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Skin cancer is a significant health concern worldwide, and early and accurate diagnosis plays a crucial role in improving patient
outcomes. In recent years, deep learning models have shown remarkable success in various computer vision tasks, including image
classification. In this research study, we introduce an approach for skin cancer classification using vision transformer, a state-of-
the-art deep learning architecture that has demonstrated exceptional performance in diverse image analysis tasks. The study
utilizes the HAM10000 dataset; a publicly available dataset comprising 10,015 skin lesion images classified into two categories:
benign (6705 images) and malignant (3310 images). This dataset consists of high-resolution images captured using
dermatoscopes and carefully annotated by expert dermatologists. Preprocessing techniques, such as normalization and
augmentation, are applied to enhance the robustness and generalization of the model. The vision transformer architecture is
adapted to the skin cancer classification task. The model leverages the self-attention mechanism to capture intricate spatial
dependencies and long-range dependencies within the images, enabling it to effectively learn relevant features for accurate
classification. Segment Anything Model (SAM) is employed to segment the cancerous areas from the images; achieving an IOU
of 96.01% and Dice coefficient of 98.14% and then various pretrained models are used for classification using vision
transformer architecture. Extensive experiments and evaluations are conducted to assess the performance of our approach. The
results demonstrate the superiority of the vision transformer model over traditional deep learning architectures in skin cancer
classification in general with some exceptions. Upon experimenting on six different models, ViT-Google, ViT-MAE, ViT-
ResNet50, ViT-VAN, ViT-BEiT, and ViT-DiT, we found out that the ML approach achieves 96.15% accuracy using Google’s
ViT patch-32 model with a low false negative ratio on the test dataset, showcasing its potential as an effective tool for aiding
dermatologists in the diagnosis of skin cancer.

1. Introduction

Cancer is a condition that arises when cells undergo uncon-
trolled division and extend into nearby tissues. The develop-
ment of cancer is triggered by alterations and mutations in
the DNA. The majority of DNA changes responsible for can-
cer occur within specific regions known as genes. Among the
various types of cancers, skin cancer is among the five on the

list. If we disregard breast and prostate cancers which are
gender-dependent, skin cancer will remain in the third larg-
est cancer category among many others. Based on the statis-
tics released by the American Cancer Society (ACS) [1],
there were 58,120 recorded cases of skin cancer among
males and 39,490 cases among females. An intriguing obser-
vation is that the incidence of skin cancer has been steadily
rising from 1992 to 2019, with a notable exception in 2020
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[2]. This exception can be attributed to the understandable
decrease in cases during the COVID-19 pandemic, as people
were mostly confined to their homes. This decline is reason-
able considering that exposure to ultraviolet (UV) radiation
is a significant contributing factor to the development of
skin cancer.

More people are diagnosed with skin cancer each year in
the U.S. than all other cancers combined [3]. More than
5,400 people worldwide die of nonmelanoma skin cancer
every month [4]. The number of melanoma deaths is
expected to increase by 4.4 percent in 2023 [3]. More people
develop skin cancer because of indoor tanning than develop
lung cancer because of smoking [5]. Skin cancer represents
approximately 2 to 4 percent of all cancers in Asians, 4 to
5 percent of all cancers in Hispanics, and 1 to 2 percent of
all cancers in Black people [6–8]. Skin cancers account for
3 percent of pediatric cancers [9].

There are various factors involving the initiation of
developing skin cancer such as ultraviolet rays, arsenic
consumption, cigarette smoking, exposure to nuclear radi-
ation, excessive X-ray exposure, indoor tanning, drinking
alcohol, viruses, changing environments, sunburn, abnor-
mal swelling, eczema, weak immune system, and human
papilloma virus. There are also environmental factors that
work as a catalyst for developing skin cancer such as
working coal, tar, petroleum, and shale oils [10]. Some dis-
eases may fasten the development rate of skin cancer but
not necessarily the root cause of cancer themselves such
as AIDS and other diseases that involve the weakening
of the immune system.

Skin cancer may form on the upper part of the skin
(which is visible to us) as well as in the inner parts of differ-
ent layers of the skin. More than 90% of skin cancers are
caused by direct sunlight exposure, to be specific, UV expo-
sure. Almost all of the cases are related to cancer develop-
ment on the upper visible part of the skin. The affected
skin areas can be easily captured by a dermatoscope or
high-resolution smartphone camera. On the other hand,
skin cancers that develop inside the skin layers require inva-
sive sample collection methods. Since more than 90% of skin
cancer is caused by UV rays and these cancers occur primar-
ily on the surface of the skin through UV exposure, it can be
said that the majority of skin cancers can be identified
through noninvasive methods using a dermatoscope, as it
allows for the collection of samples from the skin.

Traditionally, the ABCDE [11] method is used for the
primary diagnosis (classification) of skin cancer. The
ABCDE acronym is used as a mnemonic for recognizing
potential signs of melanoma, a type of skin cancer that is
shown in Figure 1. Each letter corresponds to a characteristic
feature that may indicate the presence of melanoma. Here is
the breakdown of the ABCDE criteria:

(i) A—asymmetry: Melanomas often exhibit irregular
or asymmetrical shapes, where one half does not
match the other half

(ii) B—border irregularity: The borders of a melanoma
may be uneven, ragged, or notched, rather than
smooth and well-defined

(iii) C—color variation: Melanomas can have a range of
colors within the same lesion, such as different
shades of brown, black, blue, red, or white

(iv) D—diameter: While melanomas can be smaller, any
mole or lesion with a diameter larger than 6 milli-
meters (about the size of a pencil eraser) should be
closely examined

(v) E—evolution or changes over time: Watch out for
any changes in size, shape, color, elevation, or other
characteristics of a mole or lesion

After the primary classification, the sample is transferred
to the pathological analysis team for a definitive result. The
pathological analysis is an invasive method. This method
can be used for classifying all kinds of cancer cells. However,
it has its disadvantages. This method is very costly, time-
consuming, and painful. Pathological diagnosis of skin can-
cer typically involves an invasive method known as a biopsy.
The biopsy procedure is performed by a healthcare profes-
sional, usually a dermatologist or a surgeon, and it involves
the removal of a small sample of suspicious skin tissue for
further examination.

There are different types of skin biopsies, including the
following:

(i) Excisional biopsy: This type of biopsy involves the
complete removal of the suspicious skin lesion,
along with a small margin of surrounding healthy
tissue. The excised sample is then sent to a pathol-
ogy laboratory for analysis

(ii) Incisional biopsy: In this method, only a portion of
the suspicious skin lesion is removed for examina-
tion. It is typically done when the lesion is large or
deep, and the entire lesion cannot be easily excised

(iii) Punch biopsy: A punch biopsy involves using a spe-
cial tool called a punch to remove a small circular
piece of skin tissue, including the suspicious lesion
and a small portion of normal skin around it

(iv) Shave biopsy: This method involves shaving off the
top layers of the skin using a surgical blade to obtain
a sample. It is commonly used for superficial lesions
or those located on the surface of the skin
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Figure 1: The ABCDE method for primary diagnosis of skin cancer.
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Once the skin sample is obtained through the biopsy
procedure, it is sent to a pathology laboratory, where it
undergoes microscopic examination by a pathologist. The
pathologist examines the tissue sample, looking for charac-
teristic features of skin cancer, such as abnormal cell growth
patterns, cellular atypia, and invasion of surrounding tissues.
Based on the examination findings, the pathologist provides
a definitive diagnosis and may further classify the specific
type and stage of skin cancer.

Due to the time-consuming nature of even the primary
diagnosis process used in the conventional method, it
often becomes very difficult to identify cancer within the
target time. At the same time, handling a lot of patients
within the expected timeframe becomes a nightmare. From
the statistics, it is also clear that day by day, skin cancer
patients are increasing rapidly as a result of the depression
of the ozone layer creating an inability to block the UV
rays. So, soon, the hospital and the diagnosis centers will
face more difficulties in managing the situation in due
time. To solve this issue, artificial intelligence can play a
vital role. Using a dermatoscope, the suspected areas of
the skin can be captured at up to 20x magnification very
easily. These images can be used to train an intelligent sys-
tem that can classify cancer cells accurately. Computers,
smartphones, or any other smart devices can be used to
do the task.

In this paper, we are proposing a vision transfer-based
machine learning model that will classify the cancerous cells
on the upper part of the skin. This model can be mounted on
any smart device which can be used to capture images using
a dermatoscope and instantly generate a classification deci-
sion regarding the suspected area. In Figure 2, the workflow
of rapid cancer cell classification is shown.

In this research, the HAM10000 [12] dataset is used for
training the model. At first, we manually annotated the sus-
pected areas and then applied the Segment Anything Model
(SAM) [13] to train the segmentation model. This model
will be used to detect the specific area using the concept of
semantic segmentation. In the second stage, the classifica-
tion model will be used to differentiate between the benign
and malignant categories. The major contribution of our
research:

(i) Creating the segmentation model using the Segment
Anything Model (SAM)

(ii) For classification, we have used Google’s ViT model
(patch 32) [14], Visual Attention Network (VAN)
[15], ResNet50 [14], Facebook’s MAE model [16],
Document Image Transformer (DiT) [17], and
BERT pretraining of image transformer (BEiT)
[18] to train the vision transformer model. Compar-
ing these models, we have found out that Google’s
ViT model (patch-32) generates better results than
the other models in skin cancer classification

(iii) We meticulously fine-tuned the hyperparameters
for our model, exploring various optimization strat-
egies, learning rates, and loss functions. Specifically,
we evaluated the performance under different opti-
mizers, including “Adam,” “Adamax,” “RMSProp,”
and “SGD.” The learning rates considered spanned
a range of values: 0.1, 0.01, 0.001, 0.0001, 0.00002,
and 0.00001. Additionally, we experimented with
different loss functions, namely, “Cross Entropy
Loss” and “Hinge.” After a thorough analysis, we
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Figure 2: Rapid cancer cell classification using dermatoscope.
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determined that the most effective combination for
our vision transformer (ViT) model involved
employing the “Adam” optimizer with a learning
rate of 0.00002 and using “Cross Entropy Loss” for
calculating the loss. These optimized hyperpara-
meters were instrumental in achieving superior per-
formance and model efficiency

The following paper is structured in the following way:
Section 2 describes the existing literature on the topic and
comparison among them. Section 3 describes the methodol-
ogy of our works which includes dataset description, exper-
imental model, and experimental setup. Section 4 provides
various graphical representations of the result analysis and
a discussion of the challenging part of our study. Section 5
provides the concluding remarks.

2. Related Works

Traditionally, the initial step of the skin cancer classification
process involves the patient visiting a dermatologist or a
healthcare professional with concerns about a suspicious
skin lesion. The specialist conducts a thorough examination
of the skin, including a visual inspection of the lesion and an
examination of the patient’s medical history. If the specialist
suspects a potential skin cancer, they may use a dermoscopy,
a handheld device with magnification and lighting, to obtain
a closer view of the lesion. Dermoscopy allows for a detailed
examination of the lesion’s surface structures, patterns, and
colors, aiding in the assessment of malignancy. This takes
around 10-15 minutes. To obtain a definitive diagnosis, a
skin biopsy is often performed. The specialist numbs the
area surrounding the lesion with a local anesthetic and
extracts a sample of skin tissue, including a portion of the
suspicious lesion. Various biopsy techniques may be used,
such as punch biopsy, incisional biopsy, or excisional biopsy,
depending on the size and characteristics of the lesion. Usu-
ally, it takes 2-3 weeks. The skin tissue sample obtained from
the biopsy is sent to a pathology laboratory for histopathol-
ogical examination. A pathologist, specializing in dermato-
pathology, analyzes the tissue under a microscope. They
assess cellular characteristics, such as cell shape, size, and
organization, to determine if the lesion is cancerous or
benign. This process takes 2-3 days. The examination also
helps in identifying the specific type of skin cancer, such as
melanoma, basal cell carcinoma, squamous cell carcinoma,
or other variants. If skin cancer is confirmed, the pathologist
and specialist determine the stage and grade of the cancer
based on additional tests and evaluations. Staging involves
assessing the tumor size, depth of invasion, involvement of
lymph nodes, and potential spread to distant sites. Grading
refers to the assessment of tumor aggressiveness and
differentiation.

To know the decision definitively, it takes almost a
month which may be hazardous if the patient is in the final
stage. To minimize the time taken for diagnosis, research has
been done in this field for decades. Artificial intelligence has
been used in this field in recent years. Since artificial intelli-
gence is a new field, achieving highly accurate results in skin

cancer diagnosis has not been possible in the early stages of
the research. Continuous development in machine learning
algorithms has been done to gain better accuracy. Over the
years, pathologists, doctors, and computer scientists collabo-
rated along sides to develop a better digital classification sys-
tem. We have presented some prominent research
conducted on skin cancer detection from 2018 to 2023.

Dorj et al. [19] utilized a dataset from the internet com-
prising 3753 images with four classes. Employing AlexNet
and ECOC SVM, they achieved a notable accuracy of
94.2%. AlexNet was employed for feature extraction, while
ECOC SVM handled the classification task. It is essential
to note that the dataset collected from the internet did not
adhere to benchmark standards. In a different approach,
Rezvantalab et al. [20] utilized the HAM10000 10015
images + PH2 (120 images) dataset, consisting of eight clas-
ses. Their model, DenseNet 201, achieved an accuracy of
86.59%. The authors incorporated various pretrained
models, including DenseNet 201, ResNet 152, InceptionV3,
and InceptionResNetV2. Results were presented through
AUC values ranging from 93.80% to 99.3% across eight cat-
egories. Moving to the PH2 dataset with three classes, Hosny
et al. [21] achieved an accuracy of 98.61% using a custom-
ized AlexNet. The augmentation of the main dataset resulted
in 4400 images, and a modified version of AlexNet was
applied to obtain the results. Dascalu and David [22] delved
into the ISIC 2017 dataset (5161 images) with two classes,
obtaining an AUC of 81.40%. Their unique approach
involved using K-means clustering and sonification to eval-
uate the impact of image quality on diagnosis accuracy. In
another study, Pham et al. [23] explored the HAM10000
(1113 images) and ISIC 2016 (172 images) datasets, com-
prising one class. Their approach, involving linear normali-
zation, HSV, and LBP balanced random forest, achieved an
accuracy of 74.75%. This study was a comparative analysis
of the color, texture, and shape features of melanoma skin
cancer cells. Hekler et al. [24], dealing with the HAM10000
and ISIC datasets (11,444 images combined) with five clas-
ses, reached an accuracy of 82.95% through a fusion of phy-
sician and CNN. Notably, the study presented results for
both multiclass and binary classifications, utilizing the
XGBoost algorithm for the former. Emara et al. [25] tackled
the HAM10000 dataset (7 classes) and achieved an accuracy
of 94.7% using a modified InceptionV4 model. Their study
focused on proposing a modified inceptionV4 model tai-
lored to the unbalanced proportions of the HAM10000 data-
set. Chaturvedi et al. [26] applied a MobileNet pretrained
model on the HAM10000 dataset (7 classes) and achieved
an accuracy of 83.1%. The study involved training on an
augmented dataset comprising 38,569 images. In a similar
vein, Mohapatra et al. [27] utilized a MobileNet pretrained
model on the HAM10000 dataset (7 classes) without modi-
fications and achieved an accuracy of 80%. Moving to the
N/A dataset with nine classes, Chen et al. [28] achieved an
accuracy of 83.74% using a ResNet50 pretrained model.
The study emphasized the application of the ResNet50
model to achieve accuracy across nine classes of skin lesions.
Jinnai et al. [29] worked with the National Cancer Center,
Tokyo, dataset (5846 images) with six classes. Their
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approach involved FRCNN, BCD, and TRN, resulting in
accuracies of 86.2%, 79.5%, and 75.1%, respectively. The
study utilized a customized dataset with two main classes
(benign and malignant) and compared results across differ-
ent classifiers. Chaturvedi et al. [30] explored the
HAM10000 dataset (7 classes) and achieved an accuracy of
92.83% using ResNetXt101. The study extensively
researched optimal hyperparameter configurations for five
pretrained models on ImageNet, with ResNetXt101 yielding
the best performance. Garg et al. [31] worked with the
HAM10000 dataset (7 classes), achieving an accuracy of
90.51% using ResNet50. Their study applied two pretrained
models, VGG16 and ResNet50, along with three metalear-
ners: random forest, XGBoost, and SVM. Benedetti et al.
[32] applied the HAM10000 dataset (7 classes) and achieved
an accuracy of 78.9% using a Modified InceptionResNetv2.
Their model incorporated an InceptionResNetv2 architec-
ture with the addition of a flattening layer. Moving to the
ISIC 2019 dataset (25331 images) with nine classes, Gouda
and Amudha [33] achieved an accuracy of 92% using
ResNet34. Their study focused on applying the ResNet34
model for the classification of cancerous cells. Ismail et al.
[34] worked with the HAM10000 dataset (7 classes) and
achieved an accuracy of 84.01% using a combination of
ResNet50, VGG16, and DenseNet. The authors ran
ResNet50, VGG16, and DenseNet in parallel, concatenating
their results by stacking. Kondaveeti and Edupuganti [35]
proposed a model with ResNet50, MobileNet, Xception,
and InceptionV3 as base models for the classification of skin
lesion images in the HAM10000 dataset. They achieved an
accuracy of 90%. Maiti et al. [36] applied the GAN Data
dataset (4992 images) with three classes and achieved an
accuracy of 97.08% using random forest. Their study sug-
gested that employing a color quantization technique com-
bined with synthetic data generation significantly enhanced
the accuracy of well-known machine learning models. Ash-
raf et al. [37] utilized the DHQ Hospital dataset (400 images)
with three classes and achieved an accuracy of 93.29% using
DCNN. The study emphasized the importance of skin can-
cer segmentation and image preprocessing. Pacheco and
Krohling [38] worked with the ISIC 2019 dataset (33,569
images) with eight classes, achieving an accuracy of 91.3%.
They compared the MetaBlock approach with models with-
out using metadata, the baseline concatenation method, and
the MetaNet. Alagu and Bagan [39] utilized the ISIC dataset
(500 images) with three classes and achieved an accuracy of
95% using CNN and DenseNet. The study focused on iden-
tifying melanoma cells, and the augmented data were trained
using DenseNet. Krohling et al. [40] applied the PAD-UFES-
20 dataset (2057 images) with seven classes and achieved an
accuracy of 85% using ResNet50 and the differential evolu-
tion (DE) algorithm. The study highlighted the importance
of data balancing for success. Mijwil [41] worked with the
ISIC dataset (24000+ images) with two classes, achieving
an accuracy of 86.90% using InceptionV3. The authors used
InceptionV3, ResNet, and VGG19 to apply CNN to the
dataset and reported the best result. Shah [42] applied the
HAM10000 dataset 7 classes and achieved an accuracy of
90.6% using LRNet. The study employed LRNet to develop

the ML model for classifying skin cancers. Maron et al.
[43] explored the SAM dataset (319 images), SAM-C, and
SAM-P dataset with two classes. They applied AlexNet,
VGG16+BN, ResNet50, and DenseNet121, although specific
accuracy values were not detailed. The study focused on
assessing the robustness of these AI methods by comparing
their application to an unmodified dataset (SAM) and artifi-
cially modified datasets (SAM-C, SAM-P). Ali et al. [44] uti-
lized the HAM10000 dataset (2 classes) and achieved an
accuracy of 91.93% using a modified DCNN. The authors
compared their results with AlexNet, ResNet, VGG-16, Den-
seNet, and MobileNet. Dascalu et al. [45] worked with a
dataset comprising images from HAM10000 (149 images),
Dascalu et al. (16 images) [22], biopsy-validated (159
images), and JID2018 (39 images) with two classes. They
achieved an accuracy of DI-87.8% using CNN and sonifica-
tion. The study involved a model where a CNN predicted
malignancy from a raw image overlaid with a second inde-
pendent CNN processing sonification of the original image,
combined into a unified malignancy classifier. Yilmaz et al.
[46] applied the ISIC 2017 dataset (2750 images) with two
classes and achieved an accuracy of 82% using NASNetMo-
bile. The study utilized MobileNet, MobileNetV2, and NAS-
NetMobile in different batch sizes to optimize results.
Ahmad et al. [47] worked with the HAM10000 dataset (4
classes) and achieved an accuracy of 92.5% using TED-
GAN and CNN. The study proposed a framework called
T-Distribution Encoder & Decoder-Generative Adversarial
Network to detect melanoma skin cancer. Kausar et al.
[48] utilized the ISIC 2019 dataset (25331 images) with eight
classes and achieved an accuracy of 98.6% using a weighted
average and voting ensemble of five pretrained models. The
researchers employed ResNet, InceptionV3, DenseNet,
InceptionResNetV2, and VGG-19 models, combining their
predictions using majority voting and weighted majority
voting for enhanced accuracy. Mazoure et al. [49] employed
the ISIC 2018 dataset, consisting of 33,900 images with two
classes, achieving an accuracy of 83.4%. Their methodology
involved utilizing six pretrained models, Grad-CAM, and
the UMAP algorithm. The authors introduced the DUNES-
can (Deep Uncertainty Estimation for Skin Cancer) web
server, which conducts a comprehensive analysis of uncer-
tainty in prevalent skin cancer classification models based
on convolutional neural networks (CNNs). The server incor-
porates six efficient CNN models, including the winners of
the dermatological Kaggle competition: Inceptionv313,
ResNet5014, MobileNetv23, EfficientNet15, BYOL16, and
SwAV17. Bechelli and Delhommelle [50] employed the ISIC
dataset comprising 3,297 images with two classes, achieving
a 73% accuracy using an ensemble of LR, LDA, KNN,
CART, and GNB. Their study extensively utilized machine
learning algorithms (LR, LDA, KNN, CART, and GNB)
and explored various combinations on the ISIC dataset. In
contrast, deep learning models (Xception, VGG16, and
ResNet50) were employed on the HAM10000 dataset, with
ResNet50 proving superior at 88% accuracy. Additionally,
they achieved an 88% accuracy using a fine-tuned VGG16
model. Maniraj and Maran [51] utilized the PH2 dataset,
which comprises 200 images with three classes, achieving
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an impressive accuracy of 99.33% through hybrid deep
learning (VGG) and a subband fusion of 3D wavelets. The
study introduced a novel hybrid deep learning (HDL) meth-
odology (VGG model) that incorporates 3D wavelet fusion
through subband processing, demonstrating improved clas-
sification outcomes. Filali et al. [52] employed the combined
PH2 (200 images) and ISIC 2017 (2,000 images) dataset with
unspecified classes, achieving an accuracy of 82% using
ResNet18. The authors explored ResNet, VGG16, GoogLe-
Net, and AlexNet for skin cancer classification. Hassan
Bedeir et al. [53] used the HAM10000 dataset with seven
classes, achieving an accuracy of 94.14% through a merged
ResNet50 and VGG16 approach. The study is aimed at
achieving high accuracy in classifying various skin cancer
types using three approaches: ResNet-50, VGG-16, and a
merged model combining both techniques through the con-
catenate function. Gouda et al. [54] utilized the ISIC 2018
dataset with 3,533 images and two classes, achieving an
85.8% accuracy using fine-tuned CNN, ResNet, Incep-
tionV3, and InceptionResNet. Their study employed a
CNN model for identifying two main tumor categories:
malignant and benign. Image enhancement using ESRGAN
and fine-tuning with transfer learning models like ResNet50,
InceptionV3, and Inception ResNet contributed to the
achieved accuracy. Fraiwan and Faouri [55] used the
HAM10000 dataset with seven classes, achieving an accu-
racy of 82.9% through DenseNet201. The study explored
multiple models, including SqueezeNet, GoogLeNet, Incep-
tionv3, DenseNet-201, MobileNetv2, ResNet18, RestNet50,
ResNet101, Xception, InceptionResNet, ShuffleNet, Dar-
kNet-53, and EfficientNet-B0, to obtain the reported accu-
racy. Tabrizchi et al. [56] applied the ISIC dataset with
33,126 images and two classes, achieving an accuracy of
86.30% using an enhanced VGG16 model. The research
introduced an improved VGG16 model for the early identi-
fication of skin cancer using dermoscopic images. Naeem
et al. [57] used the ISIC 2019 dataset with 25,331 images
and four classes, achieving an impressive accuracy of
96.91% using SCDNet. The proposed SCDNet model com-
bined VGG16 with convolutional neural networks (CNN)
for the classification of various forms of skin cancer, outper-
forming four widely used pretrained classifiers in the medi-
cal field: ResNet50, InceptionV3, AlexNet, and VGG19.
Huynh et al. [58] employed the combined SIIM-ISIC 2020
+ ISIC 2019 dataset with 58,457 images and two classes,
achieving an AUC of 98.78% using InceptionResNetV2.
The researchers combined two datasets and applied the
backbones of models including EffecientNetB6, VGG16,
ResNet152V2, InceptionResNetV2, and InceptionV3, evalu-
ating performance based on loss, AUC, and sensitivity. Xin
et al. [59] utilized the HAM10000 dataset with seven classes,
achieving an accuracy of 94.3% using ViT and SkinTrans.
The authors proposed the SkinTrans model, an improved
transformer network derived from the visual transformer
(ViT) model, and obtained satisfactory results in two differ-
ent datasets. Bassel [60] used the ISIC dataset with 1,000
images and two classes, achieving a 90.9% accuracy using
Xception. The classification method involved stacking classi-
fiers using a threefold approach, employing feature extrac-

tion with Resnet50, Xception, and VGG16. Ali et al. [61]
used the HAM10000 dataset with seven classes, achieving
an 87.9% accuracy using EfficientNetB4. The study involved
training on EfficientNet models ranging from EfficientNet
B0 to B7, with EfficientNet B4 exhibiting the highest accu-
racy. Qasim Gilani [62] employed the ISIC 2019 dataset with
6,993 images and two classes, achieving an 89.57% accuracy
using spiking VGG-13. The spiking VGG-13 model utilized
the surrogate gradient descent technique for classifying mel-
anoma and nonmelanoma cancer. Durães and Véstias [63]
used the HAM10000 dataset with seven classes, achieving
an 87% accuracy using a dual Model: ResNet18 + ResNet50.
The research focused on developing a low-cost skin cancer
classification system implemented on an FPGA, optimizing
models with the Vitis-AI design flow and emphasizing speed
rather than accuracy. Rezk et al. [64] employed the PH2
dataset with 200 images and four classes, achieving an 87%
accuracy using an incremental DNN and Modified Incep-
tionV3. The researchers developed a progressive multiout-
put model predicting lesion source, malignancy
classification, and disease diagnosis. Tembhurne et al. [65]
utilized the ISIC dataset with 2,637 images and two classes,
achieving a 93% accuracy using a voting ensemble of LR,
SVM, and modified VGG19. The study employed an ensem-
ble of ML and DL techniques, utilizing modified VGG19 for
feature extraction and component analysis. Shaaban et al.
[66] used the HAM10000 dataset with two classes, achieving
a 96.66% accuracy using Xception. Two optimization algo-
rithms were employed to optimize parameters for multiple
models, resulting in the highest accuracy. Tahir et al. [67]
employed the ISIC 2020 + HAM100000 + DermIS dataset
with four classes, achieving a 94.17% accuracy using
DSCC-Net. The authors introduced the DSC-Net model to
address dataset imbalance and evaluated its performance
against six baseline deep networks. Karpagam et al. [68] uti-
lized the DERMIS dataset with 402 images and two classes,
achieving a 97% accuracy using SVM and KNN. The SVM
method was applied to the combined feature of LBO and
GLCM. Mridha et al. [69] used the HAM10000 dataset with
seven classes, achieving an 82% accuracy using an optimized
CNN. The research introduced a refined convolutional neu-
ral network (CNN) with an XAI-based system incorporating
Grad-CAM and Grad-CAM++. H. L. Gururaj et al. [70]
employed the HAM10000 dataset with seven classes, achiev-
ing a 91.2% accuracy using DensNet169. The authors
applied DensNet169 and ResNet50 models, measuring accu-
racy in both undersampled and oversampled instances and
testing accuracy in different training-testing splits. They
achieved an 83% accuracy using ResNet50.

Khan et al. [71] introduced an HSIFT descriptor crafted
for hands to extract features for anatomical object classifica-
tion, achieving significant performance improvement over
traditional CNN-based models. Gulzar and Khan [72] con-
ducted a comparative study on U-Net and attention-based
methods for skin lesion image segmentation, attaining
92.11% accuracy with a superior hybrid TransUNet. Khan
et al. [73] proposed an ensemble (XG-Ada-RF) on extreme
gradient boosting, Ada-boost, and random forest, achieving
95.9% accuracy for tumor detection and 94.9% for normal
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brain tumor images. Mehmood et al. [74] presented SBXcep-
tion, a modified model for the HAM10000 dataset, achieving
96.97% accuracy on a holdout test set.

Siddique et al. [75] researched the existing literature
about U-Net on medical image segmentation. Various sec-
tors including skin cancer diagnosis have been thoroughly
reviewed in this article. Krithika and Suganthi [76] also
conducted a systematic review of the modified architecture
of U-Nets, demonstrating the applicability and limitation
of U-Nets. Sreelatha et al. [77] presented a segmentation
method utilizing the Gradient and Feature Adaptive Con-
tour (GFAC) model on the PH2 dataset, achieving an accu-
racy of 98.64%. Liu et al. [78] applied an enhanced U-Net
model with and without an ensemble for skin lesion segmen-
tation on the ISIC 2017 dataset, reaching 92.6% accuracy
without the test ensemble and 93% accuracy with the test
ensemble. Wu et al. [79] introduced the C-U-Net model,
incorporating inception-like convolutional blocks, recurrent
convolutional blocks, and dilated convolutional layers. Their
modified model achieved a Jaccard index of 77.5% and a
Dice coefficient of 86.9% on the ISIC 2018 dataset. Tang
et al. [80] utilized a separable-U-Net for skin lesion segmen-
tation across three datasets: ISIC 2016, ISIC 2017, and PH2,
achieving an average Dice coefficient of 93.03% and a
Jaccard index of 89.25% for ISIC 2016, 86.93% and 79.26%
for ISIC 2017, and 94.13% and 89.40% for PH2. Araújo
et al. [81] combined U-Net and LinkNet methods and
applied them to three datasets: PH2, ISIC 2018, and DermIS,
obtaining an average Dice of 0.923 in PH2, Dice = 0 893 in
ISIC 2018, and Dice = 0 879 in DermIS. Nawaz et al. [82]
proposed an improved DenseNet77-based U-Net model for
the ISIC 2017 and ISIC 2018 datasets, achieving segmenta-
tion accuracies of 99.21% and 99.51%, respectively. In
2018, Facebook introduced Detectron2, an object detection
model that has demonstrated remarkable results in recent
medical segmentation research, surpassing traditional U-Net
models [83]. Despite the existence of an even more advanced
model from Facebook called “SAM: Segment Anything
Model,” it has yet to be employed in medical research. Given
the success of the previous model, we have opted to utilize
SAM in our research during the segmentation phase.

From the existing literature, we have come to an under-
standing that various pretrained models and traditional
machine learning algorithms were being used on different
skin cancer datasets with or without fine-tuning and modifi-
cation. Very few experiments were done using ViT while
scopes of ViT are more than the traditional methods in
terms of time complexity and accuracy. For complete identi-
fication of cancerous regions, the whole process is done in
two steps: segmentation and classification. In medical image
segmentation, various models like U-Net-based models have
been used throughout the years. However, rather than using
conventional segmentation methods, we have decided to use
SAM: an object detection model developed by Facebook
[13], to detect regions of interest first as the model has never
been used in the field of cancer detection. After segmenting
the cancerous regions, the classification can be done to
identify benign and malignant cases. In this article, we
have aimed to experiment on several ViT models to identify

the best one to classify skin cancers from the HAM10000
dataset.

3. Methodology and Implementation

3.1. Dataset Description. We used the HAM10000 dataset
which contains 10015 images. From the dataset, we have dis-
regarded 15 images to make data distribution perfect. The
dimension of each image is 600 × 450. During the training
phase, all the images were resized to 224 × 224. The dataset
is downloaded from the Harvard Dataverse website [12].
The number of benign images is 6705, and the number of
malignant images is 3295. We have taken 5000 images from
the benign category and applied data augmentation to the
malignant category to make it 5000. For this augmentation,
we used rotation, flip, and zoom-in augmentation parame-
ters. We split the dataset into three portions: training set
60%, validation set 20%, and test set 20% of the total data
which is shown in Table 1. The images were captured using
a dermatoscope at a magnification of 20x. Figure 3 shows
some of the example images from the dataset. Data were
annotated by experts.

3.2. Experimental Procedures. The development of an artifi-
cial intelligence- (AI-) based digital skin cancer detection
system that incorporates both segmentation and classifica-
tion techniques is presented in this study. Figure 4 illustrates
the overall segmentation and classification process. The clas-
sification part of Figure 4 is illustrated in detail in Figure 5.
The system is aimed at improving the accuracy and effi-
ciency of skin cancer diagnosis. We are proposing a method
that will use the HAM10000 dataset to train the

Table 1: Dataset description.

Total images Train images Val images Test images

Benign 3000 1000 1000

Malignant 3000 1000 1000

Total 6000 2000 2000

224 × 224 20×

Be
ni

gn
M

al
ig

na
nt

Figure 3: Example images of dataset.
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segmentation and classification models that can be used in
digital smart devices to instantly classify skin cancers from
new images. For the training task, all of the cancer images
were segmented using binary masking where the white area
represents the cancerous area and the black portion repre-
sents irrelevant areas (skin, background, etc.). After the
training phase, the segmentation is generated that is capable
of segmenting the cancer region automatically. Recently,
Facebook’s SAM model has gained huge popularity in terms
of segmenting any objects almost perfectly but has not been

employed in any biomedical imaging experiment officially.
That is why we have trained our model using the SAM archi-
tecture and have achieved good results. After the segmenta-
tion has been done, the segmented images need to be
classified. Rather than employing new models, we have
experimented with some existing vision transformer archi-
tectures and compared their results to find out the best one
for the classification task.

For the classification part, CNN-based network and
vision transformer-based architecture can be used. Among

Input image
Object

detection

Masking Binary
Masking

Segmentation

Type

Benign

Malignant

Semantic segmentation using segment-anything-model (SAM) Classification

Figure 4: Step-by-step processes for cancer segmentation and classification.
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Figure 5: Vision transformer-based skin cancer classification model.
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the convolutional neural networks, there are many types
such as RNN and ANN that are very popular. However,
the vision transformer architecture has some advantages
such as ViT models that can capture long-range dependen-
cies in the input images more effectively than CNNs by
utilizing the self-attention mechanism. ViT can learn con-
textual relationships between different patches, allowing for
a better understanding of global image structures and
improving performance on tasks that require modeling
long-range dependencies, and it can handle images of vary-
ing resolutions without the need for architectural modifica-
tions. CNNs, on the other hand, typically require resizing
or cropping of images to match a specific input size. ViT’s
patch-based approach enables flexibility in processing
images of different dimensions, making it easier to adapt to
diverse datasets. ViT models tend to have fewer parameters
compared to CNNs, which can lead to more computation-
ally efficient training and inference. This efficiency is partly
due to the absence of convolutional layers and shared
weights across spatial locations. Consequently, ViT can be
more memory-efficient and require fewer computational
resources. The attention mechanism used in ViT provides
interpretability advantages, as it allows the model to assign
importance weights to different patches in the image. This
attention mechanism enables a better understanding of
which regions contribute more to the model’s decision-
making process, aiding in model interpretability and facili-
tating analysis of the learned representations. ViT models
can benefit from transfer learning using pretraining on
large-scale datasets. By pretraining on a large dataset, ViT
can learn generic visual representations that can be fine-
tuned on specific downstream tasks, even with limited
task-specific-labeled data. This transfer learning capability
contributes to improved performance and efficiency. Con-
sidering these factors, we are proposing a vision transformer
for the classification task of skin cancer. We have tried the
following six different ViT models: ViT-Google, ViT-MAE,
ViT-ResNet50, ViT-VAN, ViT-BEiT, and ViT-DiT. Among
these, the ViT-Google model outperformed the other ones.

A detailed workflow regarding acquiring cancer images,
creating a segmentation model, creating a classification
model, decision-making from new images, and data visuali-
zation for diagnosis is described in Algorithm 1.

In the primary phase, cancer images of 20x magnifica-
tion are acquired by dermatoscopes. After resizing the
images to 224 × 224 pixels, they are given as input to the
SAM automatically. After the SAM output is generated,
it is converted to binary masking. The processed output
images are given to the ViT model for classification. In
the ViT model, it takes the input image which then is
divided into fixed-size patches, which are then linearly
transformed into lower-dimensional embeddings. Each
patch serves as an input token to the transformer. Posi-
tional embeddings are used to provide spatial information
about the patches. Inside the positional embedding, sine
and cosine functions of different frequencies are used to
represent the relative positions of the patches. The core
of the vision transformer is the transformer encoder which
consists of multiple layers of self-attention and feed-

forward neural networks. The self-attention mechanism
allows the model to capture global and local dependencies
within the image, enabling it to attend to relevant patches
and learn informative representations. This self-attention
mechanism helps the network to identify necessary fea-
tures. Every pretrained model has its mapping criteria. In
our experimental model, we have used Google’s patch 32
version to extract the image feature and train the vision

1. Input: IDERMATOSCOPY, SegNetSAM
IDERMATOSCOPY= the 20X Dermatoscopy images
SegNetSAM= the SAM segmentation
2. Initialization:

i. I = Resize IDERMATOSCOPYinto 224 × 224-pixel
ii. ISEG = Apply SegNetSAM on I
iii. ISEG = Apply Binary Mask on ISEG

3. ViT:
i. Input: ISEG
ii. IPATCH = Convert ISEG into 14×14 patches
iii. While m: = IPATCH ≤ IPATCH Count
i. ILP[m] = IPATCHUNROLLED[m] × E [][]
ii. D = Concatenate(EPOS[m], ILP[m])

iv. End While
v. While n <= L do
i. D'n = MSA (LN(Dn-1)) + Dn-1
ii. Dn = MLP (LN (D'n)) + D'n

vi. End While
vii. IFINAL = LN(DL)

4. If IFINAL≤ Threshold Value Then
Result: = “Benign”

Else
Result: = “Malignant”

End If
5. Return Result

Algorithm 1: Step by step skin cancer segmentation and classifi-
cation using ViT.

Table 2: Hyperparameter optimization for segmentation.

Hyperparameter Optimization space

Epoch 100

Batch size 32

Learning rate 0.0001

Optimizer “RMSprop”

Loss function [Dice coefficient loss]

Table 3: Hyperparameter optimization for classification using ViT.

Hyperparameter Optimization space

Epoch 100

Batch size 32

Learning rate 0.00002

Optimizer “Adam”

Loss function [Cross entropy loss]
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transformer. Within each transformer layer, multihead
attention is applied to capture different types of relation-
ships between patches. It allows the model to attend to
different parts of the image simultaneously, enabling it to
learn diverse and meaningful representations. In addition
to the self-attention mechanism, each transformer layer
also contains feed-forward neural networks, which process
the embeddings and facilitate the learning of nonlinear
relationships. Layer normalization is applied after each
self-attention and feed-forward network, which helps sta-
bilize the training process and improves the model’s ability
to generalize to different inputs. A classification head
(described in Figure 5) is added on top of the transformer
encoder to produce class probabilities. We have used a
fully connected layer followed by a SoftMax activation
function. The vision transformer that we employed uses
supervised learning on large-scale labeled image datasets.
In the final phase, the image is classified whether it is
benign or malignant. Our experimental model successfully
differentiates cancerous cells from noncancerous ones.
Then, the result will be visualized in the electronic device
for analysis.

3.3. Experimental Setup. For our experiment, we used both
“TensorFlow” [84] and “PyTorch” [85]. We have utilized
the TensorFlow-based interface to employ the SAM for the
segmentation process. For running the segmentation exper-
iment, we have used the following hyperparameters men-
tioned in Table 2.

We have utilized the PyTorch-based interface to employ
the vision transformers. This environment was set up in a
different computer to avoid dependency mismatch. The
hyperparameter optimization was done as mentioned in
Table 3.

Our experiment was done by using two different com-
puters; one of them running on Windows 11 OS and
equipped with an NVIDIA GeForce RTX 3090 (24GB)
GPU and 32GB RAM; another was running on Windows
11 OS and equipped with an NVIDIA GeForce RTX
3080Ti (16GB) GPU and 64GB RAM.

4. Results and Discussion

4.1. Accuracy. Figures 6–8 illustrate the accuracy, Intersec-
tion Oven Union (IOU), and Dice coefficient curves, respec-
tively, for the Segment Anything Model (SAM). Table 4
shows the training accuracy, IOU, and Dice coefficient as
well as the validation accuracy, IOU, and Dice coefficient
for the segmentation model. Figure 9 depicts the cancer seg-
mentation result by the Segment Anything Model (SAM).
Table 5 Provides the accuracy and loss scores of different
ViT classifiers. Figure 10 illustrates the accuracy and loss
curve for various models tested for ViT.

4.1.1. Segmentation. Pixel accuracy is a commonly used met-
ric for evaluating the performance of image segmentation
algorithms. It measures the exactness of the segmentation
results by comparing the predicted segmentation mask to
the ground truth mask at the pixel level. Pixel accuracy cal-
culates the percentage of correctly classified pixels in the seg-
mentation output, indicating how well the algorithm
accurately assigns each pixel to its correct class or region.
It is calculated by dividing the number of correctly classified
pixels by the total number of pixels in the image. Pixel accu-
racy is a straightforward metric that provides a basic mea-
sure of segmentation performance. However, it does not
consider the distinction between different classes or the
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Figure 6: Accuracy curve for segmentation.
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Figure 7: Intersection Oven Union (IOU) curve for segmentation.
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spatial relationships between pixels. As a result, it may not
provide a comprehensive assessment of segmentation qual-
ity in cases where certain classes are more critical than
others or when precise boundaries are important. While
pixel accuracy is useful for obtaining a general understand-
ing of the segmentation accuracy, it is often accompanied
by additional evaluation metrics, such as Intersection over
Union (IoU) or Dice coefficient, to provide a more compre-
hensive assessment. These metrics take into account the
overlap between the predicted and ground truth masks,
providing a more nuanced evaluation of segmentation
performance.

IoU calculates the ratio of the intersection area between
the predicted segmentation mask and the ground truth mask
to the union area of both masks. It provides a measure of

overlap or similarity between the predicted and ground truth
masks, taking into account both true positive and false pos-
itive predictions. IoU is more informative than pixel accu-
racy as it considers the spatial relationship and overlap
between the segmented regions. Equation (1) represents
the IoU formula. Figure 11 demonstrates the graphical rep-
resentation of IOU.

IoU = Intersection
Union 1

The Dice coefficient measures the similarity between the
predicted and ground truth masks by computing the ratio of
twice the intersection area to the sum of areas of both masks.
It balances precision and recall, providing a measure of over-
all segmentation performance. Like IoU, the Dice coefficient
captures the spatial overlap between segmented regions and
is more informative than pixel accuracy. Equation (2) is rep-
resenting the Dice coefficient formula.

Dice − coefficient = 2 × Intersection
Union + Intersection 2

IoU is more intuitive and easier to interpret. It represents
the ratio of the intersection area between the predicted and
ground truth masks to the union area of both masks. It
directly reflects the overlap or similarity between the two
masks, making it easier to understand the quality of segmen-
tation in terms of spatial overlap. That is why we prefer the
IoU matrix over other matrices in terms of measuring seg-
mentation performance.

In our experiment, while applying the SAM model, we
have gotten over 96% of areas matched on average under
the IoU matrix. In Figure 9, we can see a side-by-side com-
parison of two example images which indicates the IoU
accuracy.

4.1.2. Classification. Using the same dataset, we have applied
6 different pretrained models to employ our vision
transformer-based classification. The obtained accuracy for
the following ViT-Google, ViT-MAE, ViT-ResNet50, ViT-
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Figure 8: Dice coefficient curve for segmentation.

Table 4: Training and validation accuracy, IOU, and Dice
coefficient.

Accuracy IOU Dice coefficient

Training 0.99057 0.97043 0.99422

Validation 0.97129 0.96071 0.98139

Original image Ground truth Prediction
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Figure 9: Cancer segmentation result by Segment Anything Model
(SAM).
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Table 5: Accuracy and loss scores of different ViT classifiers.

Model Training accuracy Training loss Validation accuracy Validation loss Test accuracy

ViT-Google 0.99375 0.40280 0.96275 0.50341 0.96150

ViT-MAE 0.96975 0.77760 0.92500 0.96414 0.92150

ViT-ResNet50 0.87175 2.45290 0.81000 2.45290 0.80900

ViT-VAN 0.95825 0.95315 0.92500 1.04780 0.92400

ViT-BEiT 0.92500 1.49015 0.87500 1.89523 0.86250

ViT-DiT 0.86175 1.54550 0.82500 0.82500 0.81900

Training accuracy
Training loss

Validation accuracy
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VAN, ViT-BEiT, and ViT-DiT models is mentioned in
detail in Table 5. Comparing the accuracies, we have used
Google’s ViT (patch 32) model to be employed in the overall
skin cancer detection smart system. Figure 10 illustrates the
accuracy difference between ViT-Google and the other
models. Another thing can be also observed from
Figure 10 that the loss scores are significantly better than
the other five models.

The F1 score is a widely used metric in classification
evaluations that assesses the overall effectiveness of a model
in binary or multiclass classification tasks. It provides a bal-
anced measure of accuracy by calculating the harmonic
mean of precision and recall. The precision determines the
proportion of correct positive predictions out of all positive
predictions made by the model, reflecting its ability to accu-
rately identify positive instances. On the other hand, recall,
also known as sensitivity or true positive rate, measures the
proportion of true positive predictions out of all actual pos-
itive instances in the dataset, indicating the model’s capabil-
ity to capture all positive instances. By combining precision
and recall into a single metric, the F1 score offers a balanced
assessment of a model’s performance. It is particularly valu-
able when dealing with imbalanced datasets or when both
precision and recall hold equal importance. The F1 score
ranges from 0 to 1, where a value of 1 signifies perfect preci-
sion and recall, while 0 represents the poorest performance.
The formulas for precision, recall, F1 score, and accuracy are
provided in Equations (3)–(6), respectively. The classifica-
tion report of the transfer learning models can be found in
Table 6.

Precision = true positive
true positive + false positive , 3

Recall = true positive
true positive + false negative , 4

F1 score = 2 ∗ precision × recall
precision + recall , 5

Accuracy = true negative + true positive
true negative + false positive + true positive + false negative

6

In Figure 12, the confusion matrices of the tested models
are presented. From the confusion matrices, we can observe

that in the misclassification cases, the false negative rate is
greater than false positive cases for all models while the over-
all test accuracy of ViT-Google is greater than those of
others.

4.2. Accuracy Comparison. Figure 13. compares the training,
validation, and test accuracy of the applied models. Table 7
describes the value difference between training accuracy
and test accuracy of all tested models. The value difference
is an indication of training performance. The lower the value
is, the better the training process is. However, one thing
should be taken into consideration; this value may be low
even if the test accuracy is low. In that case, this value cannot
be a measurement factor regarding assessing the training
performance. From Table 7. It is clear that for the ViT-
Google model, the value difference between training accu-
racy and test accuracy is low at the same time the test accu-
racy is higher than the other models. Since the ViT-Google
model has performed better, we have chosen that model
for final implementation. For this reason, we have applied
5-fold cross-validation on that model. Figure 14 describes
the 5-fold cross-validation for the ViT-Google model. The
average validation accuracy found using the 5-fold cross-
validation method is around 96.15%. The receiver operating
characteristic (ROC) curve is a widely used evaluation tool
in medical research. It provides a graphical representation
of the trade-off between the true positive rate (sensitivity)
and false positive rate (1-specificity) for different classifica-
tion thresholds. The area under the ROC curve (AUC) sum-
marizes the overall performance of a diagnostic or predictive
model. In this study, the ROC analysis was employed to
assess the discrimination ability of our selected model for
skin cancer classification. The AUC value serves as a quanti-
tative measure of the model’s ability to distinguish between
cancerous and noncancerous cases, with higher values indi-
cating better performance. From Figure 15, we can see that
the ROC score or AUC of ViT-Google is 99.49%.

5. Conclusion

In this research, we utilize Google’s 32-patch-based vision
transformer (ViT) model to address the identification of skin
cancer. The prevalence of skin cancer has increased signifi-
cantly worldwide due to the depletion of the ozone layer,
posing a substantial threat to communities. Delayed testing
procedures, limited facilities, and a lack of early-stage diag-
nosis have led to numerous deaths. To solve this, intelligent
smart technologies are necessary to establish rapid and effec-
tive testing procedures. Our experimental approach involves
employing the ViT model in conjunction with the SAM seg-
mentation model for skin cancer identification and classifi-
cation. The application of the Segment Anything Model
(SAM) enables the segmentation of cancerous regions in
the images, yielding an Intersection over Union (IOU) of
96.01% and a Dice coefficient of 98.14%. Also, our classifica-
tion experiments with Google’s ViT model yield impressive
results, achieving 96.15% accuracy and 99.49% ROC score.
Consequently, we conclude that the ViT-Google (patch 32)
model can be trained as an efficient skin cancer detection

Computer
generated

mask
IOU

Ground
truth
mask

FP TP FN

TN

Figure 11: Intersection Over Union (IOU). Here, FP means false
positive, TP means true positive, FN means false negative, and
TN means true negative.
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Table 6: Classification report of the best combination for each transfer learning model.

Model Precision Recall F1-score Model Precision Recall F1-score

ViT (Google)

Benign 0.96950 0.95300 0.96120

ViT (VAN)

Benign 0.93620 0.91000 0.92290

Malignant 0.95380 0.97000 0.96180 Malignant 0.91250 0.93800 0.92500

Accuracy 0.96150 Accuracy 0.92400

Macro-F1 0.96150 Macro-F1 0.92400

Weighted-F1 0.96150 Weighted-F1 0.92400

ViT (Mae)

Benign 0.94230 0.89800 0.91960

ViT (BEiT)

Benign 0.91430 0.80000 0.85330

Malignant 0.90260 0.94500 0.92330 Malignant 0.82220 0.92500 0.87060

Accuracy 0.92150 Accuracy 0.86250

Macro-F1 0.92150 Macro-F1 0.86200

Weighted-F1 0.92150 Weighted-F1 0.86200

ViT (ResNet50)

Benign 0.81470 0.80000 0.80730

ViT (DiT)

Benign 0.83160 0.80000 0.81550

Malignant 0.80350 0.81800 0.81070 Malignant 0.80730 0.83800 0.82240

Accuracy 0.80900 Accuracy 0.81900

Macro-F1 0.80900 Macro-F1 0.81890

Weighted-F1 0.80900 Weighted-F1 0.81890
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model using the vision transformer and implemented in
smart devices for swift detection, thereby providing valuable
support to pathologists. However, it is essential to acknowl-
edge that our ViT model-based method is more suitable for
fair-skinned individuals due to the dataset acquired from
Harvard University in America, where the predominant
population is white. Our future work will expand the dataset
to encompass a more diverse range of cases from individuals
of various ethnic backgrounds. Additionally, federated
learning can be employed to update the existing model with
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Figure 13: Accuracy comparison chart.

Table 7: Accuracy difference.

Model
Training
accuracy

Test
accuracy

Accuracy
difference

ViT-Google 0.99375 0.9615 0.03225

ViT-MAE 0.96975 0.9215 0.04825

ViT-
ResNet50

0.87175 0.8090 0.06275

ViT-VAN 0.95825 0.9240 0.03425

ViT-BEiT 0.92500 0.8625 0.06250

ViT-DiT 0.86175 0.8190 0.04275
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Figure 14: 5-fold cross-validation for ViT-Google.
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new data, allowing for iterative improvements without
retraining the entire model.

Data Availability

The dataset is publicly available. The original data source is
available at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/DBW86T. The related Data
paper can be found at doi:10.1038/sdata.2018.161.
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