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Diabetic macular edema (DME) and age-related macular degeneration (AMD) are two common eye diseases. They are often
undiagnosed or diagnosed late. This can result in permanent and irreversible vision loss. Therefore, early detection and
treatment of these diseases can prevent vision loss, save money, and provide a better quality of life for individuals. Optical
coherence tomography (OCT) imaging is widely applied to identify eye diseases, including DME and AMD. In this work, we
developed automatic deep learning-based methods to detect these pathologies using SD-OCT scans. The convolutional neural
network (CNN) from scratch we developed gave the best classification score with an accuracy higher than 99% on Duke
dataset of OCT images.

1. Introduction

Nowadays, life expectancy has been greatly increased, but
preserving vision is also essential to maintain a good quality
of life. Vision loss is therefore an alarming problem for the
world population. According to the report published by the
International Agency for the Prevention of Blindness
(IAPB), age-related macular degeneration (AMD), which
affects adults over the age of 50, is the third leading cause
of visual impairment and irreversible blindness in the world
population. This means that 8.1 million people worldwide
have vision loss due to AMD not treated in time [1].

Among the leading causes of vision loss in young adults
in developed countries is diabetic macular edema (DME),
which is a major complication of diabetic retinopathy in
diabetic patients. It is also the leading cause of blindness in
people under the age of 50. These pathologies are sometimes
misdiagnosed or diagnosed late. This can lead to permanent

and irreversible vision loss. Thus, the cost incurred will be
very high [2].

Optical coherence tomography (OCT) imaging is the
widely used technique for detecting many eye diseases such
as AMD and DME. It provides a 3D cross-sectional view
of the human eye. In addition, it can visualize all layers of
the retina at a higher resolution. Spectral domain-optical
coherence tomography (SD-OCT) is a noninvasive imaging
method that can be used in vivo [3], based on low coherence
interferometry, like ultrasound, except that IR light (photon
laser/810nm) replaces sound. It analyzes the spectrum of the
reflected light signal improving the speed of the examination
by a factor of 100 compared to traditional time domain OCT
(TD-OCT) where retinal depth information is obtained after
a longitudinal translation in time of a reference beam. OCT
allows the precise analysis of macular abnormalities and is
essential for the follow-up of these abnormalities. It has
become a major tool for the detection of retinal and pigment
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epithelial anomalies and especially choroidal neovessels. The
technique does not involve any radiation for the patient.

Early detection and treatment of AMD and DME will
prevent vision loss, save money, and provide a better quality
of life for individuals. There are various classical methods
such as retinal layer segmentation [4] and recent methods
such as deep learning that has been used to help ophthal-
mologists to detect eye diseases more easily. Many papers
have been published in this field based on OCT scan data
[5, 6]. However, some of them can be confusing in their pre-
dictive results and require specialist intervention. In fact,
from these existing studies, we note that each approach has
its own advantages and disadvantages. Indeed, the majority
of these methods are used in a well-defined context. So, there
is no perfect method that predicts retinal decease using OCT
images. Deep neural networks have been the most accurate
method for the automatic diagnosis of retinal diseases
[7–9]. They have received more attention and progress in
medical image analysis [10, 11].

In this work (work carried out in the OCTIPA project
(CMCU 23G1418), as part of the PHC-Utique program
managed by the CMCU of the French Ministry of Europe
and Foreign Affairs and the Tunisian Ministry of Higher
Education and Scientific Research), the main objective is to
detect retinal pathologies from SD-OCT images. Indeed,
we proposed a classification model that can detect AMD
and DME without any intervention from clinical experts.
In fact, the costs for people suffering from these diseases
can be enormous. Therefore, early detection of retinal dis-
eases is challenging because they often start asymptomatic
and develop over time.

The model should provide the ability to automatically
detect pathology with high accuracy to predict image classes
as normal or infected.

The rest of the paper is structured as follows: Section 2
presents related works, Section 3 describes the proposed
method, and finally, the experimental results are discussed
in Section 4.

2. Related Work

Over the past 20 years, advances in ophthalmic image
processing have enabled the development of automated
diagnostic systems for many diseases such as diabetic reti-
nopathy, AMD, macular hole, and DME. These diagnostic
systems which automate the process of detecting eye diseases
have attracted a lot of attention from clinicians and
researchers. They do not only ease the workload of clinicians
by providing objective opinion and valuable information but
also offer early detection and easy patient accessibility.

In the following, we detail some recent work on deep
learning-based CAD systems for OCT image classification.

Bhowmik et al. [12] proposed a transfer learning-based
method using the two pretrained CNN architectures,
VGG16 (23 layers) and InceptionV3 (159 layers), to predict
eye pathologies from OCT images.

Before the implementation of the model, the authors
applied a data preprocessing step by resizing the images.
Then, they removed the “fully connected” layer for both

models, keeping the convolution layer, and replace it by a
polling layer followed by the flattening layer. The Softmax
activation function was used, and as an optimizer, the authors
used Adam and RMSProp with a learning rate of 0.0005.

The proposed approach was trained and validated on a
dataset of 4000 OCT images labeled in 4 categories, normal,
CNV, DME, and drusen, of which 80% (3200 images) were
used for training and 20% (800 images) for testing. The
experimental results indicate that the proposed method
achieved an accuracy of 94%.

Yang et al. [13] presented an end-to-end weakly super-
vised convolutional neural network (WCNN) model to detect
AMD pathology and localize its lesions in OCT images. Yang
et al. proposed a CNN architecture based on a backpropaga-
tion algorithm called expressive gradients (EG). This one is
generated from the integrated gradient (IG) algorithm. The
authors proved that the proposed EG algorithm outperforms
both the IG algorithm in localization accuracy and existing
object detection methods in classification accuracy.

Their proposed approach was validated on 10,100 clini-
cal OCT images with 3 classes, normal, dry AMD, and wet
AMD, of which 9575 were used for training and 525 for
testing. The validation indicates that the proposed method
resulted in a test accuracy of 94.86% and a validation
accuracy of 96.05%.

Wang D. and Wang L. [14] proposed a method for auto-
matic detection of two pathologies (DMO and AMD) based
on deep learning. They used two public datasets: the first one
is provided by Srinivasan et al. and is obtained on Duke, and
the second one is provided by Rasti et al. and is obtained on
Kaggle from Noor Eye Hospital in Tehran. Wang D. and
Wang L. evaluated the performance of the following pre-
trained CNN models: CliqueNet, DPN92, DenseNet 121,
ResNet 50, ResNext101, VGG16, VGG19, and InceptionV3.

They used 3231 images from the first dataset and 5084
images from the second one. Each one was divided into
80% for learning and 20% for testing.

The experimental results indicate that DPN and Clique-
Net achieved the best accuracy values including 99.6% and
99% on the first base and 95.8% and 98.6% on the second
base, respectively.

Vaghefi et al. [15] demonstrated that high diagnostic accu-
racy can be achieved when deep learning combines analysis of
multimodal OCT, OCT-A (OCT angiography), and CFP
(color fundus photographs) images. The authors presented a
CNN model based on the Inception-ResnetV2 architecture.

Each image modality was initially passed through the
resizing layer, which was followed by 3 repetitions of convo-
lution2D layer, batch normalization, and a RELU activation
layer. Then, the three separate modalities were concatenated
using a global pooling layer and then passed to the
Inception-ResnetV2 model. The proposed approach of com-
bining imaging modalities into a single “multimodal” CNN
was used on data from 75 participants grouped into three
categories: young healthy, elderly healthy, and patient with
dry intermediate AMD. The results indicate that this
method gave an accuracy of 99.8%, allowing the identifica-
tion of both aging and disease with a high sensitivity and
specificity of about 100% for each class.
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Karri et al. [16] proposed a model based on the pre-
trained GoogLeNet model to classify OCT images into 3
classes: AMD, DME, and normal. They exploited for their
work a dataset provided by Srinivasan et al. and obtained
from Duke University of 15 subjects with AMD, 15 subjects
with MDD, and 15 healthy subjects.

The authors adapted the pretrained model by “fine-
tuning” after preprocessing the OCT images by the BM3D
filter. The experimental results show that their method
achieved an accuracy equal to 96%.

In Table 1, we summarize some relevant works.

3. Methods

3.1. Dataset. In this work, we implemented and tested our
CNN models on a public dataset and on a private one. The
public dataset was provided by Srinivasan et al. and was
acquired using SD-OCT imaging (Heidelberg Engineering
Inc. in Germany) at Duke University, Harvard University,
and the University of Michigan. The dataset includes 45
SD-OCT volumes: 15 normal, 15 AMD, and 15 DME
patients [17].

All volumes contain multiple B scans that range from 31
to 97 with a resolution of 496 × 768 pixels that we had
grouped into 706 AMD, 1101 DME, and 1405 normal.

The other database used in this work is a Tunisian data-
base containing 934 OCT images. These images were taken
using Spectralis OCT Heidelberg machine at the Hedi Rais
Hospital (http://www.santetunisie.rns.tn/), including three
categories: AMD (538 images), DME (272 images), and
normal (124 images).

3.2. Proposed Method. In this paper, we aim to build a
model that allows to identify AMD and DME from OCT
scan data with a higher accuracy without any human inter-
vention. Firstly, we use the transfer learning using
pretrained models. Next, we build a bilinear CNN using
the pretrained models previously used in fine-tuning, and
finally, we introduce a new CNN model architecture from
scratch to classify OCT images.

The proposed method is illustrated in Figure 1.

3.2.1. Preparation and Preprocessing of Data. Before apply-
ing the pretrained CNN model, a data preprocessing step
is essential to improve the deep learning and the perfor-
mance of the results. Hence, the OCT volumes were routed
in three steps:

(i) Data balancing: first, we balanced the three database
classes used. In fact, we increased the number of
images using the following effects, randomly applied
on the input set: data normalization, rotation, shift
in width and height, shear, zoom, mirror effect, and
fill empty pixels by neighbors’ values (fill mode=”-
nearest”) to have the same original size after shifts
and rotation

The application of these transformations gave us
additional images like the ones shown in Figure 2, so the
database becomes balanced and ready for use.

(ii) ROI and image resizing: ROI selection (region of
interest) in the OCT images was made; then, an
image resizing was done

(iii) Data splitting: the dataset was meticulously parti-
tioned into training and test sets to optimize the
learning process. Specifically, 70% of the images
from each dataset were randomly allocated to the
training set, allowing the models to learn from the
inherent patterns and underlying features in the
images. Additionally, a validation set was created
from a portion of the training data, acting as a
checkpoint to monitor the model performance on
unseen data and prevent overfitting on the training
set. The remaining 30% of images were set aside and
reserved as the test set

3.2.2. OCT Image Classification Based on Transfer Learning.
Transfer learning mainly consists in applying the knowledge
acquired from a pretrained CNN model (which was created
for a source task) to a similar target task. It allows us to avoid
reinventing a CNN from scratch, and it helps us to create AI
applications in a very short time.

To use transfer learning, we should choose a pretrained
model and then fine-tuning the model according to the clas-
sification problem to be studied or extract features from an
intermediate layer and inject them into another CNN.

3.2.3. Fine-Tuning of the Pretrained Convolutional Neural
Networks. We used the two pretrained CNNs: Xception
and the Inception_Resnet_v2:

(i) Xception [18]: it is a CNN architecture, inspired by
Inception, and it is characterized by depth-
separable convolution blocks with shortcuts between
them as in ResNet. A depth-separable convolution
can be understood as an Inception module with a
maximum number of rounds. This model consists
of 71 layers, among them 36 convolution layers. It
is trained on more than a million images from the
ImageNet database

(ii) Inception_Resnet_v2 [19]: it is the second genera-
tion of Inception convolutional neural network
architectures which notably uses batch normaliza-
tion. It includes other changes like dropping dropout
and removing local response normalization. This is a
hybrid CNN architecture between “Inception Net”
and “Residual Net.” It is the state-of-the-art pre-
trained model on more than one million images of
ImageNet to perform 1000-category classification.
This model has 165 layers in depth. It is download-
able from Keras API with ImageNet weights

We modified the last layer of the pretrained CNNs
(Xception and Inception-ResnetV2) to adapt them to our
classification case. We added a global average pooling layer
“GAP” and a dropout layer “Dropout” to avoid overlearning.
We added at the end the “Softmax” function with the
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number of outputs equal to 3 to have the predicted probabil-
ity for each class.

(1) Feature Extractions from a Pretrained Model and Their
Classification by Another CNN. Pretrained convolutional
neural networks contain more information in the middle
convolution layers than in the last ones. The principle of
this idea is to import the architecture (Xception or the
Inception-ResnetV2) and then look for the intermediate
convolution layer that gives more features, from which
we took the features. Then, we put them in another shal-
low CNN architecture.

Table 2 shows the structure of the layers of the
created CNN.

For the “Xception” model, we extracted the features
from the intermediate layer “block13_sepconv2_bn” which
is the sixth layer of the penultimate block of separable archi-
tecture. This constructed neural network will be trained with
randomly initialized weights to better learn the features
extracted from the “block13_sepconv2_bn” layer of the
Xception to improve the classification accuracy of the OCT
images that we found with fine-tuning.

For the “Inception-ResnetV2” model, we extracted
the features from the intermediate layer “block8_1_ac.”

Table 1: Relevant works.

Reference Pathology Dataset Preprocessing Used CNN Classifier
Result Val_
accuracy

Bhowmik et al. [12]
DME, drusen, CNV,

and normal

Kaggle
dataset: retinal
OCT images

Resizing
InceptionV3
and VGG16

Softmax

VGG16:
91.6%

InceptionV3:
92%

Yang et al. [13] Normal, dry and wet AMD Local datasets — CNN (EG) Softmax 96.05%

Wang D. and
Wang L. [14]

AMD, DME, and normal

Dataset 1:
SERI

Dataset 2:
Duke

Filtering:
FastNIMeans
+bilateralFilter

VGG16
VGG19

InceptionV3
CliqueNet

DPN
DenseNet
ResNet
ResNext

Dataset 1:
VGG16:
91.6%
VGG19:
98.2%

InceptionV3:
92.7%

CliqueNet:
99%

DPN: 99.6%
DenseNet:
98.7%
ResNet:
98.7%

ResNext:
97.3%

Dataset 2:
VGG16:
86.3%
VGG19:
95.1%

InceptionV3:
85.3%

CliqueNet:
98.6%

DPN: 95.8%
DenseNet:
94.2%
ResNet:
95.2%

ResNext:
94.8%

Vaghefi et al. [15]
Normal_Young, Normal_Old,

and dry AMD
75

participants
Resizing

Inception-
ResnetV2

Softmax 99.8%

Karri et al. [16] MD, DME, and normal Duke
Denoising

using BM3D
+(flattening)

GoogLeNet SVM 96%
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The extracted features (feature map), output from the
Inceptionresnetv2 layer, are the input of the CNN archi-
tecture described in Table 2 with randomly initialized

weights so that the model learns better and gives a
higher classification accuracy of OCT images than the
fine-tuning method.

Fine tuning of the pre-trained convolutional neural networks : xception
and the inception_resnet_v2

Feature extractions from a pre-trained model and their classifcation by
shallow CNN architecture

Bilinear convolutional neural network (BCNN: xception, xception)

Bilinear convolutional neural network (BCNN: inception-resnet-v2,
inception-resnet-v2)

Construction of a CNN from scratch

Depthwise convolution

Pointwise convolution Stem block 5 x Inception
resnet-A

10 x Inception
resnet-BReduction-A

Reduction-B5 x Inception-
resnet-C

Average
pooling

Dropout
(keep 0.8)

Convolution

Input image

Input image

Input image

Conv1

Original image Feature maps
(conv1)

Feature maps
(conv4)

Feature maps
(conv8)

FC vector Label

Sofmax
Pooling
and FCLConv4 Conv8

Convolutional layer

Convolutional layers

Convolutional layers

pooling layer

Outer product

Outer product

Bilinear vector

Bilinear vector

Sofmax

Sofmax

Dense layer Output layer

Pooling Flattening

CNN A

CNN B

CNN A

CNN B

Y2
Y3
Y4

Y1

1 × 1 conv
n × n conv

Classifcation

AMD

DME

NORMAL

Figure 1: Proposed method.

(a) AMD (b) DME (c) Normal

Figure 2: Three sample images derived from the data augmentation of the Tunisian dataset.
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3.2.4. OCT Image Classification Based on Bilinear
Convolutional Neural Network (BCNN). The bilinear convo-
lutional neural network (BCNN) is an architecture based on
the combination of two CNN models, whether the two archi-
tectures used are different or identical. The principale of the
BCNN consist to concatenate the characteristics extracted
from each last convolution layer of the two CNNmodels [20].

More simply, when using an image A, as an input, this
image passed through two different CNNs, and a feature
map is then generated after applying several pooling and
nonlinear transformations. These features are concatenated
to make the model more reliable.

3.2.5. Construction of a CNN from Scratch. We have created
a CNN model from scratch, using the PyTorch Library. We
gave the name “OCTorch-Net” for our created CNN model.
The details of this model are given in Table 3.

Creating this CNN model with fewer layers than the pre-
trained CNN networks (Xception and Inception-ResnetV2)
allows us to reduce the number of layers compared to the
pretrained models. Indeed, the built CNN architecture is
composed of a small number of layers, 8 convolution layers,
only 3 MaxPooling layers, one flatten layer, one dropout
layer, and one dense layer. This reduction of the number
of layers of the network allows us to reduce the use of hard-
ware systems (CPU/GPU) and the minimization of the
learning time of the OCT image characteristics.

4. Results

4.1. Evaluation Metrics

4.1.1. Accuracy. The accuracy allows to know the proportion
of good predictions compared to all the predictions.

Accuracy ACC = TP + TN
TP + TN + FP + FN

, 1

where TP is the number of positive correct results in the
dataset, TN is the number of negative correct results, FP is
the number of false positive results, and FN is the number
of false negative results.

4.1.2. Precision. In the simplest sense, precision is the ratio of
true positives to all positives.

Precision =
TP

TP + FP
2

4.1.3. Recall. Recall is a measure of our model correctly
identifying true positives.

Recall =
TP

TP + FN
3

4.1.4. F1 Score. F1 score is a machine learning evaluation
metric that combines precision and recall scores.

F1 score =
2 ∗ precision ∗ recall
precision + recall

4

4.2. Experimental Results. After preprocessing the balanced
data and creating the CNNmodel, the hyperparameters used
for all the models is the optimizer adam’, the evaluation
metric is validation accuracy, and the loss function is cate-
gorical_crossentropy.

The batch size is fixed as 128, and the number of epochs
is equal to 30 for all models; expect the model built from
scratch “OCTorch-Net”, we did only 20 epochs.

First, we used the following pretrained CNN models:
Xception and InceptionResnetV2.

The results obtained on the Duke dataset are detailed
in Table 4.

Also, Figure 3 presents the evolution of the accuracy and
the loss function for the model built “OCTorch-Net” on the
public database “Duke.”

The results obtained on the Tunisian dataset are detailed
in Table 5.

In addition, Figure 4 presents the evolution of the accu-
racy and the loss function for the BCNN model (Xception,
Xception) on the Tunisian dataset.

5. Discussions

Deep learning models for retinal disease detection on OCT
images have received much attention in many research fields
such as medical analysis and computer-aided diagnosis
(CAD). The suitability of deep learning methods depends
simultaneously on the design of the model and its adaptation.
In this work, we propose a new deep learning model applied
to a medical domain with fewer processing treatment.

The results found show the importance of using deep
leaning-based methods to detect retinal pathologies.

In fact, the pretrained CNN models gave significant per-
formance when we extracted the features from a hidden
layer and introduced them into another CNN architecture.

Also, the BCNN proved its importance to improve the
results of a CNN. Indeed, by merging several features from
several CNNs, the classification rates became more impor-
tant, since the feature matrices will be richer in information.
However, this introduces a complexity in the number of
parameters used. The use of a CNN from scratch has

Table 2: Description of the created CNN and its layers.

# Layers Values

1 Convolution2D
Number of filters: 32

Kernel size: 3∗3
Activation function

2 Dropout 0.2

3 Dense 4608, activation function: ReLu

4 Dense 128, activation function: ReLu

5 Dropout 0.2

6 Dense 64, activation function: ReLu

7 GlobalAveragePooling2D —

8 Dropout 0.5

9 Dense 3, activation function: Softmax
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Table 3: Description of the created CNN and its layers.

Blocks Layers Values

Conv_bloc 1

Convolution2D
BatchNormalization2D
Activation Function

Number of filters: 64
Kernel size: (3,3)

Convolution2D

-
ReLu

Number of filters: 128
Kernel size: (3,3)

Conv_bloc 2

BatchNormalization2D
Activation Function
MaxPooling2D
Convolution2D

-
ReLu

Kernel size: (2,2) with stride: 2
Number of filters: 128

Kernel size: (3,3)

Res_1

BatchNormalization2D
Activation Function
Convolution2D

-
ReLu

Number of filters: 128
Kernel size: (3,3)

BatchNormalization2D
Activation Function
Convolution2D

-
ReLu

Number of filters: 256
Kernel size: (3,3)

Conv_bloc 3

BatchNormalization2D
Activation Function
MaxPooling2D
Convolution2D

-
ReLu

Kernel size: (2,2) with stride: 2
Number of filters: 512

Kernel size: (3,3)

Conv_bloc 4

BatchNormalization2D
Activation Function
MaxPooling2D
Convolution2D

-
ReLu

Kernel size: (2,2) with stride: 2
Number of filters: 512

Kernel size: (3,3)

Res_2
BatchNormalization2D
Activation Function
Convolution2D

-
ReLu

Number of filters: 512
Kernel size: (3,3)

MaxPool

BatchNormalization2D
Activation Function

AdaptiveMaxPooling2D
Flatten

-
ReLu
-
-

Bloc_classification
Dropout
Dense

Activation Function

0.2
512

Linear

Table 4: Obtained results on the Duke dataset.

Model Accuracy Precision Recall F1 score

Fine-tuning of Xception 96.83% 96.66 97% 97%

Feature extraction from “sepconv2_bn”+CNN 98.02% 98.33 98% 97.66%

BCNN (Xception, Xception) 97.84% 97% 97% 97%

Fine-tuning of Inception-ResnetV2 93.43% 93.66% 93.33% 93.33%

Features extraction from “block8_1_ac”+CNN 97.70% 98% 97.66% 97.66%

BCNN (Inception-ResnetV2, Inception-Resnet-V2) 95.55% 95% 95% 95.66%

The from scratch “OCTorch-Net” 99.68% 99% 96% 97%
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allowed to overcome this problem, since the number of
parameters is lower, although the results found are very
satisfactory and even exceed the results obtained by fine-
tuning of standard architectures. This new architecture
OCTorch-Net can be validated on a larger number of data
to be integrated in a real clinical context.

In fact, the OCTorch-Net is very effective for the predic-
tion of the two retinal pathologies with an accuracy equal to

99.68% thanks to data augmentation, which generated an
acceptable number of images. But, we are working currently
on obtaining a large Tunisian database which will allow us to
better enhance the reliability of the results and to test the
models on a large number of data.

In Table 6, we present a comparison of the perfor-
mances of the proposed methods and two methods from
the literature.
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Figure 3: The performance of “OCTorch-Net” on the public database “Duke.”

Table 5: Obtained results on local dataset.

Model Accuracy Precision Recall F1 score

Fine-tuning of Xception 96.77% 96.66% 97% 97%

Features extraction from “sepconv2_bn”+CNN 98% 94.66% 94.66% 94.66%

BCNN (Xception, Xception) 98.56% 96.33% 96.66% 95%

Fine-tuning de Inception-resnet-v2 96.11% 95% 95% 95%

Features extraction from “block8_1_ac”+CNN 97.12% 98.33% 98% 98%

BCNN (Inception-ResnetV2, Inception-ResnetV2) 96.44% 98.66% 99% 98.33%

The from scratch “OCTorch-Net” 97.65% 96% 95.6% 95.8%
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Figure 4: The performance of BCNN model (Xception, Xception) on the Tunisian dataset.
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It is clear that the proposed system achieved high classi-
fication accuracy and prediction ability of AMD and DME
diseases compared to other state-of-the-art methods.

The results obtained prove that our architectures
surpass most methods proposed in the literature. In partic-
ular, the new architecture has given excellent results that
can be used in internal regions that suffer from a lack of
specialized doctors.

6. Conclusion

We generated a deep CNN-based method to address the
problems of multiclass classification of retinal pathologies
(AMD, DME, and normal), which are the direct causes of
vision problems, leading to total blindness in adulthood.
Therefore, to avoid vision problems, our method presents
an automated system to detect patients with macular edema
or age-related macular degeneration using OCT scans
because it is the common imaging method applied in oph-
thalmology in most countries of the world.

In fact, on Duke dataset the from scratch CNN
“OCTorch-Net” gave the best classification score with an
accuracy of 99.68%, while on Tunisian dataset, the BCNN
model (Xception, Xception) gave the best performance with
an accuracy of 98.56%.

We believe that the method can be further improved by
adding spatial attention modules whose goal is to focus on
the most information-rich regions that may be more signif-
icant than other regions.
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