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Background. The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability,
making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the
current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this
paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD. Methods.
The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction
strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes
adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction.
Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the
proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid
bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to
assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data. Results.
The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving
the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles,
with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC
by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic
methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking
more accurate and complete fiber paths, resulting in improved continuity. Conclusion. The FTACTD method proposed in this
study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of
brain disorders associated with white matter fiber deficits and abnormalities.

1. Introduction

White matter fiber bundles are the complex structural com-
position of the human brain and the material basis for infor-
mation exchange between functional brain regions [1]. The
emergence of magnetic resonance diffusion tensor imaging
technology provides significant advantages for studying the
shape and distribution of white matter fiber bundles. Diffu-
sion tensor imaging (DTI) and white matter fiber tract track-
ing technology have been widely used in the research of
brain neurological diseases such as apoplexy [2–4], schizo-
phrenia [5–7], and Parkinson’s disease [8–10], which have

made contributions to the physiological research and clinical
research. In recent years, techniques have been continuously
updated and iterated for studying white matter fiber tracts.

White matter fiber tracking technology has mainly gone
through two development stages. The first stage is the use of
traditional invasive research methods, such as anatomical
staining, which require dissection and can only be limited
to the study of human and animal cadavers, not suitable
for in vivo research; the second stage is the noninvasive 3D
reconstruction technology of living human brain white mat-
ter fiber anatomy, which is mainly divided into four catego-
ries: deterministic fiber tracking method, probabilistic fiber
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tracking method, global optimization method, and tracking
method based on machine learning and deep learning. Clas-
sic and promising deterministic tracking methods have been
proposed including fiber assignment by continuous tracking
(FACT) [11], tensor deflection (TEND) [12], tensorline [13],
and vector criterion tracking (VCT) [14]. Probabilistic fiber
tracking methods model neighborhood information of the
voxel in the image [15] to obtain the probability density
function (PDF) or fiber orientation distribution (FOD) of
fiber orientation. This type of method gives the probability
of all possible fiber paths, takes the direction with the largest
probability value as the fiber direction in the voxel, and then
tracks and reconstructs the white matter fibers. This type of
method uses Bayesian probability tracking [16] proposed by
Friman et al. as the basic framework, second-order integra-
tion over fiber orientation distributions (iFOD2) [17], and
later, some researchers proposed particle filtering tractogra-
phy (PFT) [18] and unscented Kalman filter (UKF) [19]
based on the filter. The global optimization tracking
methods have been proposed by exploring the cost function,
which represents the smoothness of the fiber or the goodness
of fit of the measurement signal, and obtaining the fiber tra-
jectory by optimizing the cost function, such as the Gibbs
tracking method [20] and fiber tracking based on graph the-
ory method [21]. With the development of machine learning
and deep learning, Li et al. proposed a fiber tracking method
based on machine learning [22], using random forests and
decision trees to obtain the probability values of multiple
sampling directions. Poulin et al. used a feedforward neural
network and recurrent neural network to obtain the distri-
bution function of white matter fiber direction and used a
deterministic tracking method to describe the fiber. Probabi-
listic fiber tracking can improve the comprehensiveness of
fiber distribution and describe more complex fiber struc-
tures, which will cause more pseudo fibers. Screening out
pseudo fibers is also a challenge so far, so specific nerve fiber
paths cannot be visualized. Moreover, probabilistic fiber
tracking is sensitive to reaching the white matter boundary,
which leads to termination prematurely. In addition, a large
amount of random sampling is required, which is computa-
tionally intensive and inefficient. The tracking speed cur-
rently cannot meet clinical requirements. The advantage of
the global optimization method is that it produces fewer
false fibers, but it has a large amount of calculation and the
tracking results are rough. Tracking methods based on
machine learning and deep learning need to use the tracking
results of other methods as training samples, which takes a
long time, and the tracking results are prone to overfitting.
Compared with the other three types of methods, the deter-
ministic fiber tracking method is intuitive and easy to under-
stand with less calculation and execution time, which meets
the needs of clinical applications.

Although a multitude of deterministic fiber tracking
methods has been proposed over the last few decades, there
are some potential shortcomings of these methods. For
example, the FACT method considers the trajectory of a
fiber bundle in the human brain as a spatial three-
dimensional curve. If the direction of each pixel on the curve
is considered as the tangential direction of that pixel, then

this vector corresponds to the main feature vector of that
point, and the main direction of the feature vector is the
direction of travel of the voxels. This method is relatively
simple and easy to understand, and it can fit the fiber travel
path well in the region with high fractional anisotropy. How-
ever, in the region of low fractional anisotropy, the tracking
results will produce large deviations. Moreover, the tracking
results are susceptible to noise, which makes the tracked
fibers rough. The TEND method first starts from the center
point of a voxel in the predefined region of interest (ROI)
and advances along the direction of the main feature vector
of the voxel. When reaching the boundary of the next voxel,
the fiber advancing direction at this time is calculated by the
function of the diffusion tensor (DT) of the voxel. The
method uses the entire diffusion tensor to deflect the esti-
mated fiber trajectory, which improves tracking accuracy.
However, TEND method deflects all voxels, which is good
for the areas with small fractional anisotropy (FA), but the
tracking effect in areas with high FA values is not as good
as the FACT method. The tensorline method is the weighted
average of the earliest streamline tracking (STT) and the
TEND method. By adjusting the weight parameters to deter-
mine the next fiber tracing direction, the method can effec-
tively utilize both methods. However, the weight
parameters need to be set by yourself, which is difficult to
determine. The VCT method estimates the direction of the
next step of fiber tracking by calculating the principal eigen-
vectors of the surrounding adjacent voxels and the distance
from the center point of each voxel to the point to be deter-
mined. If the angle between them is greater than the set
threshold, the direction is excluded, and the distance
between its center point and the point to be determined is
set to 0, thereby excluding the influence of the main eigen-
vector of this point on the entire fiber direction. However,
the method considers that only eight neighboring voxels in
3D space can affect the fiber tracking direction of this fixed
point, without considering all neighboring voxels that may
affect the direction of this point. It is easy to cause the fiber
tracking direction to deviate from the correct direction. To
deal with the above problem, we propose a white matter
fiber tracking method with adaptive correction of tracking
direction, named FTACTD. In this method, the fiber direc-
tion of the target voxel is no longer corrected uniformly
but is corrected differently for different voxels.

2. Materials and Methods

The steps of the white matter fiber tracking method for
adaptively correcting the tracking direction mainly include
data preprocessing, computing the DT, eigenvector, and
FA. White matter nerve fiber tracking is realized by adap-
tively correcting the fiber tracking direction, and the results
of fiber tracts are visualized and analyzed. The roadmap of
the proposed fiber tracking technology is given in Figure 1.

2.1. Data Collection. The clinical dataset can qualitatively
evaluate and demonstrate the effect of fiber tracking, but
the real human brain dataset lacks ground truth, and the
tracking results cannot be compared quantitatively. The
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simulated dataset can quantitatively evaluate the results of
fiber tracking and calculate quantitative indicators; thus, in
this paper, we used a simulated dataset and a real human
brain dataset to evaluate the tracking results qualitatively
and quantitatively. The simulated dataset used in this paper
was released at the ISMRM (International Society for Mag-
netic Resonance in Medicine) 2015 Challenge (https://
tractometer.org/ismrm2015/dwi_data/). This simulated data
was generated by Fiberfox software based on the fiber bun-
dles segmented by the Human Connectome Project (HCP)
dataset in the United States, and it is currently the only sim-
ulated dataset that can perform quantitative index calcula-
tions. The voxel size is 2mm × 2mm × 2mm, the whole-
brain size is 90 × 108 × 90, and the gradient includes 1 diffu-
sion sensitivity coefficient b‐value = 0 s/mm2 and 32
diffusion-weighted images in the gradient direction of b‐
value = 1000 s/mm2. The real human brain dataset derives
from the MRI data of 50 adult subjects, and each subject
was scanned with the same parameters as described below.
DWI data were acquired using a single-shot echo-planar
imaging sequence with the following parameters: repetition
time/echo time = 8900/95ms, matrix size = 128 × 128 (FOV
256mm × 256mm), 1.8mm isotropic resolution, 40 DWI
directions, and b‐value = 1000 s/mm2, with 7 b = 0 images;
voxel size is 2 1875mm × 2 1875mm × 2 2mm.

2.2. Preprocessing. The existence of large amounts of random
noise, artifacts, and geometric distortion caused by magnetic
susceptibility in DWI images can affect the accuracy of fiber
tracking and lead to fiber tracking interruption. A series of
preprocessing is needed to be performed to obtain more

accurate DWI data before fiber tracking, so a more accurate
binary mask image can be obtained, which will benefit for
improving the tracking accuracy and obtaining a more con-
tinuous fiber bundle path. The experiment uses the same
preprocessing steps for the simulated dataset and the real
human brain dataset, and the preprocessing is implemented
on the MRtrix platform (https://www.mrtrix.org/).

The preprocessing steps for DWI images are as follows.
Step 1 (DWI denoising). There is noise and distortion in

the original DWI data, and the influence of noise can be
reduced by using the denoise command, which estimates
MRI noise level and denoises based on random matrix
theory.

Step 2 (Gibbs artifact removal). This artifact, also known
as truncation artifact, is related to spatial resolution. It is well
known that an image consists of very small pixels and con-
tains an infinite number of spatial frequencies, but the sys-
tem only collects image signals at a limited number of
frequencies leading to Gibbs artifacts, which can be removed
from DWI images using local subvoxel displacement
methods.

Step 3 (DWI distortion correction using dwifslpreproc).
Correct the geometric distortion caused by the magnetic sus-
ceptibility present in the diffusion image, as well as any dis-
tortion caused by eddy currents and the subject’s main body
motion, and the step depends on the FSL command.

Step 4 (B1 field inhomogeneity correction for a DWI vol-
ume series). This step is meant to improve brain mask esti-
mation. However, if no strong bias fields are present in the
data, running this script might deteriorate brain mask esti-
mation and result in inferior brain mask estimation.
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Fiber tracking

Show results
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Figure 1: Fiber tracking technology roadmap.
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2.3. The Diffusion Tensor and Fractional
Anisotropy Calculation

2.3.1. Diffusion Tensor (DT). Basser and Jones [23] proposed
a method to calculate DT using NMR spin echo. DT is not
represented by scalar values, but by introducing a 3 × 3
second-order tensor matrix to describe the ellipsoidal diffu-
sion model of water molecules in three-dimensional space.
There are six independent components, with the diagonal
elements representing the displacement along the orthogo-
nal axis and the off-diagonal elements representing the
correlation with the orthogonal displacement. S is the signal
intensity measured when the diffusion gradient direction g is
applied, which is the obtained original diffusion-weighted
images. S0 is the signal intensity measured without applying
any gradient direction pulse, which is the diffusion-weighted
image without the diffusion gradient direction. b is the value
of the diffusion gradient, which is a known constant and
determined by the experimental conditions. In the formula,
D is the apparent diffusion coefficient, also known as ADC,
which is an independent component of DT and represents
the diffusion ability of water molecules [24]. The calculation
of the DT is given as

Si = S0 × e−bDi 1

Take logarithmic transformation on both sides of the
above formula, and the following formula can be obtained:

ADCi = −
1
b
ln Si

S0
2

This means that without considering the noise, the 6
independent components of DT can be uniquely determined
by doing 7 independent experiments: S0 was measured once
without applying any diffusion-sensitive magnetic field; the
other 6 times were to add the gradient of the diffusion-
sensitive magnetic field in 6 noncollinear directions ek =
xk, yk, zk

T k = 1, 2, 3, 4, 5, 6 and use the same b value to
measure and obtain 6 different diffusion-weighted images,
respectively; that is, a six-variable linear algebraic equation
system is obtained, and DT can be obtained by solving the
equation.

2.3.2. Fractional Anisotropy (FA). One of the most common
parameter indexes used to describe the diffusion characteris-
tics of different tissue structures of the brain is FA [25]. FA is
the ratio of the anisotropy to the entire DT, reflecting the
anisotropy of the diffusion of water molecules, and the range
is 0-1, which can be formulated as follows:

FA = 3
2

λ1 − λ
2 + λ2 − λ

2 + λ3 − λ
2

λ21 + λ22 + λ23
3

2.3.3. Geometric Measures of Diffusion. Westin et al. [26]
used three characteristic indices to describe the linear, pla-
nar, and spherical diffusion models relatively completely.
The calculation formula is shown in

Cl = λ1 − λ2
λ1

,

Cp = λ2 − λ3
λ1

,

Cs = λ3
λ1

,

4

where Cl + Cp + Cs = 1; Cl represents the degree of linear
anisotropy, Cp represents the degree of planar anisotropy,
and Cs represents the degree of isotropy.

2.4. Proposed FTACTD Method. Most deterministic fiber
tracking methods only consider the DT local information
and directly take the direction of the voxel main eigenvector
as the direction of fiber tracking. This method is more accu-
rate only when the diffusion tensor model of the voxel is an
ellipsoid. If the diffusion tensor model of voxels is in the
shape of a disk or sphere, this method will result in signifi-
cant errors. Some methods will correct the current fiber
tracking direction concerning the tracking direction of the
previous step and the current DT, but the method deflects
the tracking direction of all voxels. In voxels with small
FA, better results can be achieved, while in voxels with large
FA, excessive deflection can easily occur, leading to error
accumulation. Therefore, considering the advantages and
disadvantages of the above-mentioned methods, we propose
a white matter fiber tracking method with adaptive correc-
tion of tracking direction. The method adaptively selects
the tracking direction based on the diffusion characteristics
of the target voxel. During the fiber tracking process, instead
of simply progressing along a fixed direction, the method
dynamically chooses the direction based on the current vox-
el’s diffusion characteristics. The specific implementation is
as follows: for the target voxel, the Cl and Cp are first com-
puted. These coefficients reflect the characteristics of the dif-
fusion tensor in different directions. When the voxel’s
eigenvalues λ1 ≫ λ2 ≈ λ3, resulting in a high FA, and Cp
tends to be 0, the latter part of the formula approaches 0.
The tracking direction is determined by the former part of
the formula. At this point, it is the tracking that progresses
along the direction of the principal eigenvector. On the other
hand, when λ1 ≈ λ2 ≫ λ3, Cl tends to be 0, and the fiber
tracking direction is influenced by the latter part of the for-
mula. In this case, there is a high probability that it is a fiber
intersection area, which will cause uncertainty in the fiber
tracking direction. Therefore, based on the current voxel’s
diffusion coefficients and the current diffusion tensor model,
a correction is applied to the previous tracking direction to
adapt to the current voxel’s diffusion shape. This ensures
the continuity of fiber tracking. Additionally, due to the con-
sideration of the previous fiber tracking direction, the next
tracking direction is computed based on the previous step.
Therefore, when tracking passes through the target voxel
again, due to the difference in the direction of the previous
step, crossing fibers in other directions can be tracked. The
method proposed in this paper departs from the conven-
tional approach of having all voxels progress solely along
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the direction of the principal eigenvector, addressing the
limitation of tracking only one fiber in a voxel. Thus, the
algorithm introduced in this paper offers greater flexibility
in dealing with the complexity of fiber structures, especially
in regions of fiber crossings, thereby enhancing the accuracy
and continuity of fiber tracking. The specific process is to
select the voxel in the ROI (select the entire brain as a region
of interest) that satisfies the FA greater than the specified
threshold as the seed point and track in the direction of
the main eigenvector of this point. When reaching the
boundary of the next voxel, the tracking direction is modi-
fied adaptively through the values of Cl and Cp. When the
value of Cl is larger, the tracking direction adopts the direc-
tion of the main eigenvector. When the value of Cp is larger,
the main feature vector of the voxel is deflected according to
the previous tracking direction and the tensor matrix of the
current voxel, which is used as the next tracking direction.
When the values of Cl and Cp are between 0 and 1, the fiber
tracking direction is the sum of the weights of the direction
of the main feature vector and the direction of the previous
tracking direction deflected by the diffusion tensor of the
current voxel. In addition, it is necessary to trace along the
negative direction from the seed point for getting a complete
fiber bundle. Finally, the tracking results along the positive
and negative directions are merged into a complete fiber
path. The FTACTD method can calculate the next fiber
tracking direction Vout as follows:

Vout = Cl × e1 + Cp ×D ×V in 5

That is,

Vout =
λ1 − λ2
λ1

×V1 +
λ2 − λ3
λ1

×D ×V in, 6

where Vout is the fiber tracking direction, V1 is the main
eigenvector direction of the current voxel, D is the diffusion
tensor of the current voxel, and V in is the tracking direction
of the fiber of the previous adjacent voxel.

The specific flowchart of the FTACTD method is given
in Figure 2.

3. Results

The performance of the FTACTD is compared against
FACT, TEND, streamline tractography based on spherical
deconvolution (SD_Stream) [27], iFOD2, and anatomically
constrained tractography second-order integration over
fiber orientation distributions (ACT_iFOD2) [28] to provide
relevant comparisons using simulated data ISMRM 2015
and 50 cases of real human brain dataset. FACT, TEND,
and SD_Stream are popular deterministic fiber tracking
methods, and iFOD2 and ACT_iFOD2 are probabilistic
fiber tracking methods. In addition, FACT and TEND use
the DTI model, and SD_Stream and the two probabilistic
fiber tracking methods use the constrained spherical decon-
volution (CSD) model. The selection of the optimal tracking
parameters in FTACTD is given in Appendix.

3.1. Simulation. Figure 3 provides the visual experimental
results of fiber distribution in the whole brain for the evalu-
ation of fiber tracking methods under the simulated dataset.
By comparing with the anatomical atlas, the distribution of
nerve fiber bundles tracked by all methods is consistent with
the distribution of anatomical nerve fibers. The smoothness
of the fiber bundles tracked by SD_Stream and iFOD2
methods is the worst, whereas the FTACTD method pro-
posed in this paper is the best compared with the other fiber
tracking methods. From the perspective of fiber distribution,
TEND and SD_Stream methods produce a large number of
messy and wrong fibers distributed on both sides of the left
and right brain, while the tracking results of the FTACTD
method have no messy and wrong fiber distribution. Com-
paring the results of the iFOD2 and ACT_iFOD2 methods,
it can be seen that the ACT step can reduce the number of
fibers greatly and also reduce a lot of effective fibers, indicat-
ing that the combination of the ACT method can greatly
affect the tracking effect of the method.

The Tractometer [29] (https://tractometer.org/), an
independent evaluation tool of the ISMRM 2015 Challenge,
was used to evaluate and compare the performance of fiber
tracking methods quantitatively. The quantitative measures
provided by Tractometer [30] are invalid bundles (IB), valid
bundles (VB), invalid connections (IC), no connections
(NC), and valid connections (VC).

Table 1 presents the discrete values of the VB, VC, IC,
NC, and IB on the simulated dataset by using different
fiber tracking methods under investigation. It can be seen
that the tracking result accuracy of the improved method
proposed in this paper is higher than that of the FACT
method and the TEND method. Specifically, the FTACTD
method can track more VB compared with the FACT
method and the TEND method. In terms of IC, the mini-
mum IC value obtained by the tracking result of the FACT
method is 23.26%. In terms of VC, the value obtained by
the tracking result of the FACT method is also the smallest,
and the proposed improved FTACTD method has the larg-
est value obtained by the tracking result. Compared with
the FACT method, the VC of the FTACTD method has
increased by 3.9%, proving that the improved method
tracks the least amount of incorrect directions. In terms
of NC, the minimum value obtained by the FTACTD
method is 36.76%, while the maximum value obtained by
the FACT method is 73.14%, which may be because the
tracking fails to reach the termination area (such as prema-
turely touching the boundary and terminates). In terms of
IB, the results obtained by the FTACTD method and
ACT_iFOD2 method are far less than that of the FACT
method and TEND method. The IB value obtained by the
ACT_iFOD2 method is the smallest, because this method
adds the ACT method based on the iFOD2 method, and
this method will delete some wrong fibers that do not con-
form to anatomy. Existing deterministic fiber tracking
methods such as FACT and TEND only consider the infor-
mation of the voxel itself. Probabilistic fiber tracking
methods such as iFOD2 and ACT_iFOD2 only consider
the influence of neighboring voxels, resulting in large errors
in the final tracking results. FTACTD is a deterministic
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fiber tracking method that not only considers the diffusion
structure of the voxel itself but also selects the next tracking
direction according to the fiber history and can achieve bet-
ter tracking results.

3.2. In Vivo Imaging. This section is devoted to verifying the
consistency of the proposed FTACTD approach on in vivo
dataset, using the real human brain dataset of 50 subjects
to compare the FTACTD method with the other five
methods and present the statistical parameters of the
tracking results of 50 subjects in the form of mean ±
standard deviation. However, due to space constraints, only
one case of the dataset is selected for visualization of fiber
tracking results. The fiber tracking results of the proposed
FTACTD and the other five different tracking methods in
the whole human brain are presented in Figure 4. This figure
shows that the fiber tracking results achieved through the
above six methods can clearly display the physiological
structure characteristics of fiber bundles. Moreover, com-

pared with the anatomical map, the tracked whole-brain
fiber bundles are basically consistent with the anatomical
nerve fibers. However, compared with the other five
methods, the fibers tracked by the FTACTD method are
smoother and have fewer messy fibers. This shows that for
some branched nerve fibers with small angles, the FTACTD
method can make appropriate choices according to the over-
all fiber running trend.

To provide a better visual inspection, Figures 5 and 6
show the enlarged details of using a real human brain dataset
to track the entire brain region. The association fiber mainly
connects the corresponding functional regions of the left and
right hemispheres, which are transverse nerve fiber bundles
connecting the left and right cerebral hemispheres, located
in the figure’s middle region of the left and right hemi-
spheres. From Figure 5, we can see that the FTACTD
method tracks the association fiber more completely and
continuously. Although the FACT and TEND methods also
tracked the commissural fibers in the middle, the fibers at

i = 1, start tracking from a seed point Pi in the region of
interest

FA > 0.2

v = 1 v = –1

Vout = e1

Along the direction Vout, step size d = 1 forward, i = i + 1.

Vout = Cl × e1 + Cp ×  D× Vin

Meet the maximum deflection angle

N

Y

Y

N

Y

N

Meet stop condition
N

Y

The current point Pi is the boundary point

At the end of the tracking, the trajectory formed by
P1,P2,...,Pt is the running of the fiber

Figure 2: Flowchart of the proposed FTACTD method.
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both ends were messy, some truncated fibers existed, and the
tracking was incomplete. The SD_Stream and iFOD2
methods track based on the CSD model, which enables the
method to obtain more comprehensive fiber structure infor-
mation, but correspondingly produces a lot of pseudo fibers.
Therefore, the association fiber is covered by other traveling
fibers due to the method tracking many small fibers and
wrong fibers. The tracking results of the ACT_iFOD2
method are based on the ACT method after the basic screen-
ing of the iFOD2 method results. We can see that only part
of the association fiber is tracked by the method, and many

correct commissural fibers have been deleted. The green
fiber bundles represent the fiber bundles that run forward
and backward. Combined with the physiological structure
characteristics of the fiber bundles, the left and right ends
of the picture should be dominated by the green fiber bun-
dles that run forward and backward. It can be seen from
Figure 6 that the FTACTD method conforms to this physio-
logical feature, followed by the TEND method. Although
TEND also traced out the fiber bundles with green directions
at both ends, they were not continuous. The tracking results
of the FACT method in the regions at both ends are mixed

(a) FACT (b) TEND (c) SD_Stream

(d) iFOD2 (e) ACT_iFOD2 (f) FTACTD

Figure 3: Comparison of tracking effects of whole-brain regions of the simulated dataset.

Table 1: VB, VC, IC, NC, and IB comparisons of different methods on the simulated dataset.

Methods VB (bundle) VC (%) IC (%) NC (%) IB (bundle)

FACT 12 3.6 23.26 73.14 40

TEND 11 4.79 35.28 59.93 39

SD_Stream 11 5.86 41.72 54.42 42

iFOD2 11 5.72 47.98 46.3 38

ACT_iFOD2 10 5.36 42.86 51.78 22

FTACTD 13 7.5 55.74 36.76 32

Note: the VB in ground truth is 25 beams.
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with a variety of colors, and a large number of other fiber
bundles are distributed. It can be seen that the tracking effect
of the method is worse than that of the other two methods.
The results tracked by iFOD2 and SD_Stream are messy at
both ends. From the ACT_iFOD2 method, it can be seen
that in the left part of the tracking result, many green fiber
bundles are running back and forth, but many correct fiber
bundles are missing in the right part.

There is no ground truth in the real human brain dataset
to support the quantitative calculation of the Tractometer, so
this section only counts the results of whole-brain nerve
fiber tracking of 50 subjects and presents them in the form
of mean ± standard deviation.

The statistical results are presented in Table 2. It can be
seen that the results of the deterministic tracking method
and the probabilistic tracking method are quite different. It

(a) FACT (b) TEND (c) SD_Stream

(d) iFOD2 (e) ACT_iFOD2 (f) FTACTD

Figure 4: Comparison of tracking effects of whole-brain regions of real human brain dataset.

(a) FACT (b) TEND

(c) SD_Stream (d) iFOD2

(e) ACT_iFOD2 (f) FTACTD

Figure 5: Partial enlarged view of junction area.
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can be seen from the deterministic tracking method that the
method proposed in this paper can track more fibers than
the FACT and TEND methods, and the average length of
the tracked fibers is longer. The statistical results of the
SD_Stream method are quite different from those of the
other three deterministic methods. This is because the SD_
Stream is based on the CSD model, while the other three
deterministic methods are based on the DTI model. From
the results of the probabilistic fiber tracking method, the
iFOD2 tracked the most fiber bundles. This is consistent
with the principle that the probabilistic tracking method
can obtain a more comprehensive fiber distribution, and
the number tracked by the SD_Stream method is second.
This is because both the SD_Stream and iFOD2 methods
track based on the same model. Although the ACT_iFOD2
method is also a probabilistic tracking method, the method
adds an ACT step and deletes wrong fibers from the results

of iFOD2, so the average fiber number tracked by this
method is 15847 fewer than that of the iFOD2 method.
However, the probabilistic tracking method takes a long
time, and the average tracking time of the ACT_iFOD2
method reaches 153.6 seconds. From the overall dataset,
the average fiber length tracked by the FTACTD method
proposed in this paper is the longest among the six methods,
reaching 120.92mm. In addition, the running time of the
FTACTD method is significantly reduced compared with
the probabilistic tracking method, which is in line with the
acceptable range of clinical applications.

4. Discussion

Three popular deterministic fiber tracking methods and two
probabilistic fiber tracking methods are selected for experi-
mental comparison and evaluation with the FTACTD

(a) FACT (b) TEND

(c) SD_Stream (d) iFOD2

(e) ACT_iFOD2 (f) FTACTD

Figure 6: Partial enlarged view of frontal pole.

Table 2: Statistical comparison of the whole-brain tracking fiber parameters of the six methods (x ± S).

Methods FB_num FL_max FL_min FL_mean Time

FACT 20544 ± 1029 469 69 ± 45 17 51 4 ± 16 11 115 6 ± 10 63 30 9 ± 3 9
TEND 10595 ± 766 510 89 ± 16 88 21 36 ± 8 21 119 3 ± 12 6 34 3 ± 4 1
SD_Stream 29562 ± 2704 102 74 ± 6 63 20 18 ± 5 39 22 49 ± 3 18 33 1 ± 2 3
iFOD2 41924 ± 3119 124 10 ± 6 10 20 39 ± 6 70 24 97 ± 4 27 96 9 ± 4 7
ACT_iFOD2 30286 ± 1663 215 34 ± 9 81 20 13 ± 10 7 48 04 ± 8 07 153 6 ± 8 6
FTACTD 22021 ± 2240 597 98 ± 20 45 52 54 ± 8 41 120 92 ± 10 8 39 92 ± 2 0
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method proposed in this paper. Experiments on the simu-
lated dataset and the collected real human brain dataset
demonstrate that the FTACTD method outperforms current
state-of-the-art methods in white matter fiber tracking.

In the deterministic fiber tracking method, the fiber
tracking direction of each step in the tracking process is
uniquely determined. Among them, the TEND method
and the FACT method are fiber tracking based on the DTI
model. The DTI model can only produce more accurate
direction information in areas with a high degree of anisot-
ropy. Therefore, this type of method can achieve better
tracking results for single direction tracking. But it is difficult
to track complex intersections and bifurcation regions. The
difference between the FACT method and the TEND
method lies in the direction of fiber tracking in the next step.
The FACT method takes the direction of the main eigenvec-
tor of the seed point as the direction of the fiber bundle,
advances until it reaches the boundary of the next voxel,
and then selects the direction of the main eigenvector of
the next voxel to track and continue to move forward until
the termination condition of certain thresholds is met. This
method one-sidedly considers that each voxel contains only
one fiber running direction, which is the direction of the
main eigenvector. This method is only suitable for areas with
strong anisotropy. The TEND method starts from the center
point of a voxel in the artificially selected ROI and advances
toward the main eigenvector of the voxel. When the bound-
ary of the next voxel is reached, the forward direction of the
fiber is calculated by the DT of the next voxel. In regions
with less anisotropy, the tracking direction of the voxel no
longer follows the direction of the main eigenvector. How-
ever, in the region with a high degree of anisotropy, the
deflection at this time will cause the fiber tracking direction
to be wrong. Although SD_Stream is also a deterministic
tracking method, it is essentially different from the micro-
structure models of the above three types of methods. It is
based on the HARDI model [31] for fiber tracking. The
HARDI model can describe the direction information of
complex areas, so the method can be used in complicated
areas to trace out the correct fiber orientation (such as cross-
ing areas).

Probabilistic fiber tracking selects the fiber tracking
direction through the direction probability, and different
fiber directions may be selected according to the probability,
to describe the comprehensive information of the fiber.
Although the tracking results are relatively comprehensive,

a large number of false fibers are produced, which is consis-
tent with the experimental results and very messy. The
iFOD2 method advances along a fixed-length step and is
tangent to the current tracking direction at the current point.
It considers the FOD of the candidate points on each candi-
date path, and the curve with the highest combined proba-
bility corresponds to the most likely path (probability
calculation on each path of iFOD2 is a product of each infin-
itesimal step probability). The ACT_iFOD2 method is a
combination of the ACT method and the iFOD2 method.
The ACT method does not affect the fiber tracking process
but directly affects the fiber tracking results. By combining
T1-weighted (T1w) and DWI to obtain a more accurate mask
and incorporating anatomical prior knowledge, the tracking
results of the iFOD2 method are screened to remove unrea-
sonable fibers. It can be seen that many fibers in the tracking
results of the iFOD2 method have been removed, but by
comparing the results of deterministic fiber tracking, it can
be seen that the ACT method has also removed a large num-
ber of effective fibers, which is the biggest limitation of the
ACT method. Moreover, the method is closely related to
the gradient direction of the acquired DWI, and the dataset
requirements are relatively high. These objective reasons will
directly affect the tracking effect of the method.

The method proposed in this paper uses Mrtrix3-related
commands in the preprocessing stage to perform head-
movement correction, distortion correction, noise reduction,
artifact, and bias correction on the dataset, which improves
the tracking accuracy of the method. In biology and neuro-
science, fiber tracts exist as both crossing fibers and single-
directional fibers. Based on this characteristic, a novel fiber
tracking strategy is proposed. From DTI fiber tractography,
it is known that when the FA are high, fiber tracking pro-
ceeds along the direction of the principal eigenvector. When
the FA approaches 0, water molecules undergo isotropic dif-
fusion, such as in the gray matter (GM) and cerebrospinal
fluid (CSF) regions, where it is assumed that no fiber bundles
exist. Additionally, there are cases of disk-shaped diffusion,
where fiber crossings are prevalent. Therefore, ignoring the
complexity of fiber structures and tracking solely along the
direction of the principal eigenvector or correcting the track-
ing direction for all voxels to adapt to the diffusion model
can lead to cumulative errors. The FTACTD method takes
into account the complexity of fiber structures and adap-
tively adjusts the tracking direction based on the diffusion
tensor model of voxels. In DTI-based fiber tractography,

Table 3: Comparison of different fiber parameter settings and statistical results.

Group FA Angle Step Min Max Mean Counts

a 0.2 45° 1mm 10.81mm 143.03mm 41.15mm 5115

b 0.1 45° 1mm 10.85mm 137.4mm 40.23mm 6286

c 0.3 45° 1mm 10.83mm 88.24mm 28.33mm 4986

d 0.2 45° 0.5mm 10.37mm 140.46mm 40.47mm 5163

e 0.2 45° 2mm 11.77mm 133.45mm 40.53mm 5000

f 0.2 50° 1mm 10.83mm 138.43mm 40.83mm 5112

g 0.2 60° 1mm 10.74mm 88.24mm 42.28mm 5107
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(a) (b)

(c) (d)

Figure 7: Continued.
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the diffusion direction of water molecules is commonly
employed as the tracking direction for fibers. Therefore,
when λ1 ≫ λ2 ≈ λ3, the diffusion tensor model of a voxel
takes on an ellipsoidal shape, indicating that water molecules
diffuse along the direction of the principal eigenvector,
spreading toward both ends of the ellipsoid. In such cases,
the direction of the principal eigenvector is chosen as the
tracking direction for the fibers. When λ1 ≈ λ2 ≫ λ3, the dif-
fusion tensor model of a voxel appears disk-shaped, and
water molecules may diffuse in the directions corresponding
to λ1 and λ2, potentially resulting in fiber crossings and
bifurcations. In such situations, the problem of fiber direc-
tion selection needs to be considered. Simply using the direc-

tion of the principal eigenvector may lead to errors in
tracking direction. Therefore, when the diffusion tensor
shape of a voxel resembles a disk-shaped, this paper intro-
duces consideration for the previous tracking direction. By
utilizing the shape of the diffusion tensor and diffusion coef-
ficients, a certain degree of deflection is applied to the previ-
ous tracking direction. This helps align the tracked fibers
more with the smoothness characteristics. Moreover, as the
tracking path passes through the target voxel again, the
change in the previous tracking direction leads to a corre-
sponding change in the next tracking direction, enabling
the tracking of crossing fibers. Therefore, this dynamic
adjustment of the tracking path and adaptive approach to

(e) (f)

(g) (h)

Figure 7: Comparison of tracking effects with different tracking parameters.
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the complex fiber structure in tissue can achieve more accu-
rate fiber tracking.

In the simulated dataset, from the distribution of whole-
brain fibers, the method proposed in this paper has the best
and smoothest tracking effect. Judging from the calculation
results of quantitative indicators, the FTACTD method
tracks the largest number of VB, the VC is also the highest
among all methods, and the NC achieves the minimum
value of 36.76%. This is because the FTACTD method can
well adapt to the tracking of curved fibers and can effectively
avoid premature fiber termination caused by premature con-
tact with the boundary. Moreover, the FTACTD method no
longer only tracks along the direction of the main eigenvec-
tor but makes different corrections to the fiber tracking
direction according to the actual situation of each voxel.
Therefore, the method can track fewer wrong directions,
making VC higher and NC lowest.

In the real human brain dataset, from the perspective of
the overall distribution of fibers, the fibers tracked by the
tracking method FTACTD proposed in this paper are longer
and more complete. The smoothness is also the best among
the six methods, and the symmetry of the nerve fibers of the
left and right hemispheres is also better. The above advan-
tages can be seen from local regions such as association fiber
connecting the left and right hemispheres and green fiber
bundles located at both ends of the brain. From the perspec-
tive of association fiber, we can see that the FTACTD
method proposed in this paper can trace the most complete
and continuous commissural fibers than the other five
methods, and the tracking results of the other five methods
are messier or have truncated fibers. From the green fiber
bundles located in the anterior and posterior courses at the
two ends of the brain, the FTACTD method clearly shows
a large number of green fiber bundles distributed at the
two ends of the resultant map, which is consistent with the
physiological anatomy features. The ACT_iFOD2 method
distributes many green fiber bundles on the left end of the
resulting image, but the right-end fiber is seriously missing.
The other four methods have unsatisfactory tracking results
in this respect, especially the tracking results of the FACT
method distribute other traveling fiber bundles in the two
end regions, and the effect is the worst. This is because
the FTACTD method makes corrections for each voxel
tracking direction differently, which significantly reduces
the error caused by taking the main eigenvector direction
as the fiber running direction. The tracking direction in
the case of planar diffusion is improved, and the fiber track-
ing in strong and weak anisotropy areas can be well com-
pleted. Moreover, the FTACTD method comprehensively
considers the historical trend of the fiber and the local
information of the current tensor to determine the next
fiber tracking direction. Therefore, the FTACTD method
can achieve better tracking results than the other five
methods.

The limitation of the proposed FTACTD method is that
the used fiber microstructure reconstruction models are cen-
ter-symmetric, but the actual fiber distribution is usually
asymmetric. Thus, fiber tracking based on asymmetric
models is required to be developed in the future.

5. Conclusion

We presented FTACTD, a deterministic white matter fiber
tracking method with adaptive correction of tracking direc-
tion based on the tensor matrix and the input fiber direction
of adjacent voxels. In the quantitative and qualitative evalu-
ations on the simulated dataset and real human brain data-
set, the proposed method outperformed the state-of-art
classical methods. Therefore, the method proposed in this
paper can lay a methodological foundation for the research,
diagnosis, and treatment of brain diseases caused by the loss
and abnormality of white matter fibers.

Appendix

Parameter Sensitivity Analysis of DTI
Fiber Tracking

To verify the impact of tracking parameters on tracking per-
formance, we selected values within the commonly used
parameter range in the field of fiber optic tracking and con-
ducted experiments using the FTACTD method. Selected
parameters include 0.1, 0.2, and 0.3 for the FA; 0.5mm,
1mm, and 2mm for the step size; and 45°, 50°, and 60° for
the deflection angles. The experimental setting parameters
and corresponding experimental statistical results are listed
in Table 3.

Due to the excessive number of fibers in the whole-brain
region, the visualization results do not show significant dis-
crepancy. Therefore, we selected an area commonly used in
experiments, with the left corticospinal tract (CST) as the
main area for visualization (the location in the brain is
shown as Figure 7(h)). The results of fiber tracking using dif-
ferent tracking parameters are shown in Figure 7.

Upon comparison of the three groups (a, b, and c), it is
evident that when the FA is set to 0.3, the fiber count in
group c significantly decreases compared to the other
groups. This phenomenon is attributed to the fact that in
DTI-based fiber tractography, tracking stops when FA falls
below a certain threshold. Therefore, setting FA to 0.3 results
in premature termination, causing the tracked fibers to be
shorter. Moreover, when tracking from seed points, fibers
may be missed if the voxel’s FA is less than 0.3. Table 1
shows that setting the FA to 0.3 results in only 4986 fibers,
with a maximum fiber length of 88.24mm. Group c has sig-
nificantly shorter fibers, with an average length of approxi-
mately 28mm, compared to groups a and b. Setting FA to
0.1 leads to an increase in tracking times, and the number
of fibers increases by almost 1100 compared to other groups.
This is particularly noticeable in the area above the fiber dis-
tribution in group b, where a large number of short and
messy fibers are obviously added. In summary, excessively
small FA results in an increase in the number of erroneous
fibers, and the fibers exhibit a disorganized distribution in
the boundary regions. Therefore, better tracking results can
be setting FA to 0.2.

When comparing groups (a, d, and e), it is observed that
group d has a higher number of unbundled wrong fibers at
the position marked by red box 1. This may be due to a step
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size that is too small, making the tracking more sensitive to
noise or local variations, leading to the presence of some
erroneous fibers. Additionally, fibers marked at red box 2
are only present in group d, which could be attributed to
overly fine tracking that captures erroneous fibers. It should
be noted that a smaller step size can significantly increase the
tracking time and demand more computational resources.
Furthermore, it is important to balance the choice of step
size to optimize resource utilization while maintaining accu-
racy. Table 3 shows that a small step size does not alter the
fiber tracking results. When the step size is set to 2mm,
computational speed improves but tracking accuracy
decreases, resulting in the loss of some fine or rapidly chang-
ing fibers. For example, in region 4 (marked by the red box
in group e), the tracked fiber distribution is not as compre-
hensive as in groups a and d. In addition, there are some
unbundled error fibers in the area marked by red box 3. In
our experiments, we found that the method tracks the short-
est fibers at 11.77mm when the step size is 2mm, possibly
due to the risk of losing fine fibers caused by the larger step
size. By appropriately choosing the step size, we can mitigate
the impact of noise in the data and reduce the generation of
erroneous fibers. Therefore, we ultimately set the tracking
step size to 1mm.

By comparing groups (a, f, and g), it can be observed
that an appropriate of deflection curvature setting can
eliminate some unreasonable fibers. For instance, in group
g, marked in red box 6, a deflection curvature of 60°

results in unbundled and unreasonable fibers, whereas in
group a, setting the deflection curvature to 45° appears
to remove these scattered fibers. Furthermore, at the loca-
tions marked in red boxes 5 and 7, group g exhibits overly
curved fibers. Anatomically, fiber bundles are generally
smooth, and any abrupt changes in the trajectory of fiber
tracking are considered to be caused by noise or artifacts.
When the deflection curvature is set to 50°, which is close
to 45°, the visual tracking results are similar to those
obtained at 45°. However, statistical parameters indicate
that setting the deflection curvature to 45° yields better
results in terms of the shortest fiber length, longest fiber
length, and average fiber length. In our experiments, we
select 45° as the deflection curvature termination condition
for fiber tracking.

In relation to the selection of the region of interest
(ROI), since the comparative methods and the FTACTD
method in the experiment utilize the entire brain as the
ROI, with the whole-brain white matter mask serving as seed
points for executing whole-brain fiber tractography, there is
no need to consider the discrepancy in fiber tracking results
due to ROI. Supplementary explanations have already been
included in the paper regarding the chosen ROI region in
the experiment.
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