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A challenge in accurately identifying and classifying left ventricular hypertrophy (LVH) is distinguishing it from hypertrophic
cardiomyopathy (HCM) and Fabry disease. The reliance on imaging techniques often requires the expertise of multiple
specialists, including cardiologists, radiologists, and geneticists. This variability in the interpretation and classification of LVH
leads to inconsistent diagnoses. LVH, HCM, and Fabry cardiomyopathy can be differentiated using T1 mapping on cardiac
magnetic resonance imaging (MRI). However, differentiation between HCM and Fabry cardiomyopathy using echocardiography
or MRI cine images is challenging for cardiologists. Our proposed system named the MRI short-axis view left ventricular
hypertrophy classifier (MSLVHC) is a high-accuracy standardized imaging classification model developed using AI and trained
on MRI short-axis (SAX) view cine images to distinguish between HCM and Fabry disease. The model achieved impressive
performance, with an F1-score of 0.846, an accuracy of 0.909, and an AUC of 0.914 when tested on the Taipei Veterans General
Hospital (TVGH) dataset. Additionally, a single-blinding study and external testing using data from the Taichung Veterans
General Hospital (TCVGH) demonstrated the reliability and effectiveness of the model, achieving an F1-score of 0.727, an
accuracy of 0.806, and an AUC of 0.918, demonstrating the model’s reliability and usefulness. This AI model holds promise as a
valuable tool for assisting specialists in diagnosing LVH diseases.
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1. Introduction

LVH is a common finding in transthoracic echocardiogra-
phy (TTE) in clinical practice and is often associated with
poor cardiovascular outcomes and ventricular arrhythmias
[1]. LVH can be caused by arterial hypertension, aortic ste-
nosis, HCM, Fabry disease, or cardiac amyloidosis. However,
distinguishing between these different etiologies can be chal-
lenging based on morphological features alone. Cardiac
magnetic resonance imaging (MRI) can help differentiate
LVH caused by different cardiomyopathies through tissue
characterization of the myocardium. For instance, native
T1 mapping and extracellular volume (ECV) mapping can
effectively differentiate Fabry cardiomyopathy from cardiac
amyloidosis or HCM, with a decrease in native T1 value in
Fabry cardiomyopathy and a significant increase in T1 value
and ECV in cardiac amyloidosis [2–4]. Among various car-
diomyopathies with LVH, HCM is the most prevalent, with
a reported incidence of 1 : 500 (0.2%) [5, 6]. In Taiwan,
Fabry disease is particularly interesting due to its incidence
of 1/1600 in male newborns, with 82% having a specific gene
mutation of IVS4+919G>A [7]. Fabry disease with this muta-
tion is associated with a late-onset cardiac phenotype, with
LVH developing in the midfifties [8]. Enzyme replacement
therapy is available to treat the deficiency of galactosidase-
A enzyme activity in Fabry disease [9]. Nowadays, cardiac
MRI is recommended for early identification of Fabry cardio-
myopathy fromHCM, which is clinically beneficial for timely
managements [5, 10]. However, there is limited availability of
parametric mapping on cardiac MRI worldwide, and the
standard ranges of native T1 values can vary between differ-
ent MRI scanners [11]. In this study, we aim to use deep
learning techniques to differentiate HCM from Fabry cardio-
myopathy by analyzing cine images using a universal cardio-
vascular magnetic resonance sequence in the absence of
myocardial tissue characterization. There are challenges
associated with training the model, such as variable depth
size and frame rate in the data and the need for large GPU
memory [12, 13]. Nevertheless, there have been significant
advancements in deep learning techniques for medical tasks
and domains [13–18], and 3D residual neural networks (3D
ResNet) are effective in analyzing 3Dmedical images, includ-
ing cardiac MRI [19, 20]. A previous study has used CNN
after segmenting SAX cine images to distinguish HCM from
other hypertrophic mimics, including cardiac amyloidosis,
Fabry disease, and hypertensive hypertrophy [21]. This study
will develop the machine learning model to classify HCM
from Fabry cardiomyopathy without segmentation of SAX
cine images.

1.1. Study Population. This study is a retrospective cohort
study conducted at a tertiary medical center in Taiwan, enroll-
ing patients with Fabry disease from January 2010 to Septem-
ber 2020 and HCM from September 2016 to March 2019. The
identification of Fabry pedigrees was either derived from the
newborn screening program in Taiwan, as described previ-
ously [7, 22] or diagnosed by the clinical presentation of unex-
plained LVH. The diagnosis of Fabry disease was readily
determined by screening of α-Gal A enzyme activity in men

or circulating lyso-globotriaosylsphingosine (lysoGb3) levels
in women and was subsequently confirmed by the genetic
sequencing of the GLA gene [10, 23]. The study cohort
included Fabry disease patients with LVH, or those with
focal wall thickness ≥ 13mm. The HCM was diagnosed by
distinctive features as reported in the previous literature
[24]. Patients with unexplained LVH or focal wall thickness
≥ 15mm were included in these studies. All HCM patients
were excluded from Fabry disease by the survey of enzyme
activity in men and lyso-Gb3 in women and cardiac amy-
loidosis by technetium-99m pyrophosphate scintigraphy
imaging or myocardial tissue characteristics on cardiac
MRI. LVH is defined as an increase in left ventricular (LV)
mass with LV mass index greater than 115 g/m2 in men or
95 g/m2 in women by transthoracic echocardiography, which
is conducted according to the recommendations from the
American Society of Echocardiography [25]. The patients
with unexplained LVH or focal wall thickness ≥ 13mmwith-
out evidence of pressure overload were performed cardiac
MRI in clinical practice. The present study was approved
by the Institutional Review Board of Taipei Veterans General
Hospital (IRB number: 2020-03-003BC), and a written
informed consent was obtained from each patient. The
investigation also conformed to the principles outlined in
the Declaration of Helsinki.

1.2. Cardiac MRI Acquisition Protocol. Cardiac MRI was
performed on 1.5T scanner (GE Optima MR450w, GE
Healthcare, Waukesha, Wisconsin, USA) and on 3T scanner
(Discovery MR750, GE Healthcare, Waukesha, Wisconsin,
USA). Each study applied a cardiac phased array receiver
surface coil and ECG gating. Cine images were obtained by
using a steady-state free precession sequence (echo time
(TE): 1.2-1.6ms, repetition time (TR): 3.2-3.6ms) in a stack
of 8mm thick short-axis slices encompassing the whole ven-
tricles after gadolinium injection and in long-axis slice. On
the other hand, patients with device utilized gradient echo
sequence to minimize artifact. The late gadolinium enhance-
ment image acquisition occurred 10-15 minutes after intra-
venous administration of 0.15mmol/kg and 0.10mmol/kg
gadobutrol (Gadovist, Bayer, Germany) for 1.5 T and 3.0T
scanner, respectively, using an inversion-recovery gradient-
echo pulse sequence with individually adjusted inversion
time to optimize nulling of normal myocardium (typical
TI: 310-380ms) [26]. Field of view was typically set to 300
mm × 300mm (may varied depending on patient size), typ-
ical voxel size of the images was 1 6 × 2 0 × 8mm, the TE
was 3.1–3.5ms, and the TR was 6.2–7.6ms for 1.5T scanner
and TE 2.5-3.1ms and TR 5.46.6ms for 3T scanner. All
patients had obtained informed consent for cardiac MRI,
and patient with cardiac implantable electronic device was
monitored according to standard procedure [27].

1.3. Statistical Analysis. We conducted a statistical analysis
to demonstrate the baseline characteristics and LV parame-
ters of study cohort. Continuous variables are expressed as
the mean ± SD, and categorical variables are expressed as
counts with percentages. Independent sample t-test and
chi-square test were used to compare normally distributed
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continuous and categorical variables. All statistical analyses
were performed using SPSS version 24 (SPSS Inc., Chicago,
IL, USA). Statistical significance was set at two-tailed P <
0 05. All statistical analyses were performed using SPSS ver-
sion 24 (SPSS Inc., Chicago, IL, USA). Statistical significance
was set at two-tailed P < 0 05.

2. Materials and Methods

2.1. Data Sources. The research study was conducted under
the approval of the Institutional Review Board (IRB) at
Taipei Veterans General Hospital (TVGH) and Taichung
Veterans General Hospital (TCVGH). The TVGH and
TCVGH datasets comprised digital imaging and communi-
cations in medicine- (DICOM-) formatted images acquired
using GE Healthcare Systems’ magnetic resonance imaging
(MRI) technology. Specifically, the study focused on the
short-axis (SAX) view cine images obtained from MRI scans.
We collected 215 MRI images, including 156 images of
patients with Fabry disease and 59 images of patients with
hypertrophic cardiomyopathies. To evaluate our model’s
accuracy and generalization ability, we randomly split the
data into a training set of 80% and a testing set of 20%. Addi-
tionally, we collected 31 MRI images of patients manufac-
tured by Siemens Healthcare Systems from TCVGH to
validate our model’s generalization ability. All images used
in the study had either 512 × 512 or 256 × 256 pixels in size.
The TVGH SAX view cine images consisted of 8mm or
10mm thick slices with frame rates of 20, 30, or 40. Please
refer to Figure 1 for a visual representation of the external
verification process.

2.2. Implementation Details and Data Preprocessing. In the
SAX view, cardiac images contain four dimensions—height,
width, depth, and time. Since each patient’s heart size and
heartbeat vary during the MRI scan, the resulting images
have varying slice numbers and frame rates. We adopt sev-
eral preprocessing steps to standardize the data configura-
tions, including pixel sizes, frame rates, and slice numbers
[13]. Firstly, we resize the images to 256 × 256 using bilinear
interpolation [28]. Subsequently, we crop the images
between 50 and 200 to remove noncardiac organs. To pre-
serve the cardiac cycle, we downsample the sampling rate
to a frame rate of 20 using the Fourier method [29].

Next, we select five slices, including the middle and two
on either side. While we could consider taking more slices,
such as three on each side, this approach could capture
unwanted areas, such as the atrium, or miss the heart, lead-
ing to a higher computational burden and lower information
gain. Finally, we stack the time and depth dimensions
together, resulting in a video with a shape of 100 × 150 ×
150. We apply min-max normalization to the resulting video
to rescale the values between 0 and 1 [30].

2.3. Designed Models. For this study, we divided the dataset
into 80% for training and 20% for testing. To select the best
hyperparameters for our model, we employed stratified 5-
fold cross-validation [31]. We evaluated the F1-score metric
to identify the optimal mean validation F1-score and epoch.

Subsequently, we trained a final model using 80% of the
training dataset and the identified optimal hyperparameters.
Additionally, we calculated various metrics based on the
mean and standard deviation of the 5-fold cross-validation
results [21].

2.4. Data Processing Flow. This model is aimed at identifying
the direction of a video shot in MRI. Depending on the
scanning process, video files may be obtained in either a
ventricle-to-atrium or an atrium-to-ventricle direction,
which can affect the development of the model. To address
this issue, we developed a model that automatically identifies
the order in which the images were collected, thus enabling
us to standardize the order from ventricle to atrium. We uti-
lized a 3D convolution neural network (3D CNN) structure,
specifically the 3D ResNet18 model, as shown in Figure 2
[20]. Since we needed to perform two-class classification
and the output of 3D ResNet18 is in 2048 dimensions, we
connected four dense layers and dropout layers after each
dense layer to avoid bottlenecks caused by extreme compres-
sion [32]. To prevent overfitting, we also incorporated
dropout layers, L2 regularization, label smoothing, and aug-
mentation techniques, such as random rotation from −π/6
to π/6, which effectively doubled our dataset by creating a
reverse order. It is important to note that we rotated the
video (i.e., all images must rotate at the same angle), as illus-
trated in Figure 3. We used class weight [33] to address the
imbalance problem. Specifically, the TVGH image dataset
had 153 instances of atrium-to-ventricle and 63 instances
of ventricle-to-atrium. In comparison, the TCVGH image
dataset had 13 instances of atrium-to-ventricle and 18
instances of ventricle-to-atrium. We used 5-fold cross-
validation to identify the optimal hyperparameters and
fine-tune the model. Ultimately, this model can differentiate
the order of shot images and standardize the order of videos.
It is worth noting that all the algorithms for LVH disease
classification were implemented using the TensorFlow
2.10.0 deep learning framework on a desktop computer run-
ning the Linux Ubuntu operating system. The TensorFlow
platform was deployed on a system equipped with an Intel
i7-8700K processor and 62GB of memory and an NVIDIA
GTX-1080 Ti GPU boasting 12GB of memory.

2.5. LVH Disease Classification Model. The model is aimed at
distinguishing between Fabry disease and HCM disease. The
model structure in Figure 2 is the same as the identity order
model, except that the fully connected (FC) layer has some
differences and does not perform reverse order augmenta-
tion. After standardizing the imaging direction for all images
(from the ventricle to the atrium), we train the model. There
are two challenges with this dataset.

The first is an imbalance problem, where Fabry disease
has 156 patients and HCM has 59 patients. To address this
issue, we use class weights calculated based on the samples
in each class in the training set [33].

The second challenge is overfitting, a common issue in
deep learning with small datasets. To avoid overfitting, we
add dropout layers after dense layers. Additionally, we add
norm two penalties to the ResNet18 and the fully connected
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layer. The dropout rate is set to 0.4, the fraction of input
units to drop. The CNN’s L2 regularization factor (λ) is
0.00003, while the L2 regularization factor (λ) of the fully
connected layer is 0.005. We set the label smoothing to
0.1, and our loss function is focal loss (where γ is 3) [34].
These methods help to focus on difficult-to-distinguish
samples.

Furthermore, we use a learning rate of 0.00005, a batch
size of 8, and the Adam optimizer. We train the model for
83 epochs, and these parameters are tuned using 5-fold
cross-validation.

3. Experimental Results

3.1. Baseline Characteristics and LV Parameters. The base-
line characteristics and LV parameters measured by echo-
cardiography and MRI are shown in Table 1. In brief, in
patients with LVH, there were no significant differences in
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Figure 1: Diagram of internal and external validation processes, including 5-fold cross-validation and model selection.
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Figure 2: Model architecture based on 3D CNN. Block 1 and block 2 typically refer to different parts of the network designed to process
features at different levels. Block 1 usually refers to the initial few layers of the network, primarily responsible for extracting low-level
features such as edges and colors. Block 2 represents the subsequent stage in the network, tasked with extracting higher-level features
compared to block 1. The stacking of these layers enables the network to learn more abstract and complex features, such as textures and
shapes.

Figure 3: Depiction of selected frames from a 3D MRI sequence
viewed in the short-axis orientation to demonstrate the application
of augmentation technique through random rotation.
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age, body weight, body surface area, and LV mass index
either measured by echocardiography or cardiac MRI in
patients with Fabry disease and HCM. However, patients
with HCM had thicker interventricular septal wall thickness
(IVST) measured by echocardiography compared with
patients with Fabry disease. In patients without LVH but
only focal wall thickness ≥ 13mm, patients with Fabry dis-
ease were younger, male predominant, thinner IVST, and
LV mass index either measured by echocardiography or car-
diac MRI.

3.2. Results for Identifying Order Models. We evaluated the
model’s performance using 5-fold cross-validation, testing
data, and TCVGH externally validated data during the
experiments. The classification results in Table 2 demon-
strate high accuracy, providing confidence that the model
effectively combines SAX view cine images from the ventri-
cle to the atrium when preprocessed.

3.3. Analyze Unified Direction versus Nonunified Direction
Training Models. After analyzing Table 3, it was observed
that unifying the video direction led to better performance
than when it was nonunified. This performance improve-
ment was observed in the 5-fold cross-validation and the
TVGH testing set. Consequently, based on this result, the
decision was made to unify the training video direction.

3.4. Differentiate between Fabry Cardiomyopathy and HCM.
In Table 4, we present the performance analysis of our
experiment for the classification of Fabry cardiomyopathy
and HCM. The evaluation was performed using 5-fold
cross-validation, internal testing at TVGH, and external val-
idation at TCVGH. We employed a 5-fold cross-validation
technique to evaluate the performance of our model and
identify the optimal hyperparameters based on the highest
F1-score obtained. The best F1-score achieved was 0.861,
and we utilized this model for training our final classifier
for predicting the testing set. Our final model achieved an
F1-score of 0.861, an accuracy of 0.909, and an AUC of
0.914. However, when it comes to external verification, we

face significant challenges due to variations in the equip-
ment, personnel, and practices employed by manufacturers,
doctors, and technicians. In addition, our test was a single-
blinded study, and we only had one opportunity to demon-
strate that our model’s performance was acceptable. For the
external verification, our model achieved an F1-score of
0.727, an accuracy of 0.806, and an AUC of 0.918 when
tested on data from TCVGH. Despite the challenges of
external validation, our model’s performance is promising
and merits further investigation.

Table 1: The baseline characteristics and LV parameters evaluated by echocardiography and MRI.

Variables
LVH (n = 113) No LVH but focal wall thickness ≥ 13mm (n = 102)

Fabry (n = 73) HCM (n = 40) P value Fabry (n = 83) HCM (n = 19) P value

Age (yrs) 58 6 ± 10 0 61 1 ± 13 2 0.27 49 1 ± 13 3 56 4 ± 14 4 0.04

Male, n (%) 41 (56.2) 21 (52.5) 0.84 63 (75.6) 9 (47.4) 0.02

Body weight (kg) 64 6 ± 12 7 67 6 ± 13 5 0.24 67 9 ± 13 1 69 2 ± 11 6 0.7

Body surface area (kg/m2) 1 70 ± 0 20 1 74 ± 0 22 0.27 1 76 ± 0 20 1.780.19 0.64

IVST (mm) 14 6 ± 3 81 17 5 ± 4 12 <0.001 10 7 ± 2 81 12 9 ± 3 64 0.008

LV mass index by TTE (g/m2) 163 4 ± 68 8 161 1 ± 38 1 0.84 84 3 ± 14 8 96 5 ± 11 7 0.003

LV mass index by MRI (g/m2) 80 2 ± 28 7 78 6 ± 19 9 0.57 53 2 ± 13 6 66 8 ± 10 7 <0.001
LVEF by TTE (%) 63 3 ± 9 10 64 3 ± 8 09 0.76 66 1 ± 6 59 66 4 ± 10 6 0.91

LVEF by MRI (%) 54 2 ± 8 28 57 0 ± 7 91 0.08 56 8 ± 5 02 60 4 ± 5 33 0.01

IVST: interventricular septal wall thickness; LV: left ventricular; LVEF: left ventricular ejection fraction; MRI: magnetic resonance imaging; TTE: transthoracic
echocardiography.

Table 2: The F1-score and accuracy results for 5-fold cross-
validation, TVGH testing, and TCVGH external validation.

Dataset F1-score Accuracy

5-fold 1.0 1.0

TVGH 1.0 1.0

TCVGH 1.0 1.0

Table 3: Accuracy and F1-score were compared between unified
and nonunified directions using five-fold cross-validation and
TVGH testing.

Dataset Direction F1-score Accuracy

5-fold Unified 0.861 0.924

5-fold Nonunified 0.857 0.924

TVGH Unified 0.846 0.909

TVGH Nonunified 0.769 0.864

Table 4: The F1-score, accuracy, sensitivity, specificity, and AUC
were compared on 5-fold cross-validation, TVGH testing data,
and TCVGH external validation data.

Dataset F1-score Accuracy Sensitivity Specificity AUC

5-fold 0.861 0.924 0.895 0.992 0.967

TVGH 0.846 0.909 0.917 0.906 0.914

TCVGH 0.727 0.806 0.727 0.850 0.918
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Furthermore, a blinded reader from TCVGH (SW.
Chan) interpreted 44 cardiac MRI SAX cine images, consist-
ing of 32 patients with Fabry cardiomyopathy and 12
patients with HCM. The overall diagnostic accuracy was
54.5%. For patients with Fabry cardiomyopathy and HCM,
the diagnostic accuracy was 37.5% and 66.7%, respectively.
SAX cine images on cardiac MRI can only provide wall
motion and morphologic features without tissue character-
istics of myocardium, which makes the differentiation
between Fabry cardiomyopathy from HCM challenging
for human reader.

3.5. Model Visualization. Grad-CAM (gradient-weighted
class activation mapping) [35] is a CNN visualization tech-
nique that enables the identification of model features and
the avoidance of shortcuts to determine the model’s accu-
racy. By presenting slices and frames from both cases,
Grad-CAM highlights the regions where the model pays
the most attention, which helps infer the model’s reliability.
As shown in Figure 4, the model is focused only on the mid-
dle and the heart, with the red portions representing the
areas of most significant attention. As a result, the model
does not take shortcuts when identifying relevant features.

4. Discussions

MRI is frequently used for diagnosing various diseases.
However, it is often difficult for clinicians to determine the
specific type of ventricular hypertrophy solely based on
MRI images. A comprehensive assessment involving medical
history, electrocardiogram (ECG), echocardiography, car-
diac MRI, and cardiac stress testing is usually required to
classify the ventricular hypertrophy type accurately. This
process consumes healthcare resources and time. It would
be exciting news if we could achieve the same level of accu-
racy using only one source of imaging data through the
robust feature engineering and learning abilities of artificial
intelligence (AI). A prior study [36–38] compared our med-
ical imaging research findings for cardiac diseases. Madani
et al. [36] primarily focused on the diagnosis of cardiac dis-
eases using echocardiography images, while Zhou et al. [37]
and Germain et al. [38] concentrated on the diagnosis of
HCM and cardiac amyloidosis using cardiac cine images.

In contrast, our novel approach (MSLVHC) introduces a
distinct method for classifying LVH specific to Fabry cardio-
myopathy from HCM, utilizing MRI short-axis (SAX) view
cine images. In recent years, medical imaging has made sig-
nificant progress, with magnetic resonance imaging (MRI)
being one of the most widely used techniques for diagnosing
and monitoring various diseases. As the complexity and
quantity of MRI data continue to grow, there is an increasing
need for efficient and user-friendly tools to assist healthcare
professionals in analyzing and interpreting these images.

4.1. Novel Deep Learning Approaches for Cardiac Disease
Diagnosis. In this section, we compare the findings of our
study with the referenced literature to provide the results
and contributions of our research. The studies referenced
cover a range of topics in medical imaging, including cardiac

disease diagnosis, HCM mutation prediction, and cardiac
amyloidosis diagnosis. The four kinds of research all present
novel approaches to diagnosing cardiac diseases using deep
learning. Madani et al. [36] focus on the diagnosis of cardiac
disease using echocardiography images, while Zhou et al.
[37] and Germain et al. [38] focus on the diagnosis of
HCM and cardiac amyloidosis, respectively, using cardiac
cine images. Our approach (MSLVHC) presents a new
method to classify LVH for Fabry cardiomyopathy from
HCM using MRI short-axis (SAX) view cine images.
Table 5 compares the four approaches based on data
sources, dataset, technology (AI method), model design,
results, advantages, and disadvantages.

The effective handling of 3D cardiac MRI data is a cru-
cial aspect in advancing the field of medical imaging, and
each of the discussed papers provides unique insights into
the application of deep learning for cardiac analysis. In com-
paring these approaches, it is essential to highlight the
strengths and weaknesses of each method and the possible
implications for future research and clinical application.

Firstly, Madani et al. [36] address the limited labeled
medical imaging data challenge through data-efficient deep
learning models, specifically semisupervised GANs. The
strengths lie in their data efficiency, segmentation for
improved classification, and a comprehensive comparative
analysis of model architectures. However, the limitations of
small sample size and challenges with transfer learning
underscore the need for further exploration and validation
on larger, more diverse datasets.

Zhou et al. [37] introduce an innovative approach for
predicting HCM genetic mutations using deep learning algo-
rithms on cardiovascular magnetic resonance data. Their
strengths include a reasonably sized and diverse dataset,
comparison with established scores, and enhanced predic-
tive performance when combined with clinical scores. Nev-
ertheless, limitations such as a limited dataset and single-
center data raise concerns about the model’s generalizability
and broader utility in cardiac analysis.

Figure 4: Grad-CAM visualizations illustrating the left ventricular
hypertrophy. These images show that the model focuses on cardiac
features without the problem of shortcut learning.

6 International Journal of Biomedical Imaging



In contrast, Germain et al. [38] propose a novel applica-
tion of deep learning for diagnosing cardiac amyloidosis
using a CNN on cine-CMR images. Their strengths lie in
an innovative methodology, an analysis based on patients,
and a comprehensive explanation of their methods. How-
ever, the limited explainability of CNN decisions, the mono-
centric nature of the study, and a relatively small sample size
suggest areas for improvement and further validation.

When assessing the effective handling of 3D cardiac MRI
data, employing 3D CNN, such as the 3D ResNet18, is con-
sidered advantageous. This is attributed to their ability to
analyze spatial and temporal information in cardiac MRI
sequences thoroughly. On the other hand, the disadvantages
of the proposed method focus on the limitation in generali-
zation to diverse datasets. This aligns with the weaknesses
identified by Madani et al. and Zhou et al., where small sam-
ple sizes and single-center data raise concerns about the
broader applicability of their models. The proposed mitiga-
tion plan, involving collecting additional data from diverse
regions and testing on datasets from multiple sources, is cru-
cial for addressing this limitation and enhancing the gener-
alizability of the proposed method.

There is a limitation in our study. In our study cohort,
we included half of patients without LVH defined by LV
mass index measured at papillary muscle level of parasternal
short-axis view on transthoracic echocardiography accord-
ing to the American Society of Echocardiography guideline

[25] but only exhibited with focal wall thickness ≥ 13mm,
which is also reported as LVH. This is the clinical scenario
that patients with Fabry disease or HCM can exhibit similar
hypertrophic subtypes as concentric or asymmetric ventric-
ular hypertrophy. In this subgroup, patients with HCM
had thicker IVST and LV mass index compared with those
with Fabry disease, which might constitute a bias for classi-
fication and assist our AI model to yield the high accuracy
in differentiating ventricular hypertrophy resulted by HCM
or Fabry disease. However, this is the real-world practice
for exploring patients with unexplained ventricular hyper-
trophy, and our AI algorithm works for variable phenotypes
of hypertrophic form in patients with both diseases.

Overall, to handle 3D cardiac MRI data effectively requires
careful consideration of model architecture, dataset character-
istics, and generalization capabilities. Each of the discussed
papers contributes valuable insights and approaches to car-
diac imaging, and future research should focus on address-
ing the identified limitations to ensure the robustness and
applicability of deep learning models in clinical settings.

5. Limitations

There are limitations in this study. First, this is a single-cen-
ter, retrospective cohort study with limited patient datasets
and external validation data. The small study cohort may
impact the generalizability of our model. Second, there are

Table 5: Comparison of deep learning approaches for cardiac disease diagnosis.

Feature Madani et al. [36] Zhou et al. [37] Germain et al. [38] MSLVHC (our approach)

Data
sources

Echocardiography images,
2,269 images

Cardiac cine images, 198
images

Cine-CMR images, 241
images

MRI SAX view cine images,
214 images

Patients Not specified
HCM: 198 (genotype (+): 98,

genotype (−): 100)
Cardiac amyloidosis: 119,
LVH of other origins: 122

Fabry: 156 HCM: 59

Images
LVH: 462, normal apical 4

chamber (a4c): 1,807
HCM: 198 (genotype (+): 98,

genotype (−): 100)
Cardiac amyloidosis: 119,
LVH of other origins: 122

Fabry: 156, HCM: 59

AI method Deep learning Deep learning Deep learning Deep learning

Model
design

Generative adversarial
networks (GAN)

CNN
(InceptionResnetV2)+RNN

(LSTM)
CNN (VGG) 3D CNN (3D ResNet18)

Results
F1-score (0.83), accuracy

(0.92), AUC (-)
F1-score (-), accuracy (0.84),

AUC (0.84)
F1-score (-), accuracy (0.83),

AUC (0.9)
F1-score (0.85), accuracy

(0.91), AUC (0.91)

Strengths

The study proposed data-
efficient deep learning for
medical imaging, leveraging
semisupervised GANs to

enhance model performance
by utilizing labeled and

unlabeled data

The study assessed the deep
learning model’s performance
against established genotype
prediction scores (Mayo
Clinic I and II, Toronto),

ensuring a reliable evaluation

The study demonstrated
CNN’s performance against

experienced human
operators in visual analysis,
assessing its potential to

surpass traditional diagnostic
methods

The study used a 3D
ResNet18, well suited for the
cardiac MRI data’s inherent

3D nature, effectively
capturing spatial and
temporal information

Weaknesses

The study recognizes the
constraint of a small sample
size, urging future research to

enhance generalizability
through larger and more

diverse datasets

The study excludes patients
with HCM phenocopies and
poor image quality, which
may introduce bias, limiting
the model’s relevance to a

broader population

The study was limited to a
single institution and a small
dataset of cine-CMR images.
The generalizability of the

deep learning model to other
institutions and patient
populations is still being

determined

The study acknowledges a
limitation in generalization

capabilities due to the
exclusive use of limited
datasets from specific
hospitals in Taiwan

HCM: hypertrophic cardiomyopathy; LVH: left ventricular hypertrophy.
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various hypertrophic phenotypes in patients with HCM or
Fabry cardiomyopathy. Patients who exhibited unexplained
focal LV wall thickening, apical hypertrophy, or asymmetri-
cal hypertrophy might not meet the criteria to define LVH
from the American Society of Echocardiography guidelines.
However, our study cohort presented various real-world
types of LV hypertrophy, which makes our model applicable
in daily practice. Furthermore, we recognize the potential
confounding effect of the distribution of patients among dif-
ferent magnetic resonance scanners. As discussed in the arti-
cle by Kushol et al. [39], acknowledging the significance of
scanner bias is crucial. Even though we have utilized cross-
validation to enhance the robustness of our model in hopes
of reducing the bias introduced by different scanners, the
potential bias cannot be completely eliminated.

6. Conclusion

The study introduces an AI-driven MRI analysis approach,
MSLVHC, distinguishing between HCM and Fabry disease
with impressive internal validation results (F1-score 0.846,
accuracy 0.909, AUC 0.914). External validation at Taichung
Veterans General Hospital showed promising performance
(F1-score 0.727, accuracy 0.806, AUC 0.918). Challenges
include diverse data acquisition, which will be addressed by
promoting automated techniques for DICOM files and col-
laboration with data providers. Ongoing research is aimed
at refining models for early detection of LVH disease, poten-
tially improving patient outcomes and healthcare decision-
making.
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