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Brain tumors are critical neurological ailments caused by uncontrolled cell growth in the brain or skull, often leading to death. An
increasing patient longevity rate requires prompt detection; however, the complexities of brain tissue make early diagnosis
challenging. Hence, automated tools are necessary to aid healthcare professionals. This study is particularly aimed at improving
the efficacy of computerized brain tumor detection in a clinical setting through a deep learning model. Hence, a novel
thresholding-based MRI image segmentation approach with a transfer learning model based on contour (ContourTL-Net) is
suggested to facilitate the clinical detection of brain malignancies at an initial phase. The model utilizes contour-based analysis,
which is critical for object detection, precise segmentation, and capturing subtle variations in tumor morphology. The model
employs a VGG-16 architecture priorly trained on the “ImageNet” collection for feature extraction and categorization. The
model is designed to utilize its ten nontrainable and three trainable convolutional layers and three dropout layers. The
proposed ContourTL-Net model is evaluated on two benchmark datasets in four ways, among which an unseen case is
considered as the clinical aspect. Validating a deep learning model on unseen data is crucial to determine the model’s
generalization capability, domain adaptation, robustness, and real-world applicability. Here, the presented model’s outcomes
demonstrate a highly accurate classification of the unseen data, achieving a perfect sensitivity and negative predictive value
(NPV) of 100%, 98.60% specificity, 99.12% precision, 99.56% F1-score, and 99.46% accuracy. Additionally, the outcomes of the
suggested model are compared with state-of-the-art methodologies to further enhance its effectiveness. The proposed solution
outperforms the existing solutions in both seen and unseen data, with the potential to significantly improve brain tumor
detection efficiency and accuracy, leading to earlier diagnoses and improved patient outcomes.

1. Introduction

The brain is one of the most significant and complex body
organs, containing billions of cells. Brain tumors cause
deoxyribonucleic acid (DNA) damage in brain cells, which
can lead to brain cancer. A brain tumor can also develop
other cancer-related symptoms in the body. The brain
tumor is influenced by the uncontrolled separation and pro-
liferation of irregular cell types inside or surrounding the
brain. This cell group affects the operation of the brain and
regular cells, resulting in irreversible brain damage and even
mortality [1]. The magnetic resonance imaging (MRI)
pictures of a healthy and tumorous brain are shown in
Figures 1(a) and 1(b), respectively.

In 2019, nearly 86,000 fresh cases were discovered, and
currently, almost 700,000 people are globally suffering
from brain tumors. Since 2019, nearly 16,830 people have
died as a result of brain tumors, with a life expectancy of
35% [2]. According to CancerNet [3], brain and other ner-
vous system cancers are the tenth leading factor in mortal-
ity in humans. There are more than 120 malignancies in
the brain and central nervous system (CNS) [4]. Specialists
prefer MRI because it can capture complete organ images,
tissues, joints, and the entire inner body structure using
intense magnetic fields and radio frequency signals. Some
tumors are durable and unlikely to return due to the
involved cells and impacted portion of the brain, whereas
others may be dangerous, spread quickly, and be more
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difficult to treat. Benign (lower levels I and II) and malig-
nant (higher levels III and IV) brain tumors can be found
[5]. Accurate prediction of brain tumor types is critical in
a treatment setting. Brain tumor identification and seg-
mentation in MRI are critical areas of research in image
analysis. Brain tumor’s size, density, shape, position, and
growth rate vary considerably [6]. Furthermore, different
pathological types of tumors may appear similar [7].
When diagnosing brain tumors from MRI images, doctors
typically use traditional assessment, which often suffers from
human subjectivity. Hence, an automated computer-aided
strategy proved to be effective in early-stage brain tumor
identification with high precision.

The goals of this research are to investigate the impor-
tance of various image processing techniques on MRI images
for determining brain tumors. Hence, an automated
contour-based transfer learning approach using a VGG-16
pretrained model is presented here. The transfer learning
model offers more effectiveness at enhancing generalizabil-
ity, decreasing learning times, and boosting performance
on less labeled data [8]. The fixed architecture of the VGG-
16 model could often cause overfitting on smaller datasets,
particularly medical data; hence, three dropout layers are
introduced after each of the dense layers. This aids in tack-
ling overfitting, capturing high-level features and relation-
ships within the data by randomly dropping out neurons
during the training phase. A thresholding-based segmenta-
tion method is also introduced following contour cropping.
The segmentation technique assisted in retaining the neces-
sary information to efficiently detect and classify brain
tumors from MRI images. Finally, the model was validated
on unseen data to determine its generalizability, robustness,
and real-world applicability. This test case strengthens this
study’s significance in real-world scenarios. As a result of
this study, medical professionals will be better equipped to
diagnose and treat patients by employing MRI images and
a deep learning technique to identify brain cancers. Overall,
the noteworthy contributions of this study include the
following:

(i) This study tackled the data diversity and robustness
of the deep learning model by meticulously utilizing
MRI image processing techniques. Particularly, the
contour identification and cropping with the maxi-
mum area and a thresholding-based tumor segmen-
tation assisted in retaining the maximum notable
features from images

(ii) This study introduces a new thresholding-based
MRI segmentation procedure to segment brain
tumor from the contour-cropped image

(iii) The key innovation lies in enabling three trainable
convolutional layers and incorporating three drop-
out layers within the VGG-16 transfer learning
model to offer an advancement in the ContourTL-
Net model for detecting and classifying brain
tumors. The incorporation of the dropout layers
within the model mitigates overfitting and improves
generalization for efficient handling of unseen MRI
data with high efficacy

The rest of the study is arranged as follows: the literature
review is stated in Section 2, and the suggested methodology
is categorized into subsections and briefly discussed in Sec-
tion 3. Brain contour detection is discussed in Section
3.1.3. The proposed VGG-16 transfer learning model for
effective brain tumor detection is discussed in Section
3.2.2. Section 4 contains four subsections, including the
dataset in Section 4.1 for data acquisition and descriptions.
The experimental analysis is discussed in Section 4.4. The
results are discussed in Section 5 concerning different
methods and the datasets. The future scopes and limitations
are delineated in Section 6. Finally, the conclusion is dis-
cussed in Section 7.

2. Literature Review

Preprocessing, segmentation, and feature obtaining are some
of the image preparation techniques used to detect and

(a) (b)

Figure 1: Visual insights of brain MRI images: (a) normal brain and (b) tumorous brain.
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categorize brain tumors. Machine learning (ML) algorithms
are widely utilized for detection and classification, relying on
features identified by feature obtaining methods. To process
a large amount of data, ML algorithms require more compu-
tational power and time. Advanced deep learning models
based on transfer learning achieved higher classification per-
formance when employed to categorize MRI images without
operating separate feature extraction strategies [4, 9]. Several
image processing operations are performed before feeding
the images into a deep learning model. The preprocessing
stage reduces artifacts that could mislead the model and also
increases its efficiency. To reduce noise, the authors of [10,
11] proposed boosted nonlocal mean filters and anisotropic
diffusion filters, respectively. A similar outcome was
achieved using the level set method for bias field correction
with a median filter proposed in [12]. For segmentation,
researchers used various algorithms, for example, histogram
thresholding-based segmentation [13], Berkeley wavelet
transformation- (BWT-) based tumor segmentation [14],
morphological operation-based segmentation [4], custom
mask region-based segmentation [12], and a multilevel seg-
mentation combining optimal thresholding and watershed
segmentation technique [15]. A color-based separation pro-
cedure is employed by [16] to segment FAIR and T1C-type
MRI images. In most cases, the extracted features from the
segmented sample image were fed into a convolutional neu-
ral network model (CNN) for categorization and achieved
adequate accuracy. Furthermore, the authors in [17] pro-
posed an optimal Kapur’s thresholding-depending segmen-
tation with a deep neural network (OS-DNN) model to
effectively detect the affected region. Their proposed model
had a maximum sensitivity of 97.94%, a specificity of
98.08%, and an accuracy of 98.02%. The ANN [13], support
vector machine (SVM) [11, 16, 18, 19], and k-nearest neigh-
bor (KNN) and random forest (RF) [20] are popularly used
ML classifiers for brain tumor categorization. A chi-square
test for feature selection with gray-level cooccurrence matrix
(GLCM) texture characteristics allowed the SVM to perform
better in [19]. A lightweight ensemble model in [21] incor-
porates numerous XGBoost decision trees to detect brain
cancer from MRI images. The authors extracted intensity,
texture, and shape features from the images to classify four
grades of patients and obtained 93% accuracy. However,
they lack in assessing their model on diverse datasets to
strengthen the practical implementation of the work.
Transfer learning was also used in the [18] brain tumor
classification model to extract discriminative visual fea-
tures and patterns. The experimental result with the fine-
tuned VGG-16 shows an accuracy of 98.69%. The authors
of [22] presented a comprehensive performance analysis of
transfer learning-based pretrained models such as VGG-16,
ResNet-50, and Inception-v3 models for automatic predic-
tion of brain tumors. Using the VGG-16 transfer learning
model, they achieved the highest accuracy of 96%. The
authors [5] train and test deep transfer learning methods
VGG-16, VGG-19, ResNet-50, and densenet21. Using the
“adadelta” optimization algorithm, they discovered the high-
est performance accuracy of 99.02% with the ResNet-50
model.

VGG-16 efficiently recognizes patterns with high preci-
sion and robustness; however, its performance is sensitive
to the collection size and hyperparameter choices [23]. In
order to attain optimal performance, it is therefore difficult
to fine-tune the model in addition to choosing the dataset
and adjusting the hyperparameters. Authors in [24] pro-
posed a CNN-based computerized brain tumor detection
system where geometrical and statistical data augmentation
strategies are used on brain tumor MRI images to improve
CNN performance. They showed a comprehensive analysis
of their model on different datasets, where they analyzed
the model on 72% of unseen data and achieved 98.81% aver-
age accuracy. For the pathological brain image classification,
the authors [25] proposed a fully automated process to
investigate the potential of several pretrained DCNN archi-
tectures with the transfer learning approach. Various pre-
trained DCNNs, such as AlexNet, VGG-19, ResNet-50,
GoogLeNet, Inception-ResNet-v2, VGG-16, ResNet101,
Inception-v3, and Inception-ResNet-v2, were used. A hybrid
network combination of U-Net and VGG-16 with transfer
learning is proposed by authors [26] to simplify the U-Net
architecture. To classify the brain tumor images, different
traditional and hybrid ML models were built and analyzed
[27]. In the experimental analysis of the 16 transfer learning
models, they finally proposed a stacked classifier, VGG-
SCNet (VGG stacked classifier network). In the data analy-
sis, the complete back portion of the images is removed
using contour identification, and each image is cropped
using contour detection. The transfer learning model is a
predefined procedure for the deep learning model to speed
up the training time. Besides, deep learning methods are
very useful in object detection and classification [4, 28].

The authors [29] presented an automated ultralight
brain tumor detection (UL-BTD) technique on top of a
novel ultralight deep learning architecture (UL-DLA) for
deep features. Then, for multiclass categorization of tumors,
they employed an SVM which obtained an average detection
rate of 99.23%. However, an expert opinion on general trial
was needed for clinical evaluation. They also mentioned
that an explainable artificial intelligence technique could
be analyzed to discover complex prediction and decision-
making strategies. The study [30] addressed two issues: (i)
clinical brain tumor segmentation from homogenous data
with high efficiency and (ii) heterogonous data analysis by
constructing a multiscale dilated feature upsampling
network (MDFU-Net). Incorporating multiscale detailed
features (MDF) in the encoder module significantly
enhanced segmentation performance. Then, a decoder
module was designed to process the dense spatial MDF.
Though this model showed considerable performance,
however, for the heterogonous data, it showed a decrease
in sensitivity. An advanced deep learning model, YOLOv7,
has been operated by [31] to perform transfer learning on a
large MRI collection to detect multitype tumor location
precisely and achieve 99.5% accuracy. The convolutional
block attention module (CBAM) was added to the YOLOv7
model to obtain these results. However, they did not dis-
cuss how the model performs on diverse characteristics of
MRI images.
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3. Method and Model

The suggested research work is separated into two stages: the
first is preprocessing, and the second is feature extraction
and classification. Brain contour cropping is included in
the preprocessing step. Following image enhancement, the
thresholding technique is used for segmentation. The pre-
processing phase aids in the reduction of artifacts that could
cause the transfer learning model to be misled. In the second
phase, a transfer learning model is created. To accomplish
this, we used a pretrained model that outperforms other
models for brain tumor detection and classification [18, 22,
26]. The pretrained model’s initial weights are obtained from
the popular “ImageNet” dataset so that the model can be
learned effectively with fewer time and epochs. To evaluate
the proposed transfer learning model, two datasets were
used. The proposed procedure is illustrated in the schematic
diagram in Figure 2.

3.1. Preprocessing. The primary goal of medical image pro-
cessing is to clean MRI images and reduce artifacts to obtain
a better feature of the represented image by using a variety of
image processing techniques such as brightness correction,
contrast enhancement, noise reduction, morphological oper-
ation, and unnecessary object removal. To complete this
research, a region-based segmentation technique is utilized
due to its computational efficiency and simplicity nature
[32]. The segmentation strategy has been enhanced by
extracting the contour area from the image. This shaped
our suggested model to outperform the existing methods.

3.1.1. Grayscale Conversion. A grayscale image is more con-
venient than an RGB image to process as it has only one
channel. To ensure ease of computation, this study initially
modified the RGB image to grayscale to perform more com-
plex operations in less time for various image processing
tasks such as morphological operation and segmentation.
Then, the Gaussian filter was used on the image to enhance
the object’s boundary to further reduce the sudden color
transformations that are normally separated and not neces-
sary to understand the image [33].

3.1.2. Binarize Image. Thresholding is a technique for binar-
izing an image that concentrates on objects or locations of
distinct interest in an image. In this method, a threshold
value T is chosen, and all pixel values less than T are set to
0, otherwise to 255. In order to extract image features, mor-
phological operations support the legation and recital of
region shapes such as borders, skeletons, and convex hulls.
The morphological operation requires a structuring element.
In practice, the structuring characteristic is usually much
lesser than the image and is only rarely used as a 3 × 3
matrix. The two most important morphological operations
are erosion and dilation. (a) Erosion reduces the size of fore-
ground objects and increases the size of foreground holes by
removing pixels on object boundaries. (b) Dilation works by
object expansion by adding pixels to the boundaries of
objects in a picture.

3.1.3. Contour Detection. A contour is defined as a simple
curve that connects all straight points (along the boundary)
that have the same color or intensity. Tumor segmentation
might be affected due to the sensitivity to the selection of
seed point preference [32]. Initializing seed points in the
form of contour guides the effective segmentation process
[34]. This has significantly improved model performance
as well as accuracy [35]. We obtain a median filtered image
suitable for contour detection after preprocessing the images
depicted in the earlier section. The large white portion
within the black area is seen by analyzing the image obtained
in the previous step. This is used frequently as one of the
several techniques for locating blobs (large binary objects)
in a picture using OpenCV [36]. In this work, CV_RETR_
EXTERNAL mode and CV_CHAIN_APPROX_SIMPLE
method are utilized. CV_RETR_EXTERNAL mode retrieves
only the extreme outer contours, and CV_CHAIN_
APPROX_SIMPLE compresses horizontal, vertical, and
diagonal segments and leaves only their endpoints. After
identifying the connected contours of the image, the outer
boundaries of the connected contour are calculated. Then,
cropping was done by selecting the most significant contour
as shown in Figure 3. This enhanced the performance and
precision of object identification significantly in our work.

3.1.4. Enhancement. After detecting and cropping contours
in the MRI images from the last section, an image resizing
operation is performed to reduce the input images to 144
× 144 size. Then, image enhancement strategies are
employed to eliminate anomalies between image areas and
improve visual clarity. Effective image enhancement reduces
redundant pixels and noise, enhancing separation between
bright and dark regions [37]. To utilize these benefits, the
resized images are subjected to brightness and contrast
enhancement techniques, which increase the difference
between abnormal and normal cells (Figure 4).

3.1.5. Segmentation. Finally, a region-focused segmentation
strategy is performed to divide the images into subparts
which is used to extract the tumor. In this phase, the thresh-
old segmentation is operated to compare each pixel value in
the MRI image to the threshold value. If the pixel value is
less than the threshold value, it becomes zero; if it is greater
than or equal to the pixel value, it remains unchanged. The
segmentation procedure is described by equation (1). By
comparing a threshold value, this procedure removes pixels
other than the tumor area.

f x, y =
f x, y , if f x, y ≥ threshold,

0, otherwise
1

Except for the spatial attributes of an image, threshold-
ing is an efficient technique for image segmentation [38]. It
minimizes the overall computational complexity and works
faster than other methods. The tumor segmentation process
is illustrated in Figure 5, where the threshold value is com-
puted using Algorithm 1.
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Stage 1 Stage 3

Stage 2 Stage 4
Input image

Convert image
to gray-scale

image

Blur image

Used gaussian
blur

Binarize image

Stage 5 Stage 7

Stage 6

Find contour
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Applied dilation
followed by

erosion

Crop brain
contour

Used four extreme
points from the

outer boundaries

Figure 3: Process of brain contour cropping, showcasing image preprocessing techniques and enhancements to effective contour detection
and cropping.

Brain tumor
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Read image
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Resize
image into
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Data
augmentation

Improve image
quality

Image
segmentation

Pre-processing

Feature extraction and
classification

VGG16-
transfer learning

model

Training
dataset

Test
dataset

Training
dataset

Test
dataset

Data split

Output prediction
Tumor: yes

Tumor: no

Figure 2: The detailed proposed architecture for efficient brain tumor detection. This begins with preprocessing the input MRI images and
then employing transfer learning with a VGG-16 pretrained model for robust feature gathering and effective tumor identification.
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3.2. Feature Extraction and Classification. The CNN has an
exceptional feature extraction technique in terms of speed
and efficacy when compared to the existing conventional
feature obtaining strategies. CNN extracts input image fea-
tures, which are then utilized by another neural network to
classify the images. In this study, the VGG-16 deep neural
architecture is used for feature extraction and classification.

3.2.1. Transfer Learning. Transfer learning solves problems
by applying previously learned knowledge to a new task.
Rather than creating a model from scratch, the deep transfer
learning model utilized the learned knowledge from a mas-
sive amount of data such as “ImageNet” weights for image
classification, to transfer information from the source
domain to the target domain [26]. The transfer learning pro-
cess is depicted in Figure 6. This has a positive impact on
many difficult domains to improve due to a lack of training
data [39]. Transfer learning has the advantage of reducing
overall training time because it uses the weights of a pre-

trained model [5]. Using the weights of an earlier learned
model with a large amount of data yields more consistent
and high-performance results [5]. Furthermore, no feature
extraction step is required [25].

3.2.2. VGG-16 Transfer Learning Model. Along with other
pretrained models DenseNet121, ResNet50, and Incep-
tionv3, the VGG-16 model is a widely utilized pretrained
DCNN model for analyzing medical images and automatic
feature extraction and classification [40–42]. Compared to
other models, the VGG16’s simplicity and uniformity in
architecture make it a good fit for transfer learning applica-
tions and convenient training complexity [43]; particularly,
it carries excellent generalization capability in the medical
field where domain knowledge is essential. In this experi-
ment, a transfer learning network is designed using the
well-known VGG-16 pretrained CNN model. The model,
as proposed in study [44], consists of total 16 layers, with
13 layers performing convolution (Convo) and the remain-
ing three layers being fully connected. It contains 138 mil-
lion trainable parameters and achieves 92.7 percent top 5
test accuracy in the “ImageNet” dataset. The VGG-16 model
transfers the extracted features to the fully connected layer to
classify the image after extracting features from the image
(Figure 7).

To transfer knowledge from previously trained layers
with the “ImageNet” dataset, the first ten of its pretrained
Convo layers were kept frozen, preventing them from being
trained during the training phase. The remaining three
layers were prepared with the provided image data. There
were 11,602,818 trainable parameters in total. It accepts
dimension input of 14 × 144 × 3. Stride 1 is used with 3 × 3
filters in the Convo layers. With the 2 × 2 window size and
stride 2, five max-pooling operations are performed. A total
of three dropout layers are used after each dense layer during
training to set the input units to 0 at random with a fre-
quency of rate. It aids in the prevention of overfitting [45].
In the final layer, a softmax activation function is employed
to specify which class the network outputs belong to. The
softmax activation function yields a probability value rang-
ing from 0 to 1 (Equation (2)). Rectified linear unit (ReLU)
activation function (Equation (3)) is used in all hidden
layers. The architecture related to VGG-16 transfer learning
is depicted in Figure 7.

Softmax zi =
ezi

∑k
j=1e

zi
2

Here, z represents the output layer’s value from the neu-
ron and

F x =max 0, x 3

4. Performance Evaluation

Python was used to develop and test the proposed metho-
dology’s experimental justifications. To code, test, and
analyze model performance, several libraries, particularly
TensorFlow and Keras, were embedded in the system. The

Brightness
enhancement

Contrast
enhancement

Input image

Figure 4: Illustration of the brain MRI image quality enhancement
process.

Create mask

Threshold
segmentation

Image
enhancement

Figure 5: Tumor segmentation process in brain MRI images
through advanced thresholding techniques assisting the model to
gather significant features from the images.
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proposed VGG-16 architecture is trained and tested using
Colab Notebook on the Google Cloud Platform. This plat-
form includes a 12GB NVIDIA Tesla K80 GPU that can
run in the background for up to 12 hours and is tightly inte-
grated with Google Drive.

4.1. Dataset. A set of experiments has been performed on
publicly available two distinct datasets: dataset-1 (BR253)
[46] and dataset-2 (BR35H) [47]. These datasets are col-
lected from the “Kaggle Website” and contain diverse
patient MRI image data of different dimensions. Both the
datasets are labeled into two classes (yes and no) depending
on the tumor presence in the image.

The BR253 collection contains 253 brain MRI images,
out of which 98 are normal, while the remaining 155 are
abnormal. Though most image formats are JPG, however,
a few PNG images are also seen in this dataset. The
BR35H dataset contains a total of 3000 brain MRI images
where 50% are denoted as normal and the rest 50% are
labeled as abnormal MRIs. All the images seen in this dataset
are in JPG format. The BR35H dataset also includes T1-
weighted and T2-weighted image sequences. The BR35H
dataset is rated as 7.5 in terms of usability. The data usability
rating is based on tagging, data overview, licensing, descrip-
tion, ease of maintainability assurance, machine-readable file
formats, metadata, and public kernel availability. Several
images from the BR253 and BR35H datasets are consecu-
tively shown in Figures 8 and 9.

4.2. Data Augmentation. This study employs a data augmen-
tation procedure to expand the dataset size. This ensures the
deep learning model’s robustness, allows a comprehensive
assessment, and extends its generalizability to previously
undiscovered scenarios [48]. Data augmentation involves
increasing the amount of data in a set through various trans-
formations. Here, different image variations are generated
through the data augmentation techniques to reduce model
overfitting during the training period and increase detection
accuracy for unseen data. The basic techniques for increas-
ing the amount of data are rotation, flipping, and zooming
(i.e., zoom in, zoom out). The rotation is carried out using
Equations (4) and (5). The image is also mirrored from the
vertical and horizontal directions, as described in Equations
(6) and (7). Figure 10 illustrates examples of image augmen-
tation applied to brain images.

Rθ =
cos θ −sin θ

sin θ cos θ
, 4

BTrotate X, Y = BTRθ, 5

BTflip−v X, Y = BT X,−Y , 6

BTflip−h X, Y = BT −X, Y 7

4.3. Training and Testing. Evaluating a model’s validation is
crucial when analyzing augmented and nonaugmented data.
Augmentation transforms data to expand the dataset; how-
ever, the model’s robustness in real-world applications can
be discovered by using unaltered original data, as the aug-
mented medical image might introduce artifacts that are
absent in the original collection. Validating on the nonaug-
mented dataset ensures that the model’s predictions align
with the original medical image’s characteristics. This also
uncovers the model’s performance on the same dataset for
two scenarios (i.e., augmented and nonaugmented). This
suggested model has been evaluated on two datasets,
BR253 and BR35H, in four ways. The system first used data
augmentation techniques to increase the image numbers in
the BR253 and BR35H datasets; then, four distinct test

Input: An 2D image Imgr,c , r = 0, 1,⋯, 144, c = 0, 1,⋯, 144
Output: Segmented 2D image of size (144 × 144)

1. Initialization
(a) imgSize = 144
(b) sum = 0, element = 0

2. For r⟵ 0 to imgSize do
(a) For c⟵ 0 to imgSize do

i. If (Img r c > 0) Then,
A. sum⟵ sum + Img r c
B. element⟵ element + 1

(b) End For
3. End For
4. threshold⟵ sum/element + constant
5. Return threshold

Algorithm 1: Image segmentation threshold point.

Dataset-1 Prediction-1

Task 1

Dataset-2 Prediction-2

Task 2

Knowledge transfer

Model Head

Model Head

Figure 6: Visual explanation of the transfer learning procedure.
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scenarios, (i) BR253, (ii) BR35H, (iii) BR35H dataset with no
augmentation (BR35H-NA), and (iv) unseen cases, were
designed, as shown in Table 1. The first three datasets
BR253, BR35H, and BR35H-NA utilized 80% of the total
images for training, 20% of the training images for valida-
tion, and the final 20% of total images for testing the model.
For the final model evaluation scenario (i.e., unseen case),

both the BR35H and BR253 datasets are utilized. In this case,
the BR35H and BR253 collections are augmented to gener-
ate a total of 24000 and 2024 images, respectively. For train-
ing and validation, the augmented BR35H dataset was
divided into two halves for training and validation: 70% of
the overall dataset was used for training, and 30% was used
to validate the model. Finally, for the unseen scenario, the
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Figure 7: The proposed VGG-16 transfer learning model, designed by freezing ten initial convolutional layers and fine-tuning the three
subsequent convolutional layers with the investigated dataset, enhances precision in brain tumor classification.

(a) (b)

(c) (d)

Figure 8: BR253 MRI image: (a, b) nontumorous brain and (c, d) tumorous brain.
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model has been tested with completely unknown 2024
images from the augmented BR253 dataset.

4.4. Experimental Analysis. In this study, two types of images
were classified using the VGG-16 transfer learning architec-
ture: brain tumor and nonbrain tumor. This fine-tuned
model extracts relevant features from images using learned
weights from the “ImageNet” dataset and the “RMSprop”
optimizer with a learning rate of “2e-5”. The “sparse categor-
ical cross-entropy” loss function is used to compute the
quantity that the VGG-16 model should seek to minimize
during the training phase. This loss function labeled the out-

put as an integer (0, 1, 2, 3… and so on). For this study, all
the hyperparameters of the model were chosen based on the
sensitivity of the dataset during training the model. The model
extracted features from the MRI images, which were then clas-
sified using a three-layer fully connected neural network. To
ensure the robustness of our findings, multiple evaluations of
our deep learning model have been conducted on the same
dataset with random train-test-validation splits. This operation
was repeated three times to observe the variability in outcomes
and assess the consistency of the model’s performance. By
employing this approach, this study is aimed at offering amore
comprehensive understanding of the model’s generalization

(a) (b)

(c) (d)

Figure 9: BR35H MRI image: (a, b) nontumorous brain and (c, d) tumorous brain.

(a) (b) (c) (d) (e) (f)

Figure 10: Brain tumor data augmentation sample image: (a) rotation, (b) flip vertical, (c) flip horizontal, (d) flip horizontal-vertical, (e) zoom
in, and (f) zoom out.
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capability and at mitigating the influence of specific random
splits on the mentioned evaluation metrics. During the train-
ing phase, the dropout layers were used to randomly drop
some connections in order to provide more generalizability.
Early stopping with dropout aids in addressing model over-
fitting [45]. Overfitting appears when the model trains too
well on the training sample, such that the model performs
best on the training sample but not well on the test or
unknown sample [45]. At this point, the validation loss
begins to decrease before increasing again. Seven perfor-
mance assessment metrics, including (i) sensitivity or recall,
(ii) specificity or true negative (TN), (iii) precision or positive
predictive value (PPV), (iv) NPV, (v) accuracy, (vi) F1-score,
and (vii) ROC-AUC, were employed to evaluate the sug-
gested methodology. ROC-AUC is an acronym that stands
for “region of the curve” and “area under the curve.” Sensitiv-
ity and specificity both assess the model’s ability to correctly
classify positive and negative cases, respectively. Sensitivity
pertains to the model’s performance in identifying true posi-
tive cases, such as images with brain tumors, while specificity
refers to its performance in identifying true negative cases,
for instance, images without brain tumors or normal cases.
Precision is calculated by dividing the number of true posi-
tive predictions by the sum of true positive and false positive

predictions, representing the accuracy of positive predictions
within the positive class. The F1-score is a harmonic mean of
precision and recall, providing a balanced measure of a
model’s performance across both precision and recall. It
serves as a comprehensive assessment indicator for the gen-
eral performance of the model [48]. Accuracy, on the other
hand, measures the ratio of correctly predicted instances to
the total number of instances, providing an overall assess-
ment of the model’s correctness. The metric ROC-AUC tests

Table 1: Data partitioning: distribution and allocation of the four datasets for training, validation, and testing phases in the experimentation
process.

S/L Dataset Total images Trained images Validation images Target images

1 BR253 9108 5828 1458 1822

2 BR35H 24000 15360 4800 3840

3 BR35H-NA 3000 1920 480 600

4 Unseen case 26024 (augmented BR253 and BR35H) 16800 7200 2024

Table 2: Experimental result (%) analysis for BR253 dataset.

S/L Sensitivity (recall) Specificity (TN) Precision (PPV) NPV Accuracy F1-score ROC-AUC

1 99.73 99.44 99.64 99.58 99.62 99.68 0.996

2 99.63 99.33 99.54 99.46 99.51 99.58 0.995

3 99.63 99.64 99.09 99.45 99.23 99.36 0.991

Significant performances are denoted in bold.

Table 3: Experimental result (%) analysis for BR35H dataset.

S/L Sensitivity (recall) Specificity (TN) Precision (PPV) NPV Accuracy F1-score ROC-AUC

1 99.95 99.92 99.92 99.96 99.94 99.94 0.999

2 99.87 100 100 99.88 99.94 99.94 0.999

3 99.96 99.92 99.92 99.96 99.94 99.94 0.999

Significant performances are denoted in bold.

Table 4: Experimental result (%) analysis for BR35H dataset with no augmentation.

S/L Sensitivity (recall) Specificity (TN) Precision (PPV) NPV Accuracy F1-score ROC-AUC

1 98.44 98.57 98.75 98.22 98.50 98.59 0.939

2 97.81 98.93 99.05 97.54 98.33 98.43 0.93

3 97.5 99.64 99.68 97.21 98.50 98.58 0.939

Significant performances are denoted in bold.

Table 5: Experimental result (%) evaluation of the proposed
methodology with the state-of-the-art methods for BR253 dataset.

Methods
Sensitivity
(recall)

Specificity
(TN)

Accuracy

Improved model [50] 94.70 100 97.01

ResNet-50 model [53] — — 95.0

VGG-SCNet model [27] 99.10 — —

UNet-VGG-16 model [26] — — 96.10

BrainMRNet model [39] 96.0 96.08 96.05

OS-DNN model [17] 97.94 98.08 98.02

Proposed model 99.63 99.33 99.51

Significant performances are denoted in bold.
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a model’s capabilities by visually discriminating between
model classes at various threshold points. The AUC is a mea-
sure or degree of separability. AUC is the volume of the area
of the unit square; it is always between 0 and 1. The greater
the AUC, the more accurate the model. AUC value should
be close to 1 for better classification performance [49]. The
best ROC-AUC value is considered in this investigation to
determine the model’s fairness.

As the suggested system is based on contour detection,
after successful contour spotting and segmentation in the
preprocessing step, the images are fed into a VGG-16-
based transfer learning model. The tumor detection perfor-
mances of the model were examined on the BR253,
BR35H, and BR35H-NA datasets, and then, the clinical sig-
nificance was investigated by assessing the model on the
unseen data. The dataset BR35H is used to train the model
for the unseen scenario, and the dataset BR253 is used to test
the unseen data. The model was run three times on each data-
set individually, and the results are shown in Tables 2–4. The
ROC-AUC and validation loss curves guided the study to
determine the optimal outcome among all.

The result comparison for the suggested model with
the existing models for dataset BR253 is shown in
Table 5. Although the enhanced model in [50] has higher
specificity (0.67%) compared to other models, our sug-
gested ContourTL-Net model surpasses the existing
model’s sensitivity and accuracy by 4.93% and 2.5%,
respectively, which indicates its ability to better identification
of true positive cases for the specific BR253 dataset. While
comparing accuracy and sensitivity across Table 5, our pro-

posed model achieves the highest accuracy (99.51%) and sen-
sitivity (99.63%), outperforming the second-best accuracy
(98.02%) by the OS-DNN model [17] by 1.49% and the
second-best sensitivity (99.1%) by the VGG-SCNet model
[27] by 0.53%. This strengthens the suggested model’s capa-
bility to effectively identify positive and negative brain tumor
cases and enhances the detection accuracy particularly
BR253 data.

Table 6 compares the performance of the proposed
methodology with augmentation and without augmentation
with state-of-the-art methods for the BR35H dataset. The
proposed model achieves superior results compared to the
no-augmentation model across all metrics. These high
values indicate the model’s ability to accurately identify
brain tumors while minimizing false positives and negatives.
Even though there has not been much work done on the
BR35H dataset to compare positive and negative case identi-
fication performance, the results in Table 6 demonstrate the
accuracy comparison with the existing works. The suggested
model with augmentation achieved 99.94% accuracy, sur-
passing the closest result by DCNN with SGD optimization
model [51] by 0.94%.

For the clinical study, an unseen dataset BR253 with aug-
mentation (2024 images) is evaluated by the proposed
ContourTL-Net model, which was trained with BR35H with
augmentation (16800 images) and obtained 99.46% accu-
racy. We took five sets of testing results for the unseen data,
and the results of testing the unseen data are shown in
Table 7. To compare with the state-of-the-art techniques,
the best unseen case outcomes are adapted from Tables 7

Table 6: Experimental result (%) evaluation of the proposed methodology with the state-of-the-art methods for BR35H dataset.

Methods Sensitivity (recall) Specificity (TN) Precision (PPV) NPV Accuracy

DenseNet-169-based FC layer model [54] — — — — 98.83

DCNN with SGD optimization [51] — — — — 99.0

Proposed model (no augmentation) 98.44 98.57 98.75 98.22 98.50

Proposed model 99.96 99.92 99.92 99.96 99.94

Significant performances are denoted in bold.

Table 7: Experimental result (%) analysis for unseen data.

S/L Sensitivity (recall) Specificity (TN) Precision (PPV) NPV Accuracy F1-score ROC-AUC

1 100 99.49 99.68 100 99.80 99.84 0.997

2 99.44 99.62 99.78 99.11 99.51 99.60 0.995

3 99.76 98.47 99.04 99.61 99.26 99.40 0.991

4 100 98.60 99.12 100 99.46 99.56 0.997

5 99.92 99.36 99.60 99.87 99.70 99.76 0.996

Significant performances are denoted in bold.

Table 8: Experimental result (%) evaluation of the proposed methodology with the state-of-the-art methods for unseen dataset.

Method No. of total test image Sensitivity (recall) PPV (precision) Accuracy (%)

CNN model [24] 1265 94.80 98.33 96.25

Isolated CNN classifier [52] — — — 97.20

Proposed model 2024 100 99.12 99.46

Significant performances are denoted in bold.
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and 8. This model’s accuracy beats the existing study, CNN
model [24] and isolated CNN classifier [52], by 3.21% and
2.26%, respectively, as illustrated in Table 8. The suggested
model showcases its extensive ability to correctly identify
all positive cases of brain tumors in the unseen dataset by
achieving 100% sensitivity and surpasses the CNN model
[27] by 5.2%. The model’s precision of 99.12% surpasses
the existing CNN model [27] by 0.79% indicating a high reli-
ability with a low rate of false positives, enhancing its efficacy
in brain tumor identification.

5. Discussion

From Table 2, S/L no. 2 is identified as the best result among
all three test results for dataset BR253. Table 9 shows that
the validation loss curve for test 1 has a sudden considerable
change at epoch 20 and the validation loss curve for test 3
has a sudden significant change at epoch 11. In contrast, test
2 does not have a too big sudden change in the epoch. From
Table 3, S/L number 3 is identified as the best result among
all three results for dataset BR35H. Table 10 shows that the
validation loss curve for test 1 has three sudden big changes
at epochs 4, 21, and 30, while the validation loss curve for
test 2 has four sudden huge changes at epochs 14, 22, 24,
and 29. Although test 3 contains three validation loss
changes, it still attempts to decline at 30 epochs. In
Table 4, S/L number 1 is identified as the best outcome for
dataset BR35H with no augmentation when compared to
the other two validation loss curve S/L nos. 2 and 3 from
Table 11. The performance of the model on a range of data
is illustrated in Figure 11. The suggested model is evaluated
on seven metrics, and the BR35H dataset results show a sig-
nificant dominance compared to the other datasets for spec-
ificity, precision, accuracy, F1-score, and ROC-AUC,
whereas the unseen case outperforms all other datasets for
sensitivity (100%) and NPV (100%) metrics. In Table 12, test

4 has a superior validation loss curve than the other results.
The validation loss for test 4 approaches the training loss.

The overall performance on the BR253 shows degrada-
tion compared to the BR35H dataset; this is due to having
less data in the BR253 collection than the BR35H dataset.
The BR35H with no-augmentation dataset’s results also
advocates this statement as it was unable to exceed any other
outcomes with the original 3000 MRI images in its collec-
tion. As this study’s objective was to detect and classify the
unseen data case with high efficiency thus enhancing the
robustness and data diversity, tackling the model’s evalua-
tion of the unseen case states the strengths of this study by
achieving considerable performance on the evaluation met-
rics sensitivity (100%), specificity (98.6%), PPV (99.12%),
NPV (100%), accuracy (99.46%), F1 (99.56%), and ROC-
AUC (99.70%). This was possible by introducing a modified
new thresholding-based MRI segmentation and fine-tuned
VGG-16 transfer learning model. However, before going
for clinical validation, this model further needs to be tested
with real-life clinical data and increased characteristics of
brain MRI images.

6. Future Works and Limitations

This study presents a ContourTL-Net, by incorporating
image preprocessing and utilizing a pretrained deep learning
model VGG-16. During the preprocessing phase, this study
employs contour cropping followed by segmentation to feed
the pretrained network. The model utilizes pretrained “Ima-
geNet”weights to facilitate the transfer learning process. While
the overall performance of the model on the unseen dataset is
satisfactory, further research into its prediction and decision-
making mechanisms is necessary, especially with a more
extensive dataset. Due to hardware limitations, our investiga-
tion was confined to the [46, 47] datasets. This emphasizes
the need for additional data to facilitate clinical implementa-
tion. Incorporating tumor substructure segmentation with
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larger data such as BraTS2020 [55] could be explored in the
future, to enhance patient survival prediction [56]. A review
by an expert in the area of deep learning and medical imag-
ing might be feasible to assess the proposed ContourTL-Net
model’s real-life applicability. Other recently innovated pre-
trained models such as YOLOv7 and EfficientNet can be
explored to find a better transfer learning approach for
tumor detection. This study implemented the transfer learn-
ing methodology using the VGG-16 architecture. However,
no additional convolutional or attention mechanisms were
incorporated that require extensively conducting the time
and computational complexity. This additional layer inclusion
might also be introduced and analyzed in future investigations.

7. Conclusion

In recent years, MRI images have been increasingly used for
the efficient identification of brain tumors due to the grow-
ing risk of mortality associated with this condition. Early
diagnosis of brain tumors can significantly reduce this risk;
however, current diagnostic methods are time-consuming
and rely on operator expertise; hence, to address these issues,
recent studies include complex deep learning models that
are lacking in experimentally validating on unseen MRI
images. This study proposed a ContourTL-Net methodology
for detecting and classifying brain tumors operating contour
detection and a VGG-16 transfer learning model. The pri-
mary objective was to distinguish between healthy and
abnormal brain tissues at an early stage by offering a deep
learning model that tackles data diversity and ensures
robustness. The model was evaluated on four distinct
sources, with the best results chosen based on validation loss
and ROC-AUC analysis. Additional evaluation criteria were
used to compare the model’s performance with existing
methodologies. The model achieved high accuracy on the
datasets, ranging from 98.50% to 99.94%. In addition, the
model exceeded existing methods for detecting brain tumors
on an unseen dataset, by 2.26% accuracy. For other cases, (i)
in the BR253 dataset, the model outperformed the existing
highest achieved accuracy by 1.49%, and (ii) in the BR35H
dataset with augmented image, the model surpassed the
existing top-scored model by 0.94%. Utilizing large contour
cropping and thresholding segmentation assisted in retain-
ing valuable features. This enhances our suggested model’s
generalizability, robustness, and overall performance when
integrated with our fine-tuned VGG-16 transfer learning
model featuring three dropout layers. Although the results
vary across different datasets, the outcomes are consistent.
Particularly, the unseen case evaluation of the proposed
model validates its significance in detecting benign andmalig-
nant brain tumors in a clinical setup. Overall, the model’s
robust performance suggests its potential by offering a reliable
tool for clinical brain tumor identification to revolutionize
brain tumor diagnosis, enabling prompt intervention and
improving patient outcomes. While the effectiveness of the
proposed model is evident, however, before clinical deploy-
ment, validation by both clinicians and ML experts is recom-
mended. Future research might utilize collaboration between
medical and ML specialists to optimize the tumor segmenta-

tion process and integrate advanced deep learning techniques
to investigate the proposed ContourTL-Net model’s strength.
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