). Summary statistics regarding the matching between
our ASD and typically developing (TD) participants can be
found in Table 1.

Our in-house data were collected on a GE 3TMR750 scan-
ner with an 8-channel head coil at the UCSD Center for Func-
tional MRI. Participants were instructed to keep their eyes open
and fixated on cross-hair and not fall asleep over the duration of
the scan. For each participant, functional T2∗-weighted images
were obtained using a single-shot gradient-recalled, echo-planar
pulse sequence that acquired 6-minute resting-state fMRI scans
(180 time points with a repetition time = 2000ms, echo
time = 30ms, slice thickness = 3 4mm, flip angle = 90°, field
of view = 22 0mm, 64 by 64 matrix, and in-plane
resolution = 3 4mm2). High-resolution structural scans (180
slices, repetition time = 11 08ms, echo time = 4 3ms, 1mm3

voxel dimension, flip = 8°, field of view = 256mm, and
matrix = 256 by 256) were also acquired for each participant
from a FSPGR T1-weighted sequence. The preprocessing pro-
cedures for the acquired structural and functional MRI data
are detailed in Linke et al. [25].
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The FC estimates were derived from all regions of
interest (ROI) defined in the Harvard-Oxford atlas [32],
which is available in the CONN toolbox for MATLAB,
resulting in 5460 unique FC measurements for each par-
ticipant. The average time series were first computed from
all voxels within each respective ROI, followed by calcula-
tions of the DTW and PC measurements between ROI
pairs for each participant. DTW was calculated with
MATLAB’s DTW function, utilizing a warping window
of 100 seconds (as shown to be optimal for fMRI time
series data by Meszlényi et al. [21, 22]), and then con-
verted into DTW similarity measures as in Meszlényi
et al. [21, 22] and Linke et al. [25].

Dynamic time warping is a distance measure quantifying
the dissimilarity between two time series, possibly of differ-
ent lengths. Please refer to the Appendix for the details of
its calculation. The typical distance measure for two vectors
of the same length, say the Euclidean distance, is given by a
summary of the point-wise distances. The DTW simply
allows the signals to stretch or compress horizontally (along
the time axis) and hence gives two time series that may
exhibit time lags, but are similar otherwise, a small DTW
dissimilarity (or high DTW similarity) value. Following rec-
ommendations by Meszlényi et al. [21, 22], we utilized a
warping window size of 100 seconds in order to capture all
potential BOLD signal lags. Once extracted, the DTW FC
measurements were multiplied by -1 and then demeaned
in order to turn them into DTW similarity measures as

described in Meszlényi et al. [21, 22]. All references to
DTW-measured FC in this paper refer to the DTW similar-
ity measures.

The similarity estimates derived using dynamic time
warping or Pearson’s correlation between each ROI pair
were used as features for the machine learning model. A
basic diagram illustrating the methods is shown in Figure 2.

2.2. Machine Learning Methods. The machine learning
models utilized in this study were support vector machines
with the radial basis function kernel (SVM-Radial), support
vector machines with the linear kernel (SVM-Linear), ran-
dom forest (RF), and L1-regularized support vector
machines (L1-SVM). The strong performance of SVM-
Radial, SVM-Linear, and RF, as well as their relative ease
of implementation and interpretation, has resulted in these
three techniques being prominently featured in fcMRI
research involving applications of machine learning
methods. As such, they provide for a robust base for com-
paring the predictive abilities of FC estimated by the two
measures. L1-SVM is a classifier that has built-in regulariza-
tion that can eliminate superfluous functional connections
from the data that are potentially uninformative or redundant
[13, 33]. In case there is a significantly greater number of var-
iables than available observations, as is generally the case with
fcMRI data, machine learning methods can potentially be
overfitted to small variations and patterns found within the
dataset [13, 33] that do not improve the generalizability when

Table 1: Matching of our sample’s participants across diagnostic groups, autism spectrum disorder (ASD), and typically developing (TD).
The cell format followsmean ± SD [range]. SMD stands for standardized mean difference between the two groups. p values come from two-
sample t-tests.

ASD TD SMD p value

N 49 (8 female) 50 (10 female) — —

Handedness 8 left 8 left — —

Age 13 65 ± 2 76 [7.4, 18] 13 32 ± 2 76 [8, 17.6] 0.12 0.55

RMSD 0 06 ± 0 03 [0.02, 0.11] 0 06 ± 0 03 [0.02, 0.14] 0.01 0.94

NVIQ 106 96 ± 19 36 [53, 145] 105 74 ± 13 36 [62, 137] 0.11 0.72
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Figure 2: Time series are extracted from regions of interests (ROIs), and functional connectivity is calculated (using Pearson’s correlation or
DTW) between each ROI pair resulting in an ROI × ROI functional connectivity matrix for each participant. The matrices are triangulated,
and pairwise ROI distance/similarity measures are used for machine learning classification.
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applied to new data. Dimension reduction methods and regu-
larized models alleviate some of these overfitting issues by
either reducing the data into a lower-dimensional representa-
tion or outright eliminating variables. Beyond just combating
overfitting, the use of regularization can be a data-driven
way of exploring which functional connections are most infor-
mative for diagnostic classification of ASD.

2.2.1. Random Forest. Random forest (RF) is an ensemble
machine learning method that can perform both classifica-
tion and regression, as well as handle high-dimensional data
[34]. For classification, the RF model itself consists of a large
number of separate decision trees that each provides their
own predictions, and the class with the overall majority vote
is the RF’s resulting prediction. For each node of each deci-
sion tree within the RF, the respective best split comes from
a random subset of all features, hence effectively “decorrelat-
ing” the trees by increasing the variance between them [34].
Although the decision trees that form the RF model are indi-
vidually highly variable and weak in performance, the RF’s
use of an averaged prediction over all of the trees results in
a highly accurate ensemble model.

Following recommendations by Breiman [34], we used
square root of the number of features as the number variables
to consider at each split (mtry). Additionally, the number of
decision trees within each RF model was set to be 500, which
was a sufficiently large number for ntree for the performance
of our models to be stable. We decided not to treat mtry and
ntree as hyperparameters for the following reasons: their
values generally do not affect RF performance very much;
there are well-established default values for mtry; for ntree,
one can make sure that a large enough value is used so that
the performance of RF is stable. With these two parameter
sets, the RF had no hyperparameters that needed tuning when
fitting the model. Our implementation of the random forest
method was done with the randomForest package in R [35].

2.2.2. Support Vector Machines. Support vector machine
(SVM) is another classification model that has been widely
used when studying the predictive performance of fcMRI
data [4]. Given training data in vectors xi ∈ Rp, for i = 1,
2,⋯, n (n observations with p features) and binary
response vector yi ∈ −1, 1 , the general SVM algothrim
solves for an optimal hyperplane, in possibly extended fea-
ture space, that best separates all the observations into two
different classes. Three popular SVMs will be utilized in
our study: SVM with the linear kernel which has a linear
hyperplane as the decision boundary, SVM with the radial
kernel which has a nonlinear decision boundary and
emphasizes “local” points close to the observation whose
class label is to be predicted, and an L1-regularized SVM
which may be more suitable to the fcMRI data with high
dimension and many noise variables. In this study, both
SVM-Linear and SVM-Radial models were implemented
using the kernlab package in R [36], while the L1-SVM
model was implemented using the Liblinea R package [37].

All SVM models have a number of hyperparameters, for
example, for controlling the number of observations that are
allowed to be misclassified and the penalty for misclassifica-

tions. Allowing for some observations to be misclassified is
necessary in instances where perfectly separating hyper-
planes cannot be acquired and in order to avoid overfitting
to the training data. We refer the reader to James et al.
[29] for a general introduction to SVM models.

2.3. Cross Validation Methods. Resampling methods were
necessary for our analysis as the total sample size was not
large enough to justify a training and test set split for model
building and performance assessment. K-fold CV is a stan-
dard technique used to estimate a model’s true performance
in which the full sample is split into K disjoint sets, called
folds, and iteratively trained and tested on combinations of
these K disjoint folds. For each iteration, one of the K
-folds is held out and the model is trained on the remaining
K-1 folds. The held-out set is then used to test the perfor-
mance of the trained model. This process is repeated until
each of the K-folds has been used once for model validation,
and the average prediction accuracy over all K iterations is
used as the estimate for the model’s true accuracy. This pro-
cedure can also be used for tuning hyperparameters, in
which one performs K-fold CV for various hyperparameter
values of a model and then selects the set of hyperparameters
that maximize the model’s CV performance as the optimal
model. When K is set to be equal to the sample size itself,
so each held-out set is equal to a single observation, the pro-
cedure is referred to as leave-one-out cross validation, or
LOOCV.

When hyperparameter tuning and performance assess-
ment both need to be done, two iterations of CV must be
performed in a “layered” fashion, called nested CV [30].
For each training and held-out set split in a regular CV pro-
cedure, nested CV performs a second iteration of CV on the
training set. This second/inner iteration of CV is used for
hyperparameter tuning in order to find an optimal model,
and then, the optimal model is assessed on the original
held-out set from first/outer iteration of CV. This double-
layered process ensures that all of model fitting and perfor-
mance assessment steps are done within the CV procedure
and yields an “honest” estimate of the model’s performance.
An illustration of a nested CV procedure with both layers
utilizing a 5-fold CV is given in Figure 3.

In our study, we also evaluate another type of CV proce-
dure called the optimistically biased CV. This is essentially
the same procedure introduced in Varma and Simon [30]
where K-fold CV is performed for various sets of hyperpara-
meter values for a model and the accuracy of the best per-
forming set of hyperparameter values is used as the
model’s estimated performance. The estimated model per-
formance is potentially biased (too optimistic) as hyperpara-
meter tuning (part of the model building process) is not
based on separate data from model assessment. The amount
of bias from this specific procedure increases in situations
when the signal-to-noise ratio is lower [38]. Nested CV
was proposed by Varma and Simon [30] as an improvement
on optimistically biased CV and is approximately unbiased
[30]. However, nested CV is not always computationally fea-
sible as performing nested iterations of CV can be very com-
putationally expensive [38].
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Feature processing and dimension reduction methods
are possible to perform within the CV procedure, albeit pre-
cautions must be taken to implement them correctly. Incor-
rect implementation of these methods can lead to data
“leaking” problems in which information from the testing
sets is inadvertently used in the model building process. In
our analysis, we also assessed our models’ performances
when the data were dimensionally reduced through princi-
pal component analysis (PCA). An incorrect implementa-
tion of PCA would be to use it to extract a number of
principle components before performing CV with the
dimensionally reduced data. This is due to all observations
being used to extract the principle components, so informa-
tion from testing set observations is used in the model build-
ing process. The correct implementation requires PCA to be
performed for each training and held-out set split separately:
for each iteration of CV, the principle components are
extracted from the training set, and the held-out set is trans-
formed according to these principle components. In this
way, dimension reduction of the FC data can be done with-
out any information from the testing sets “leaking” into the
model building process and biasing the model performance
estimates. All analyses were done using R [39].

2.4. Comparative Study

2.4.1. Predictive Ability of fcMRI Data Measured with DTW
versus PC. The primary goal of our comparative study is to

compare the predictive ability for classifying ASD using
functional connectivity estimated with DTW versus the
standard approach of using functional connectivity esti-
mated by PC. To this end, multiple machine learning models
were fit on the two FC datasets separately, and the prediction
accuracies from each model were used as measurement of
the predictive capabilities of the respective measure. The
datasets consisted of all 99 participants detailed in Section
2.1; the average time series was extracted for all cortical
and subcortical ROIs given by the Harvard-Oxford atlas
[32], and FC was measured with both DTW and PC for all
ROI pairs. For the SVM-Linear, SVM-Radial, and L1-SVM
models, 100 repeats of nested 5-fold CV (5-fold CV for both
the inner and outer CV iterations) were performed with data
based on either measure. This was repeated for all combina-
tions of machine learning models, FC data measures, and
whether PCA was performed to dimensionally reduce the
data. Only the top 30 principle components from the data
were used for model fitting. Model performance was esti-
mated by the average prediction accuracy, sensitivity, and
specificity over all 100 repetitions of nested 5-fold CV and
used for comparison.

As our SVM-Linear, SVM-Radial, and L1-SVM models
required hyperparameter tuning, we utilized nested CV pro-
cedures with these models. For hyperparameter tuning
within each inner CV loop, we performed 80 iterations of
random search instead of a grid search. Random search
has been shown to be more efficient than other methods of

Train (outer loop)Test

Test

Test

Test

Test

Train (inner loop)Validation

Validation

Validation

Validation

Validation

Figure 3: Visual demonstration of a nested CV algorithm with 5 outer folds and 5 inner folds. Notice that the fifth CV fold’s training set (in
green) is used to run an inner iteration of fivefold CV (the blue and yellow folds).
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hyperparameter tuning while being just as good, if not bet-
ter, at producing near-optimal solutions [40] and hence
was used exclusively to train the models. For RF, we set, a
priori, parameter values for the number of trees and the
number of variables to consider at each decision tree split,
so there were no hyperparameters that required tuning. As
a result, a regular K-fold CV procedure was sufficient for
estimating the performance of our RF model. For RF, we
performed 100 repetitions of 15-fold CV with and without
the application of PCA to reduce our data to only the top
30 principle components.

2.4.2. Assessing the Performance of Various CV Procedures.
The secondary goal of our comparative study is to examine
whether different variants of cross validation provide compara-
ble results and similar inferences regarding our models’ esti-
mated ASD classification performance. To this end, two
additional CV procedures were performed, combined with the
SVM-Linear, SVM-Radial, and L1-SVM models, for compari-
son. The first procedure estimated model performance with a
LOOCV.Within each loop of the LOOCV, eachmodel’s hyper-
parameters were tuned using a 3-fold CV with 40 iterations of
random search; we call this procedure nested LOOCV.We spe-
cifically chose to use a nested CV procedure that combines
LOOCV with 3-fold CV due to two important factors. The first
is that this specific procedure was previously utilized by Plitt
et al. [12], hence allowing our results to be directly comparable
to previously published results. The second is due to its compu-
tational efficiency in comparison to our repeated nested 5-fold
CV procedure. By reducing the number of random search iter-
ations from 80 to 40 and performing only one iteration of
nested LOOCV instead of 100 repeats of nested 5-fold CV,
the necessary time for computation was reduced from hours
to minutes. The second procedure was optimistically biased
CV that was previously defined in Section 2.3. In particular,
10-fold CV was performed with 80 iterations of random search,
and the highest resulting CV accuracy was chosen to be each
model’s estimated performance. We were interested in deter-
mining whether optimistically biased CV may give inflated
model performance estimates compared to the other two CV
procedures.

3. Results

The mean accuracy, specificity, and sensitivity over 100 iter-
ations of nested 5-fold CV for all models trained on DTW
data can be found in Table 2; the corresponding results for
all models trained on PC data can be found in Table 3. To
compare the distributions of accuracy for all the models,
box plots of the 100 accuracies for each model are presented
in Figures 4 and 5 for DTW and PC-measured data, respec-
tively. Note that the middle line in each box plot signifies the
median accuracy. When the models were trained on the
untransformed FC data, only RF reported a higher average
estimated model performance with DTW data than with
PC data. Histograms of the distributions of CV accuracies
for all four models when trained on untransformed data
are given in Figure 6. The distributions of CV accuracies
between the two types of FC data overlap closely for SVM-

Radial, suggesting that its performance was similar across
the two types of data. For SVM-Linear and L1-SVM, the
two models achieved greater average accuracy when trained
on PC data than with DTW data, with peak CV accuracy
reaching above 0.70 for SVM-Linear.

When PCA was utilized and the models were trained on
only the top 30 principle components, the results indicate
that FC measured with DTW is more predictive. All four
models reported higher average CV accuracy when trained
on PCA components extracted from the DTW-measured
FC data, with SVM-Radial showing the largest difference in
accuracy. Histograms of the distributions of all 100 itera-
tions of CV for all four models when trained on the top 30
PCA components extracted from the FC data are given in
Figure 7. The distributions of accuracies between the two
types of FC data overlap closely for L1-SVM, while the
remaining three models depict greater average accuracies
for DTW-measured FC data, with peak CV accuracy reach-
ing above 0.70 for SVM-Linear.

Dimension reduction through the use of PCA had mixed
results with regard to classification accuracy. For the DTW
data, the performance of L1-SVM, SVM-Radial, and SVM-
Linear all improved when PCA was used. For PC data, how-
ever, the use of PCA had a very negligible effect on the

Table 3: Results from CV assessments of model performances with
the PC-measured fcMRI data.

Method (PC) Accuracy Specificity Sensitivity

Nested 5-fold CV

SVM-Linear 0.60 0.57 0.63

SVM-Linear (PCA) 0.58 0.57 0.59

SVM-Radial 0.57 0.52 0.61

SVM-Radial (PCA) 0.56 0.48 0.64

L1-SVM 0.59 0.55 0.62

L1-SVM (PCA) 0.60 0.61 0.59

15-fold CV

RF 0.56 0.52 0.61

RF (PCA) 0.54 0.40 0.68

Table 2: Results from CV assessments of model performances with
the DTW-measured fcMRI data.

Method (DTW) Accuracy Specificity Sensitivity

Nested 5-fold CV

SVM-Linear 0.57 0.52 0.62

SVM-Linear (PCA) 0.62 0.59 0.65

SVM-Radial 0.56 0.46 0.66

SVM-Radial (PCA) 0.61 0.59 0.63

L1-SVM 0.56 0.53 0.59

L1-SVM (PCA) 0.61 0.59 0.64

15-fold CV

RF 0.61 0.56 0.66

RF (PCA) 0.58 0.48 0.67
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performance of the same three models. In the case of RF,
accuracy was higher for untransformed data regardless of
the similarity measure used for FC, albeit the differences in
accuracy were not large. This may be due to the fact that
random forest can deal with high-dimensional features, so
it can use the untransformed raw data effectively. Except
for one case, the average sensitivity was higher than specific-
ity for all models and both types of FC data; only L1-SVM
trained on PCA dimensionally reduced PC-measured data
reported higher specificity than sensitivity.

Results from the nested LOOCV and optimistically biased
CV procedures are both given in Table 4. For nested LOOCV,
the estimated model accuracies were in general very similar to
the accuracies reported by the nested 5-fold CV procedure.
The main differences were in the estimated model accuracies

of the models trained on DTW data that utilized PCA for
dimension reduction. For models trained on PC data, the
accuracies show virtually no change when PCA is applied.

As expected, optimistically biased CV produced inflated
model performances across all categories with the exception
of SVM-Linear trained on PC data, in which its estimated
accuracies were equal to the results of nested 5-fold CV.
Similarly, optimistically biased CV yielded inflated model
accuracies in comparison with nested LOOCV for all combi-
nations of models and data except for SVM-Linear (PCA)
trained on DTW data and SVM-Linear, with and without
PCA, trained on PC data. The differences in CV accuracy
between nested 5-fold CV and optimistically biased CV
ranged from 0.02 to 0.11, with the largest difference being
for SVM-Radial trained on DTW data.

SVM_L SVM_L_PCA SVM_R SVM_R_PCA L1_SVM L1_SVM_PCA RF RF_PCA

0.45

0.50

0.55

0.60

0.65

0.70

Figure 4: Box plots of CV-based accuracies comparing various models with the DTW-measured fcMRI data.

SVM_L SVM_L_PCA SVM_R SVM_R_PCA L1_SVM L1_SVM_PCA RF RF_PCA

0.50

0.55

0.60

0.65

0.70

Figure 5: Box plots of CV-based accuracies comparing various models with the PC-measured fcMRI data.
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4. Discussion

Results from our comparative study suggest that functional
connectivity (FC) measured with DTW may be more infor-
mative for classifying ASD than FC measured with PC, espe-
cially when utilized with certain combinations of machine
learning models and feature engineering methods. As we
investigated model performances only with a single sample
that came from data collected in house and preprocessed
with a single preprocessing pipeline, it is still of interest to
investigate if these results generalize to larger samples and
different preprocessing pipelines.

Our results indicate that the additional regularization
provided by the L1-SVM model did not improve model per-
formance over the other nonregularized models. Although
regularized and sparsity-inducing methods are an intuitive
solution for working with high-dimensional data, the inabil-
ity of regularization to yield better model performance in
our case may be due to the type of regularization utilized.
Regularization with the L1-norm has tendencies to indis-
criminately eliminate all but one feature from any groups
of correlated features as well as selecting to keep no more
features than equal to the sample size when there are more
features than observations [41]. This may be the cause of

lower classification accuracies within our study as our sam-
ple size of 99 is considerably smaller than our 5460 mea-
sured FC per participant as well as the nature of FC itself.
If there are more than 99 predictive connections, then infor-
mation will be lost as the feature space will be constrained to
a smaller number of connections than necessary. As for the
tendency to indiscriminately eliminate all but one feature
from groups of correlated features, this might prove to be
an issue as fcMRI data might consist of correlated connec-
tions between functionally related brain systems. Although
feature selection through regularization generally has a ben-
eficial effect on model performance, regularization through
the L1-norm might not be well suited to work with the inher-
ent properties of high-dimensional resting-state fcMRI data.

Functional connectivity, with and without dimension
reduction via PCA, was used as a feature in different models
to predict ASD. With the exception of RF, dimension reduc-
tion through the application of PCA had mixed effects as it
improved model performance only when used with DTW
data. With that said, almost all models trained on DTW data
showed notable improvements in CV accuracy when trained
on only a subset of the principle components instead of the
entire set of functional connections. This is consistent with
Linke et al.’s [25] results as well, as their results of SVM-
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Figure 6: Comparison of ASD prediction accuracies over 100 iterations between DTW-measured versus PC-measured fcMRI data.
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Linear models trained on DTW data having superior CV
accuracies than PC data also utilized PCA for dimension
reduction [25]. This may support the idea that DTW mea-
sures FC not in a strictly more informative way than PC
but rather characterizes a different aspect of FC that may
be complementary to PC and yield additional predictive
information. Since RF can effectively deal with high-
dimensional correlated features, dimension reduction via
PCA is not necessary with RF and actually produces inferior
results.

Our results suggest that the model performance esti-
mates from nested LOOCV are in general the same as nested
5-fold CV, but with a larger effect on CV accuracy from
dimension reduction. The large increase in accuracy is
potentially due to the fact that our nested LOOCV proce-
dure allows each model to be trained on more data than
nested 5-fold CV. Since nested LOOCV uses held-out sets
consisting of only 1 observation, the models are trained on
98 observations. In comparison, our nested 5-fold CV proce-
dure uses held-out sets of 19 or 20 observations each, leaving
the model to be trained with at most 80 observations at any
given time. This difference in respective training set size may
result in nested 5-fold CV producing slightly less fitted

models on each CV iteration. The possible reduction in
CV accuracies may be further compounded by being aver-
aged over 100 repetitions as we did for the nested 5-fold
CV procedure. Although the reported nested LOOCV accu-
racies of 0.71 and 0.67 for SVM-Linear and SVM-Radial are
indeed higher than those from nested 5-fold CV, it is worth
nothing that these values fall within the distribution of 100
repetitions of nested 5-fold CV, which can be viewed in
Figure 7. These results suggest that nested LOOCV can func-
tion as an alternative to repeated nested K-fold CV that pro-
duces similar model performance estimates and insight into
model behavior, but at a fraction of the computational cost.

In line with our expectations, our results saw inflated
model performance when the optimistically biased CV pro-
cedure was performed in all but few instances. The largest
increase in estimated model performance was 0.11 for
SVM-Radial trained on the top 30 principle components
extracted from DTW data. Although there seems to be an
overestimation in CV accuracy from the optimistically
biased CV procedure, further study would be necessary in
order to assess the extent of the introduced bias, for example,
a simulation study in which the true model performance is
known.
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Figure 7: Comparison of ASD prediction accuracies over 100 iterations between the top 30 PCA components of DTW-measured versus PC-
measured fcMRI data.
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The highest accuracy achieved in our study was 71%,
which is higher than many previously reported high-
quality studies using resting-state fMRI for classification of
“autism.” Studies with higher accuracies may be overfitting
or limiting their study participants to a more homogeneous
small sample; see the review by Liu et al. [42]. Studies with
limited sample size or participant heterogeneity are difficult
to generalize to broader situations especially given the high
heterogeneity in autism with respect to behavior, clinical
symptoms, etiologies, cooccurring medical conditions, and
other variables. Note that the purpose of the current study
is not clinical diagnosis, i.e., classification of individual par-
ticipants. Instead, the ultimate goals of our research are to
improve our understanding of atypical brain network orga-
nization in autism and potentially identify subgroups in
future research with larger samples and higher sensitivity.

One limitation of our study was that our selection of
machine learning methods consisted mainly of classical
machine learning models and dimension reduction methods
that have been heavily used and studied in previous ASD
classification studies. An extension of this study to include
a wider range of methods, such as elastic net, which incorpo-

rates both L1 and L2 regularizations, or convolutional neural
networks [21], may provide greater insight into the differ-
ences between the two measures for measuring FC. Addi-
tionally, DTW estimates of functional connectivity could
further be optimized by tuning a DTW cost function rather
than the absolute function [43] and by using recently pro-
posed Amerced Dynamic Time Warping (ADTW) [44].
Similarly, prediction accuracy has been used as the perfor-
mance measure in our study as it is the measure reported
in many previous studies of ASD classification using
resting-state fMRI. As pointed out by a reviewer, area under
the receiver operating characteristic (ROC) curve may also
be used as the yardstick for a future study.

Appendix

Calculation of the Dynamic Time Warping
Distance

Let s1 and s2 denote two different time series of lengths l1
and l2, respectively. To calculate the DTW distance between
s1 and s2, we begin by creating a l1 × l2 matrix, called the
global cost matrix. Let the global cost matrix be denoted as
D and let D i, j denote the i, j th entry of D. D i, j corre-
sponds to an accumulated warping distance between the
prefix of length i from s1 and the prefix of length j from s2
and can be calculated as follows:

D i, j =

s1 i , s2 j +min D i, j − 1 ,D i − 1, j ,D i − 1, j − 1 if i, j > 1,

s1 i , s2 j +D i, j − 1 if i = 1, j > 1,

s1 i , s2 j +D i − 1, j if j = 1, i > 1,

s1 i , s2 j if i = 1, j = 1

A 1

The DTW distance between s1 and s2 is given by the
l1, l2

th entry ofD, which we will denote asDTW si, sj . Intu-
itively, the DTW distance is given by the path through D that
minimizes the accumulated distance measures between the
two time series. As noted in Equation (A.1), we used the

Table 4: Results from single iterations of nested LOOCV and
optimistically biased CV.

Method Accuracy Sensitivity Specificity

Nested LOOCV (DTW)

SVM-Linear 0.58 0.51 0.64

SVM-Linear (PCA) 0.71 0.69 0.72

SVM-Radial 0.56 0.53 0.58

SVM-Radial (PCA) 0.67 0.67 0.66

L1-SVM 0.59 0.57 0.60

L1-SVM (PCA) 0.66 0.63 0.68

Nested LOOCV (PC)

SVM-Linear 0.62 0.61 0.62

SVM-Linear (PCA) 0.62 0.61 0.62

SVM-Radial 0.54 0.51 0.56

SVM-Radial (PCA) 0.53 0.47 0.58

L1-SVM 0.59 0.53 0.64

L1-SVM (PCA) 0.59 0.61 0.56

Optimistically biased CV (DTW)

SVM-Linear 0.60 0.57 0.62

SVM-Linear (PCA) 0.67 0.70 0.64

SVM-Radial 0.61 0.47 0.74

SVM-Radial (PCA) 0.67 0.61 0.72

L1-SVM 0.66 0.68 0.64

L1-SVM (PCA) 0.66 0.56 0.76

Optimistically biased CV (PC)

SVM-Linear 0.60 0.54 0.66

SVM-Linear (PCA) 0.58 0.56 0.60

SVM-Radial 0.60 0.55 0.64

SVM-Radial (PCA) 0.63 0.48 0.78

L1-SVM 0.66 0.68 0.64

L1-SVM (PCA) 0.63 0.66 0.60
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Figure 8: The calculated global cost matrix between two example
time series, s1 = 1, 2, 3, 3, 4, 1 and s2 = 1, 1, 3, 4, 3, 1 . The
optimal matches between time points are highlighted in gray, and
the resulting DTW distance between s1 and s2 is highlighted in
black.
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Euclidean distance measure for calculating D, but any other
distance measure can be substituted in place of it.

Figure 8 depicts the calculation of the global cost matrix
and resulting DTW distance between s1 = 1, 2, 3, 3, 4, 1
and s2 = 1, 1, 3, 4, 3, 1 . Beginning with the 1, 1 st cell, each
successive cell of the global cost matrix is calculated based on
Equation (A.1). For example, the 4, 3 th cell is given by

D 4, 3 = s1 4 , s2 3 + min D 4, 2 ,D 3, 3 ,D 3, 2
= 3 − 3 2 + min 1, 5, 9 = 1

A 2

The rest of the global cost matrix is filled out sequentially
until the very last cell. The resulting DTW distance between
s1 and s2 is the l1, l2

th = 6, 6 th cell of the global cost
matrix, which is highlighted in black. Each cell within the
global cost matrix can be thought of as the cost associated
with matching the time points corresponding to that row
and column; the more dissimilar they are, the greater the
cost of that matching. Since each step of the DTW algorithm
adds the minimal cost from the preceding matches, we can
think of the resulting DTW distance between s1 and s2 as
the optimal transformation that warps one time series to
be as similar as possible to the other.

Note that the DTW algorithm allows for one-to-many
matchings between time points in order to handle intermit-
tent phase delays between the two time series (spontaneous
compressions or expansions with respect to time). This
one-to-many matching is visible in the global cost matrix
as any series of vertical or horizontal optimal matches (gray
highlighted cells).
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