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Background. MRI is an important tool for accurate detection and targeted biopsy of prostate lesions. However, the imaging
appearances of some prostate cancers are similar to those of the surrounding normal tissue on MRI, which are referred to as
MRI-invisible prostate cancers (MIPCas). The detection of MIPCas remains challenging and requires extensive systematic
biopsy for identification. In this study, we developed a weakly supervised UNet (WSUNet) to detect MIPCas. Methods. The
study included 777 patients (training set: 600; testing set: 177), all of them underwent comprehensive prostate biopsies using
an MRI-ultrasound fusion system. MIPCas were identified in MRI based on the Gleason grade (≥7) from known systematic
biopsy results. Results. The WSUNet model underwent validation through systematic biopsy in the testing set with an AUC of
0.764 (95% CI: 0.728-0.798). Furthermore, WSUNet exhibited a statistically significant precision improvement of 91.3%
(p < 0 01) over conventional systematic biopsy methods in the testing set. This improvement resulted in a substantial 47.6%
(p < 0 01) decrease in unnecessary biopsy needles, while maintaining the same number of positively identified cores as in the
original systematic biopsy. Conclusions. In conclusion, the proposed WSUNet could effectively detect MIPCas, thereby
reducing unnecessary biopsies.

1. Introduction

Prostate cancer (PCa), increasingly diagnosed in men, signifi-
cantly threatens male health worldwide [1–3], and pathologi-
cal biopsy stands as the definitive diagnostic tool for PCa [4].
Currently, MRI-ultrasound fusion-targeted biopsy improves
the positive detection rate compared with systematic biopsy
[5]. However, the imaging appearances of some PCas are
similar to those of the surrounding normal tissue on magnetic
resonance imaging (MRI) [6]. These hard-to-spot cases are
referred to as MRI-invisible prostate cancers (MIPCas) [6, 7].

Recent clinical studies highlight the indispensable role of
systematic biopsies in identifying MRI-invisible prostate
cancers [8–10]. A study published in the New England
Journal of Medicine [11] found that systematic biopsies for

MRI-invisible lesions resulted in a diagnostic upgrade in
9.9% of patients, in contrast to targeted biopsies for MRI-
visible lesions. These findings highlight the urgent need for
enhanced accuracy in detecting and diagnosing MIPCas,
emphasizing the significant impact and relevance of our
research in the realm of MRI-invisible prostate cancer. Due
to the MRI-invisible appearance, systematic biopsy detection
rates are restricted. Therefore, enhancing the detection accu-
racy of MIPCas in MRI is of utmost importance.

In recent years, the role of artificial intelligence has
grown in cancer detection via MRI scans, bringing about
pivotal advancements [12–15]. However, conventional
supervised detection algorithms rely on detailed lesion delin-
eation by radiologists. Due to the MRI-invisible appearance
of MIPCas, it is difficult to outline these lesions [16, 17].
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Weakly supervised learning is a method that uses partially
labelled data to learn the whole distribution [18, 19]. These
advances provide a new opportunity to detect MIPCas using
biopsy data.

Against this backdrop, our study presents a unique tactic
that combines deep learning with weakly supervised training
to enhance MIPCa detection. We hypothesized that deep
learning networks performing weakly supervised training
would capture potential cancer imaging features to detect
MIPCas.

2. Materials and Methods

2.1. Patient Enrolment. Our analysis was performed in an
openly accessible dataset (Prostate-MRI-US-Biopsy) [20, 21].
This dataset includes biopsy sessions carried out using the
Artemis system, which integrates real-time ultrasound with
preoperative MRI to collect biopsy samples from regions of
interest identified in preoperative MRI. Additional systematic
biopsy samples were obtained via a digital template. The Arte-
mis system recorded all biopsy core locations in relation to the
MRI. The dataset comprises patients who were suspected to
have prostate cancer due to high PSA levels and/or suspicious
imaging findings and underwent—or planned to under-
go—routine standard-of-care prostate biopsies at the UCLA
Clark Urology Center. T2-weighted MRI, specific biopsy
core locations, Gleason grade, and clinical information
(including lesion outline, PSA, and PI-RADS) formed the
core components of our analysis.

The dataset originally contained 1151 patients, of which
777 met the inclusion and exclusion criteria as outlined in
Figure 1. The exclusion criteria were as follows: N = 1
patient was excluded due to the lack of biopsy data; N =
308 patients without registration between ultrasound and
preoperative MRI were excluded; N = 2 patients without tar-
get outlines were omitted; N = 46 patients lacking specific
biopsy core location in MRI coordinates were eliminated;
N = 11 patients due to suspected inaccurate registration were
removed; and N = 6 patients were excluded for incomplete
clinical information.

2.2. Identification of MRI-Invisible Prostate
Cancers (MIPCas)

2.2.1. MRI Analysis and Lesion Delineation. Initially, all
patients underwent multiparametric MRI, which included
T2-weighted imaging, diffusion-weighted imaging (DWI),
and perfusion-weighted imaging (PWI). Each mpMRI scan
was meticulously reviewed by prostate radiologists who
delineated all visible lesions (ROIs), irrespective of their per-
ceived malignancy potential.

2.2.2. Biopsy Procedure. After MRI analysis, patients received
both targeted biopsies (for delineated ROIs) and systematic
biopsies. This integrated biopsy approach was designed
to detect not only MRI-visible lesions but also those
MRI-invisible lesion. Acknowledging the limitations of
ROIs in cancer detection, this strategy was especially tai-
lored to address MRI-invisible cancers, reducing potential
cancerous lesion.

2.2.3. Determination of MIPCas. The identification of MIP-
Cas was based on a combined evaluation of biopsy outcomes
and MRI findings. Specifically, as depicted in Figure 2, MIP-
Cas were primarily detected through systematic biopsies of
areas not characterized as ROIs on mpMRI, considering
the potential for mpMRI to miss or inaccurately characterize
some cancers.

2.3. Deep Learning Model. In this research, we propose an
innovative concept, the weakly supervised UNet (WSUNet).
This model is fundamentally based on a 3D UNet frame-
work [22]. Our key objective was to effectively extract salient
features from T2-weighted MRI data, synergize it with
relevant clinical information, and subsequently create com-
prehensive 3D cancer region probability distribution maps.
These maps serve as an invaluable tool in the diagnostic pro-
cess, design of treatment strategies, and monitoring of disease
progression. This anchors our WSUNet as an important tool
within patient management and care.

2.4. Weakly Supervised Module. To enable our model to
learn to detect MIPCas from biopsy data, we introduced a
weakly supervised module. This module was formulated
around the strategic integration of crucial biopsy location
data and Gleason grading, where a score of 7 and above
was marked as positive biopsy. Based on the macroscopic
spatial location information of the biopsy and the micro-
scopic pathological information of Gleason grade, the model
can search for MIPCas missed by radiologists on the whole
prostate MRI.

This weakly supervised module unifies two core opera-
tional elements: an interpolation operation and a maximum
pooling operation. The interpolation operation symbolizes
the sampling process for each biopsy. On the other hand,
the maximum pooling operation is put into action to facili-
tate multi-instance learning [23], where the presence of
any positive instances within the biopsy core results in the
classification of the entire core as positive. These decision-
making elements align with clinical biopsies, allow for an
accurate representation of the biopsy, and enhance the
model’s understanding of MIPCas. Additionally, a simple
decision tree assists in obtaining patient-level output weight-
ing. To counteract imbalances in our data, we have employed
weighting of loss functions and calibration of output probabil-
ities. The primary structure of the model is depicted in
Figure 3.

2.5. Weakly Supervised Framework. Our model training and
validation process followed the sequence outlined in Figure 4:
first, the model was trained to predict the Gleason grade of
biopsy (grade ≥ 7) in the training set, which allowed the model
to correlate spatial location and the probability of MIPCas.
Therefore, the model learns completely from the location and
grade information of each biopsy, without any prior knowledge
or misdirection of the radiologist. The trained model was used
to generate a probability map of cancer distribution in the
whole prostate based onMRI. Then, to verify the performance,
the model was used to generate 3D maps of MIPCas, and the
maps were evaluated with systematic biopsy in the testing set.
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The deep learning networks and overall framework were
implemented using PyTorch [24] (version 1.12; https://
pytorch.org/) backend in Python (version 3.9.16; Python
Software Foundation) and trained with NVIDIA A100
(80GB). Additional information and our code are accessible
on GitHub at the following URL: https://github.com/
Zhengyao0202/weakly_unet_prostate.

2.6. Methodological Distinction in Model Training and
Validation Phases. In our study, we differentiate between
the model validation and training phases, especially con-
cerning the treatment of biopsy needles overlapping with

ROIs. In the validation phase, all biopsies that overlapped with
the ROI, whether systematic or targeted, were excluded to
ensure the accuracy of the assessment and to eliminate bias.
This exclusion prevents the model from being falsely credited
for merely identifying lesions associated with biopsy sites.

Conversely, for the training phase, we did not exclude
biopsy data that overlapped with ROIs. The rationale is that
identifying visible lesions is foundational, and if a model can
detect MIPCas, it should also identify obvious lesion features.
Including these overlapping data points during training
enriches the dataset, facilitating comprehensive model learn-
ing by covering a broader spectrum of lesion characteristics.

2.7. Statistical Analysis and Performance Evaluation. Homo-
geneity of clinical characteristics was assessed using the chi-
square test and Mann–Whitney U test. The performances of
WSUNet were measured using the receiver operator charac-
teristic (ROC) analysis, and the area under the ROC curve
(AUC) was calculated. Sensitivity and AUC were also mea-
sured via bootstrapping with 1000 resamples. We evaluated
an important metric, precision, which can be considered as a
special kind of detection rate, compared it with the precision
of the original systematic biopsy, calculated the improvement
of our method, and further calculated the number of unneces-
sary biopsies that can be reduced by our model. In light of
multiple comparisons across our statistical analyses, we

N = 1151 patients included in Prostate-MRI-US-Biopsy (PMUB) dataset, 2780
image data (including 1018 MRI and 1762 US) and 24783 biopsy cores data 

N = 1 patients excluded without
biopsy data

N = 308 patients excluded without registration
between ultrasound and preoperative MRI

N = 842 patients who underwent MRI targeted or systematic biopsy with
registration between ultrasound and preoperative MRI (1017 MRI and 1323 US) 

N = 2 patients excluded without
target outlined

N = 46 patients excluded without the specific
location of biopsy core in MRI coordinates

N = 11 patients excluded because of suspected
incorrect registration

N = 777 patients with 1164 biopsy examinations (939 MRI and corresponding
1164 US) available for study inclusion 

N = 6 patients excluded without complete
clinical information

Figure 1: Flowchart showing participant inclusion and data partitioning.

All biopsies

MRI-visible
lesions MRI-invisible

lesions (MIPCas)

Systematic
biopsies

Targeted
biopsies

Figure 2: Determination of MIPCas.
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applied the Bonferroni correction to adjust the significance
thresholds, setting the number of comparisons to 10. Conse-
quently, we established a more stringent significance level at
0.005 to mitigate the risk of type I errors.

In addition, the calibration curve was plotted using the
Hosmer–Lemeshow goodness-of-fit test. Decision curve
analysis (DCA) was conducted to evaluate the clinical use-
fulness of the model by quantifying the net benefit at differ-
ent threshold probabilities on both training set and testing
set. We also selected some representative examples to illus-
trate the predictive process and advantages of our model
for MIPCas.

2.8. Focus on MRI-Invisible Prostate Cancers (MIPCas). To
ensure our readers fully understand the focus of our study,
we find it necessary to clarify that the dataset employed in
our research includes results from MRI-ultrasound fusion-
targeted biopsies for lesions visible on MRI, as well as sys-
tematic biopsy results for MRI-invisible lesions (MRI-invis-
ible prostate cancers, or MIPCas). Our model’s validation
and testing were strictly conducted on the outcomes of sys-
tematic biopsies, meaning that our model is specifically
designed to assess and test the performance exclusively on
the more challenging to detect MIPCas, without considering
performance on visible lesions.

Considering potential registration inaccuracies, our
study emphasizes systematic biopsies performed within spe-
cific prostate zones. This methodology ensures that, even in
the face of some errors, as long as these inaccuracies do not
lead to mismatches beyond the designated regions, the integ-

rity and significance of our results remain intact. Conse-
quently, this focus enhances the robustness of our research
findings.

2.9. Introduction of the Biopsy Saving Rate (Number). In the
evaluation of our predictive model for identifying MRI-
invisible prostate cancers (MIPCas), we introduce a pivotal
metric, the biopsy saving rate (number), to illustrate the effi-
ciency improvements offered by our approach. This metric is
born out of the necessity to quantify the efficacy of our
model in a context sensitive to the realities of clinical prac-
tice, especially considering the retrospective nature of our
study’s design.

2.9.1. Rationale. Our model’s evaluation relies not solely on
its ability to detect cancer but also on its potential to reduce
unnecessary interventions. Given the retrospective design of
our study, where the total number of known MIPCas is
fixed, a direct comparison of the number of cancers detected
between traditional systematic biopsy approaches and our
model does not fully encapsulate the model’s benefits. Thus,
the biopsy saving rate (number) serves as an essential indi-
cator of our model’s capability to maintain high detection
rates while significantly reducing the number of biopsies
required—addressing a critical challenge in current pros-
tate cancer screening practices.

2.9.2. Calculation of Biopsy Saving Rate (Number). The
biopsy saving rate (number) is defined as the proportion
(or number) of biopsy cores that can be avoided using our
proposed model while achieving the detection of the same

Conv

Pool
ConvTranspose

Add

WS module

MR

Outline
PIRADS

PSA

Figure 3: The main structure of WSUNet. Conv, Pool, ConvTranspose, and WS module are layers for feature extraction. Add refers to the
addition of feature maps.

4 International Journal of Biomedical Imaging



number of positive cores found in traditional systematic
approaches. This metric is calculated as follows:

Using this formula, the biopsy saving ratio offers a
straightforward measure of efficiency improvement, reflect-
ing how many fewer biopsy cores need to be sampled to
achieve comparable positive detection outcomes. This effi-

ciency not only speaks to the potential reduction in patient
discomfort and morbidity associated with overbiopsying
but also highlights the economic benefits by reducing unnec-
essary healthcare expenditures.

Materials Training

Prostate

MRI-ultrasound
fusion biopies

MR imaging Gleason score

WSUNet

WS Module

Biopsy core gleason score

Validation

ROI
delineation

Clinical
feature Trained WSUNet

Cancer
distribution ValidationMR

Biopsy core location

Clinical
feature MR

Figure 4: The workflow for material collection, model training, and validation.Materials included T2-weighted MRI, MRI location, Gleason
grade of each biopsy, and the outline of the lesion and prostate, which were outlined by a radiologist (the delineation of lesions and the MRI-
invisible appearance of MIPCas were both based on multimodal MRI), and clinical features, which include PI-RADS of the outlined lesions
and the patient’s prostate-specific antigen. Training: the model was trained to classify whether the Gleason grade was greater than or equal to
7 for each biopsy core to obtain the ability to correlate spatial location with pathological information. Validation: the model generates cancer
distribution maps for each MRI in the testing set, and these maps were validated by systematic biopsy.

Biopsy saving number = total number of cores sampled in systematic biopsy

− number of cores predicted positive by themodel

∗
total positive cores in all biopsies

number of true positive cores predicted by themodel ,

Biopsy saving ratio = biopsy saving number
total number of cores sampled in systematic biopsy 1
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3. Results

3.1. Basic Clinical Information. In this assessment, the
patient population was randomly subdivided into a training
(n = 600) and a testing cohort (n = 177). As demonstrated in
Table 1, the demographic and clinical features, including
age, PSA levels, and the number of cores per examination,
showed no significant differences between the two cohorts.
p values for these variables all exceeded 0.05, confirming
the lack of statistically significant disparities. This parity

ensures that any inferential models developed can faithfully
be applied from the training cohort to the testing cohort,
enhancing the generalizability of this study’s findings.
Besides, our own dataset also reinforces the importance of
this study, showing that 23.8% (433 out of 1812) of positive
biopsies were from MIPCas.

3.2. Performance of the Proposed Models. Given the tradi-
tionally unpredictable nature of systematic biopsy outcomes
for physicians, we initially considered an AUC of 0.625 as

Table 1: Demographic and clinical characteristics of 777 included men.

Variables Training cohort (n = 600) Testing cohort (n = 177) p value

Age∗ 65 (61-71) 65 (61-70) 0.779

PSA∗ 6.5 (4.4-10.1) 6.6 (4.1-9.8) 0.630

No. of core per examination∗ 15 (12-17) 15 (12-17) 0.645

No. of systematic core per examination∗ 10 (3-11) 10 (3-12) 0.709

No. of targeted core per examination∗ 6 (4-8) 6 (4-8) 0.820

Per examination maximum Gleason score >0.99
Total 903 261

Gleason score < 7 464 141

No prostate cancer 216 58

3 + 3 248 83

Gleason score = 7 361 99

3 + 4 270 71

4 + 3 91 28

Gleason score > 7 78 21

3 + 5 9 0

4 + 4 35 8

4 + 5 26 10

5 + 3 0 1

5 + 4 7 2

5 + 5 1 0

Per systematic core Gleason score 0.119

Total 7083 2025

Gleason score < 7 6750 1907

No prostate cancer 6155 1719

3 + 3 595 188

Gleason score = 7 275 98

3 + 4 217 69

4 + 3 58 29

Gleason score > 7 58 20

3 + 5 5 4

4 + 4 30 2

4 + 5 16 8

5 + 3 0 0

5 + 4 6 6

5 + 5 1 0
∗Data in parentheses are the interquartile range.
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our starting point for gauging the performance of our pro-
posed model. This baseline was established based on an
analysis using the UCLA score (similar to PI-RADS v2) to
predict biopsy outcomes (with Gleason score ≥ 7 as the
threshold) in the all dataset. Worth mentioning, based on
the filtered data, the baseline will decrease to 0.603. None-
theless, this difference does not impact our comparative
results. As displayed in Figure 5 and Table 2, the AUC of
our model was recorded as 0.798 (95% CI: 0.775–0.819,
p < 0 005) in the training set and 0.764 (95% CI: 0.728–
0.798, p < 0 005) in the testing set, demonstrating signifi-
cant improvement over the baseline.

Moreover, a model with the optimal cut-off was selected
to ensure the highest levels of sensitivity and precision. The
sensitivity values are depicted in Table 2, standing at 0.817
(95% CI: 0.781–0.850) in the training set and falling slightly
to 0.797 (95% CI: 0.737-0.856) in the testing set. As precision
substantially informs the biopsy detection rate, we assessed
the enhancement in precision achieved by this model in
comparison to traditional systematic biopsy. The model
was found to outperform the systematic biopsy by a factor
of 1.904 in the training set and 1.913 in the testing set, as
shown in Table 3.

Based on these precision values, we derived a new metric
termed the “sample saving rate.” This novel rate represents
the fraction of biopsy cores that can be decreased using

our proposed model while maintaining an equal number of
positive core detections. The specific calculation method
for this metric is detailed in Table 3. Consequently, our
model enabled a 47.6% (p < 0 005) reduction in the number
of biopsy needle samples in the testing set. This implies that,
in the testing set, nearly half of unnecessary biopsy needles
could be minimized when the positivity rate matched that
of the original systematic biopsy, which is given in Table 3.

Our WSUNet’s calibration curves showcased a consis-
tent correlation between model-predicted positive biopsies
and actual observed outcomes across all data (p = 0 091, as
depicted in Figure 6(c)). We also performed a decision curve
analysis (DCA) for each individual biopsy needle, as shown
in Figures 6(a) and 6(b). The obtained curves validate the
enhanced clinical benefits delivered by WSUNet compared
to traditional systematic biopsy methodologies, pointing to
a potential reduction in harm to the patient. Representative
examples of WSUNet in comparison to conventional biopsy
procedures are demonstrated in Figures 7 and 8. All of these
findings lend compelling support to our initial hypothesis
that a weakly supervised deep learning model can effectively
discern spatial or texture attributes relevant to MIPCas.

We further delved into the impact of our model’s limita-
tions in fully predicting all instances of MRI-invisible pros-
tate cancer (MIPCa). For this analysis, patients were
categorized based on the International Society of Urological
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Figure 5: Receiver operating characteristic curves for all systematic biopsy core predictions in the (a) training set and (b) testing set.

Table 2: MIPCa detection performance of WSUNet.

PI-RADS
Training set Testing set

AUC Sensitivity∗ AUC Sensitivity∗

All (1-5) 0.798 (0.775-0.819)
0.817 [272/333]
(0.781-0.850)

0.764 (0.728-0.798)
0.797 [94/118]
(0.737-0.856)

≥3 0.794 (0.773-0.815)
0.814 [263/323]
(0.780-0.848)

0.762 (0.725-0.795)
0.803 [94/117]
(0.744-0.863)

Note. Data in parentheses are 95% CIs. AUC = area under the receiver operating characteristic curve. ∗Data are percentages, with number of participants in
brackets. PI-RADS refers to the maximum PI-RADS for all outlined lesions in one examination. Since most of the patient’s PI-RAD is greater than 3, so this
part of the data has been presented alone. MIPCa detection refers to the prediction of systematic biopsy.
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Pathology (ISUP) grade into two groups: ISUP 0, 1, and
ISUP 2-5. Focusing on the testing set comprising 261 exam-
inations from 177 patients, we specifically examined the
upgrades in diagnosis using systematic biopsy versus tar-

geted biopsy, as well as our method compared to targeted
biopsy. The results, depicted in Figure 9, show that our
model only led to a marginal decrease in the number of diag-
nostic upgrades (1 out of 10 examinations). It is crucial to

Table 3: Precision (detection rate) of systematic biopsy and WSUNet.

PI-RADS Systematic biopsy∗ WSUNet∗ Ratio Biopsy saving ratio (number) p value

All (1-5)

Training set 0.047 [333/7083] 0.090 [272/3040] 1.904 0.475 (3361) <0.005
Testing set 0.058 [118/2025] 0.111 [94/846] 1.913 0.476 (963) <0.005

≥3
Training set 0.047 [323/6902] 0.088 [263/2993] 1.870 0.489 (3226) <0.005
Testing set 0.059 [117/1954] 0.112 [94/843] 1.893 0.463 (905) <0.005

Note. ∗Data are percentages, with numbers of participants in brackets. Biopsy saving ratio (number) refers to the proportion (number) of biopsy cores that can be
reduced by the proposed model when the same number of positive cores is detected. Biopsy saving number = all systematic biopsy number –model‐predicted
positive number ∗ all biopsy‐positive number/model‐predicted true positive number . Biopsy saving ratio = biopsy saving number/all systematic biopsy number.
Ratio = the precision of WSUNet/the precision of systematic biopsy. Precision refers to the proportion of true positive results among all positive results, which
might reflect specific cancer detection rates in retrospective conditions. PI-RADS refers to the maximum PI-RADS for all outlined lesions in one examination.
Since most of the patient’s PI-RAD greater than 3, so this part of the data has been presented alone.
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Figure 6: Decision curves in the (a) training set and (b) testing set. Treat All refers to the original systematic biopsy, and a large
improvement can be seen for systemic biopsy, especially for high-risk patients. Treat None refers to not performing a biopsy on the
patient, is considered to have a benefit of 0, and may, in fact, have some negative benefits that are difficult to evaluate. (c) Calibration
curves for all data (p = 0 091).
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note that this comparison may not fully represent a fair
assessment, primarily due to the retrospective nature of
our study, which inherently limits our ability to identify
more cancers than those already known. Despite these con-
straints, our analysis suggests that even under these circum-
stances, the potential for our model to cause harm in a
clinical context remains limited.

4. Discussion

In this study, we proposed a weakly supervised UNet
(WSUNet) model for cancer detection, which represents a
notable stride forward in the detection and understanding
of MRI-invisible prostate cancers (MIPCas). The model
demonstrated a consistent performance, achieving an AUC
of 0.798 (95% CI: 0.775-0.819) in the training set and 0.764
(95% CI: 0.728-0.798) in the testing set, indicating its robust-
ness and potential clinical utility.

Importantly, the WSUNet model has the potential to
revolutionize biopsy practices. It may reduce the number
of unnecessary biopsy needles by almost half, without
decreasing positive detection rate. As such, WSUNet could
contribute to significant improvements in patient care and
follow-up, reducing the harm of each patient receives.

In comparison to existing methods, current guidelines
recommend systematic biopsy due to the possibility of
missed diagnoses with targeted biopsy approaches [5, 11].
Recent studies have increasingly demonstrated the power
of deep learning in the detection of prostate cancer [12,
14]. However, previous detection models have been either
reliant on the expertise of radiologists, which brings poten-
tial for bias and omission of MRI-invisible lesions [16,
25–27], or dependent on impractically labour-intensive
manual labelling of full slice histopathology images [17, 28,
29]. As such, the WSUNet model’s potential in reducing
human biases and the laborious workload offers an innova-
tive solution to these long-standing problems.
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(e) (f) (g)

Figure 7: This figure presents an example of model detection: a 65-year-old man in the testing set with prostate-specific antigen of 5.5 ng/
mL and PI-RADs of 4. (a) The patient’s prostate is visualized in 3D coordinates for volume representation. (b) The patient’s prostate surface
and its ROI (yellow) outlined by radiologists. (c) The patient’s prostate surface and its potential cancer distribution (dark yellow) generated
by the WSUNet. (d) The patient’s original ROI (yellow) and each biopsy core (Gleason grade ≥ 7marked as red and <7 masked as green). (e)
The ROI (dark yellow) detected by the model and each biopsy core (Gleason grade ≥ 7marked as red and <7 masked as green). (f) A slice of
the T2-weighted prostate MRI. (g) Slices with the detected ROI (brilliant yellow) and the positive biopsy core (red). In this meaningful
example, targeted biopsy yielded no meaningful results, and the model presented a cancer distribution, part of which was validated by
systematic biopsy.
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Our research was principally conducted using T2-
weighted MRI data. Notably, the cancers we detected were
often invisible to multimodality imaging, so these cancers
may be more difficult to characterize in low-resolution
functional MRI. Besides, our work has demonstrated that
high-resolution T2 MRI sequences could deliver robust per-
formance, ensuring greater clinical extensibility and broader
applicability, which may be helpful for clinical extensibility
and wide range of applications.

Furthermore, the field of cancer detection does not stay
static. As in our previous review [30], novel imaging modal-
ities, like prostate-specific membrane antigen positron emis-
sion tomography (PSMA PET), offer potential pathways for
MIPCa detection. Despite the relatively high cost compared
to T2 MRI, the expanding toolbox of imaging modalities
cannot be ignored. The success of our weak supervision
model lays the groundwork for its future adaptation to an
array of imaging modalities, including the more precise
PET imaging, heralding new potentialities for cancer
diagnosis. We also consider the feasibility and potential

performance improvements offered by incorporating multi-
modal data, such as diffusion-weighted imaging (DWI), into
our analysis.

While our findings indicate promise, the retrospective
nature of this study and factors such as imaging quality, phy-
sician judgment, and model deployment infrastructure high-
light limitations. The true clinical utility of our model awaits
further validation through prospective trials and a more
diverse dataset to ensure its accuracy, effectiveness, and inte-
gration into clinical practice. Moving forward, addressing
these aspects is crucial for translating our model’s potential
into tangible patient benefits.

A limitation of our study is the lack of detailed biopsy
core locations, data not routinely available to researchers.
This absence may impact our method’s replicability and its
broader application. Additionally, despite our best efforts
to prevent it, potential registration errors may lead to over-
laps between systematic biopsies and visible lesions, impact-
ing the outcomes. Moreover, labelling all areas outside the
ROIs as MRI-invisible lesions may indeed oversimplify the
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Figure 8: An example of model detection: a 70-year-old man in the testing set with prostate-specific antigen of 30.2 ng/mL and PI-RADs of
5. (a) The patient’s prostate is visualized in 3D coordinates for volume representation. (b) The patient’s prostate surface and its ROI (yellow)
outlined by radiologists. (c) The patient’s prostate surface and its potential cancer distribution (dark yellow) generated by the WSUNet. (d)
The patient’s original ROI (yellow) and each biopsy core (Gleason grade ≥ 7marked as red and <7 masked as green). (e) The ROI (dark yellow)
detected by the model and each biopsy core (Gleason grade ≥ 7marked as red and <7 masked as green). (f) A slice of the T2-weighted prostate
MRI. (g) Slices with the detected ROI (brilliant yellow) and the positive biopsy core (red). In this meaningful example, targeted biopsy yielded no
meaningful results, and the model presented a cancer distribution, part of which was validated by systematic biopsy. In this example, the model
successfully detected MIPCas, which radiologists have not outlined.
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reality. We will work with radiologists in future experiments
to better ensure that the lesions we identified are not visible.

Looking forward, the exciting performance exhibited by
our WSUNet model holds potential for the future, sparking
the need for wider investigations. Applying our model to
large-scale prospective trials could provide more robust evi-
dence. Furthermore, the use of multimodal imaging data,
including PET/CT or follow-up data, in this model could
provide more insights in understanding MIPCa detection.

In conclusion, the WSUNet model could demonstrate a
promising potential in revolutionizing MIPCa detection.
The results suggest that this innovative approach could
make the systematic biopsy practice more accurate and
patient-centric, thus reducing unnecessary biopsies while
enhancing the diagnostic process’s overall precision. Through
conscious recognition of the model’s limitations, we believe in
harnessing its potential to encourage large-scale, prospective
trials to improve prostate cancer detection.
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