
Research Article
Facile Conversion and Optimization of Structured Illumination
Image Reconstruction Code into the GPU Environment

Kwangsung Oh 1 and Piero R. Bianco 2

1Department of Computer Science, College of Information Science & Technology, University of Nebraska Omaha, Omaha,
NE 68182, USA
2Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha,
NE 68198-6025, USA

Correspondence should be addressed to Kwangsung Oh; kwangsungoh@unomaha.edu and Piero R. Bianco; pbianco@unmc.edu

Received 27 June 2023; Revised 22 January 2024; Accepted 30 January 2024; Published 28 February 2024

Academic Editor: Francisco Gallegos-Funes

Copyright © 2024 Kwangsung Oh and Piero R. Bianco. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Superresolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its relatively high
speed and low photon-induced damage to the cells. The rate-limiting step in observing a superresolution image in SIM is often
the reconstruction speed of the algorithm used to form a single image from as many as nine raw images. Reconstruction
algorithms impose a significant computing burden due to an intricate workflow and a large number of often complex
calculations to produce the final image. Further adding to the computing burden is that the code, even within the MATLAB
environment, can be inefficiently written by microscopists who are noncomputer science researchers. In addition, they do not
take into consideration the processing power of the graphics processing unit (GPU) of the computer. To address these issues,
we present simple but efficient approaches to first revise MATLAB code, followed by conversion to GPU-optimized code.
When combined with cost-effective, high-performance GPU-enabled computers, a 4- to 500-fold improvement in algorithm
execution speed is observed as shown for the image denoising Hessian-SIM algorithm. Importantly, the improved algorithm
produces images identical in quality to the original.

1. Introduction

Superresolution, structured illumination microscopy (SIM)
is an ideal modality for imaging live cells due to its relatively
high speed and low photon-induced damage to the cells in
comparison to other superresolution fluorescence micros-
copy techniques [1, 2]. Structured illumination microscopy
and its variants thereof are based on the original wide-field
design of Gustafsson [3]. SIM consists of two generic com-
ponents: (i) sample illumination by a sinusoidal pattern
and (ii) computational reconstruction of a superresolution
image [4]. Over the years, intensive research has focused
on improving the hardware, the means of sample illumina-
tion, the algorithms to reconstruct images, and approaches
to increase algorithm reconstruction speed [5–9]. The over-
arching goal of these combined efforts is to produce an

imaging modality that produces superresolution images in
real-time with minimal artifacts [1, 10–13].

Often, the rate-limiting step in observing a superresolu-
tion image in SIM is the reconstruction speed of the algo-
rithm required to form a single image from as many as
nine raw images [14, 15]. This follows because the most
widely used approaches perform a Fourier transform of
the captured images, then perform calculations in Fourier
space, and once this is done, an inverse Fourier transform
is done to produce the superresolution image. These recon-
struction algorithms impose a significant computing burden
due to a complex workflow and a large number of calcula-
tions to produce the final image [16, 17]. This requires sev-
eral seconds (10-300 per image) which nullifies real-time
imaging [7, 18]. In addition, image reconstruction calcula-
tions must be performed with great care as artifacts can be

Hindawi
International Journal of Biomedical Imaging
Volume 2024, Article ID 8862387, 15 pages
https://doi.org/10.1155/2024/8862387

https://orcid.org/0000-0003-3281-7325
https://orcid.org/0000-0003-2974-7952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/8862387


introduced into the final images, and this is further compli-
cated by the motion of the cell or organelles during imaging
[10, 16, 17, 19–21].

Until recently, most image reconstruction algorithms
were executed on computer central processing units (CPUs),
where instructions are executed serially. In contrast, the exe-
cution of instructions within the graphics processing unit
(GPU) environment is done in a parallel fashion and is 10-
100-fold faster than the CPU [22–24]. Thus, and due to
the heavy computing burden, it makes sense to reconstruct
superresolution images in the GPU environment. This was
first demonstrated, albeit in a complex fashion, using three
cameras and multiple computers, by Markwirth et al. [25].
More recently, an improved algorithm that used a simplified
workflow called Joint Space and Frequency Reconstruction
SIM (JSFR-SIM) was developed [26]. While this algorithm
is only 2-fold faster than the widely used Wiener SIM, the
conversion of code to the GPU environment resulted in a
77-fold improvement in execution speed. However, the
CPU-GPU code conversion is not straightforward, and in
addition, the vast majority of SIM image reconstruction code
is not written by computer scientists.

Although our approach to producing “GPU-enhanced
code” was initially implemented with JSFR-SIM [26], we
thought it pertinent to present details of how this can be
done. We describe two different GPU-enhanced desktop
computers to facilitate high-speed code execution for SIM
or other imaging modalities. To show how the conversion
can be implemented, we selected the computational-intense
Hessian-SIM as the test code and describe how to enhance
algorithm processing speed within the framework of
MATLAB [18]. MATLAB is a popular programming lan-
guage and computing environment for many microscopy
researchers as it offers an easy way to write, test, and run
image-processing algorithms without background knowl-
edge in computer science. However, the resulting algorithms
can suffer from poor performance due to inefficiently writ-
ten code designed to be executed in the CPU environment
only, as we will demonstrate.

Image denoising, which searches for a clean from a noisy
image, is one of the most important branches of image pro-
cessing [27, 28]. The Hessian-SIM denoising algorithm was
used to remove the fluctuation noise caused by variance
[18]. While the algorithm provides excellent output image
quality, the original MATLAB code performs poorly. For
example, it took 133 seconds to complete the processing of
a single 128 × 256 × 180 stack of 180 images (provided as
raw data with the Hessian-SIM algorithm tested herein).
This test was done using one of the graphic processing unit-
(GPU-) enabled machines used in our experiments
(described in the Materials and Methods). For real-time
imaging of live cells where the motion of cellular compo-
nents is on the millisecond time scale, this image reconstruc-
tion speed is too slow. This follows because the significant
motion of cellular components would have occurred before
image reconstruction using this approach would be com-
plete, and thus, attempts to visualize events would be futile.

A careful examination of the code revealed that it was
inefficiently written by noncomputer science researchers

and without consideration of the GPU. Consequently, in
this paper, we introduce simple but efficient approaches to
first revise MATLAB code, followed by conversion to
GPU-optimized code. These approaches used for superreso-
lution SIM can easily be applied to other image-processing
codes and could also be applied in different high-level lan-
guages such as Python and R. Note that this work targets
researchers who do not have programming background
knowledge and use MATLAB due to its simplicity. In addi-
tion, this paper mainly focuses on how implementations
(code) of image-processing algorithms can be improved
for better performance but not how the algorithms logically
work. Thus, researchers can try to adapt our code-
optimizing approaches to their code when they observe the
performance bottlenecks incurred due to implementations
but not algorithms. The combination of code improvement,
conversion to the GPU environment, and use of a GPU-
enabled computer result in a 4- to 500-fold improvement in
algorithm execution speed, and the resulting image quality
is identical to or better than that produced by the original
algorithm.

2. Results and Discussion

2.1. Identifying Algorithm Performance Bottlenecks. One of
the most important steps to improve the performance of
image-processing algorithms is to locate the code or func-
tions that dominate the overall execution time required to
complete algorithms. If these lines of code are inefficiently
written, they constitute potentially significant bottlenecks.

As MATLAB is frequently used in algorithm writing for
microscopy, the easiest way to find the performance bottle-
necks is to use theMATLABProfiler. This enables researchers
to profile code interactively. The Profiler measures the time
to run code and lists the most time-consuming code and
functions. The users can start the Profiler at the beginning
of their algorithms and end it at the next line of the last lines
of their code.

In our test example, we put the “Profile on” command
before the Hessian-SIM denoising algorithm initiates and
put “Profile viewer” after the algorithm is complete. Once
profiling is done, i.e., the “Profile viewer” command is exe-
cuted, the profiling window will show up (Figure 1).

The results show that the three functionsBregman_Hes-
sian_Denoise()(in the original code,Bregman_Hessian_
Denoise is used as a script but not a function. We refer it as
a function in the following sections for simplicity. We will
explain the differences between scripts and functions in Sec-
tion 2.7), forward_diff(), andback_diff() account for
approximately 96 percent of the overall execution time, or
134 of the 139 seconds (Figure 1(a), black arrows). Note that
the execution time will increase for profiling. Based on the
report, we investigated these three functions to ascertain
how the performance bottleneck occurred. We found that
theBregman_Hessian_Denoise() function includes a loop
iterating 100 times. In the loop, we found that the loop con-
tains six independent denoising tasks that compute values of
six directions in the three dimensions (x, y, z), i.e., xx, xy, xz,
yy, yz, and zz, using the same matrix X as an input. To see

2 International Journal of Biomedical Imaging



which lines of code incur performance bottlenecks, a user
can click a function in the report summary (Figure 1(a))
for a detailed profile, e.g., the execution time of each line
of code in the function. Figure 1(b) shows a detailed profile
of one of the tasks to update values for the xx dimension in
the loop.

In addition, calling forward_diff() and back_

diff() in a loop takes a lot of time. In each task, the for-
ward_diff() and back_diff() functions are called four
times (two for each), i.e., 24 times in each iteration and
2400 function calls in 100 iterations. Further, our analysis
of the forward_diff() and back_diff() functions
reveals that they were inefficiently written as we will discuss
below. In addition, we found that a single line of the code
(line 85 in Figure 1(b)) also takes more than a second, which
incurs another performance degradation. These observa-
tions indicate that these functions are obvious performance
bottlenecks, and if efficiently revised, performance should
improve. Thus, we mainly focused on revising these func-
tions to improve performance.

While the Profiler provides comprehensive profiling
information, users need to wait until the execution is com-
plete to obtain profiling information. To determine the
elapsed time of code and function at runtime, the users
can use the tic and toc functions of MATLAB. The tic()

function records the current time when it is called, and the
toc() function uses the recoded value by the tic function
to calculate the elapsed time. Thus, the tic() function can
be placed at the start of the code, and the toc function can
be placed at the end of the code and functions. Once the
toc() function is called, the MATLAB runtime shows the
elapsed time in the Command Window. By using the Pro-
filer and the tic-toc functions, users can measure code execu-
tion time and identify code and functions that incur
performance bottlenecks.

2.2. Monitoring Hardware Limitations. In addition to imper-
fections in the code, performance bottlenecks may occur due
to limited hardware resources, e.g., CPUs, GPUs, and
memory. If these resources are rate-limiting, refactoring

(a)

(b)

Figure 1: Analysis of potential bottlenecks in the original Hessian-SIM code. (a) The MATLAB Profiler generates a summary for users to
enable evaluation of the potential bottlenecks in the code. (b) A snippet of the detailed profile for the Bregman_Hessian_Denoise () function
showing which lines of code take a lot of time. There are similar lines of similar code for another five tasks. Red lines indicate code lines that
spend more time than other lines.

3International Journal of Biomedical Imaging



(optimizing) code may not improve image-processing per-
formance. For example, a performance bottleneck from a
GPU with a small number of cores and a small size of
video memory (VRAM) may be encountered, and this bot-
tleneck cannot be overcome by utilizing GPU-optimized
code. In this case, upgrading one or more computer com-
ponents will be required to achieve the desired perfor-
mance improvement.

The Task Manager in Windows is a straightforward way
to assess if there is a hardware bottleneck. In addition, this
Windows-based utility can also reveal which components
are being utilized during algorithm execution. To demon-
strate this, the Task Manager was activated, and the original
Hessian-SIM code was executed on three machines that we
used in this work. The results show that the vanilla code of
the algorithm utilizes the CPU inefficiently as utilization
levels were less than 30, 18, and 9%, respectively, in our
machines. In addition, the GPU was not taken advantage
of at all, i.e., 0% GPU utilization (Figure 2). Note the low
GPU utilization is for other processes, e.g., video output (dis-
play), and not for the Hessian-SIM algorithm execution.
Based on such low resource utilization, we predict that opti-
mizing code to take advantage of available hardware on
either a standard computer or a high-performance machine
would improve performance by increasing CPU and GPU
utilization.

2.3. Memory Access and Built-In MATLAB Functions. To
process images, the input images must be loaded into the
registers (CPU’s internal memory) from the main memory.
While the CPU can access the registers and the main mem-
ory, it cannot directly access secondary storage (either
HDD or SSD) that stores image data initially. Once image
data is loaded into the main memory from a second storage
by an operating system, the CPU can access and load it into
the registers to process. Since the main memory is not part
of the CPU, accessing it is much slower than accessing the
registers based on memory locality. Thus, frequent acces-
sing of the main memory such as creating matrixes and
transferring data among matrixes can easily incur perfor-
mance bottlenecks as the CPU cannot make progress until
memory access operations are done. Thus, it is important
to reduce (minimize) memory access to improve overall
performance. It is also important to consider memory
access patterns to maximize performance, i.e., cache mem-
ory (Supplementary Material (available here)). The same
is applied to GPU. To help researchers implement their
algorithms easily, MATLAB provides diverse built-in func-
tions. These functions are highly optimized in terms of
performance with consideration of diverse code optimiza-
tion techniques, algorithms, and memory access. Using
built-in functions will likely result in better performance
compared to customized functions that could be written
inefficiently.

We started revising the two functions, i.e., forward_
diff() and back_diff(), as they spend most of the execu-
tion time (Figure 1). We found that these functions calculate
differences between adjacent elements in the matrix. To
achieve this, these functions create two additional matrixes

and copy the original matrix data into both newly created
matrixes that are used to get differences by subtracting them
(Figure 3(a)). Even though this implementation may be
straightforward, it requires significant memory access for
creating matrixes, copying original matrix values, and sub-
tracting two matrixes for each function call. This signifi-
cantly degrades performance. Furthermore, these functions
are called 2400 times (24 × 100) in the loop with 100 itera-
tions, which further inflates execution time.

To remedy this performance overhead, we first searched
MATLAB for built-in functions to implement the same
functionality. We found the diff(X, n, dim) function that
calculates the differences between adjacent elements in a
matrix. However, this function changes the dimension
(dim) of the input matrix (X) acted on by diff that is reduced
in size by n in the output. For example, for the input image
X (128 × 256 × 180), calling diff(X, 1, 1) results in 127 ×
256 × 180 as an output matrix. Such different dimension
matrix requires additional work, which could be burden-
some work for researchers. It is conceivable that this is the
reason why the authors of the original Hessian-SIM code
implemented these functions by themselves instead of using
the diff() function.

We revisedforward_diff() andback_diff(), to use
thediff() function and preallocated matrixes (memory)
for storing the results (differences), which allows us to effi-
ciently compute the differences of adjacent elements and
avoid unnecessary memory access (Figures 3(a) and 3(b)).
By visual inspection, one can easily see the difference
between the original and improved code. The revised func-
tions (Figure 3(b)) take the additional parameter (out) that
will store the output of the functions. This avoids creating
temporary variables in the functions by using the same
memory for input and output, i.e., in-place memory optimi-
zation. This technique is beneficial when the input data does
not need to be preserved. While we do not use the value
ofout as input, passing and usingout in the functions
improve performance by avoiding memory allocation during
algorithm execution.

We observed that a single line of code requires more
time than other lines, i.e., line 85:signd(signd <0)=0
(Figure 1(b)). This code converts all negative values in a
matrix (signd) to 0 using logical indexing. Since this code
is executed 6 times per iteration (600 times in total), this
code incurs performance overhead. To reduce the over-
head, we searched for MATLAB built-in functions that
can convert negative values to 0. We found themax(A, B)

function that returns an array with the largest elements
taken from A or B. For example,X=max(X, 0) outputs
the matrix (X) in which all negative values are converted
to 0 by comparing all the elements in the X to 0. Such sim-
ple code revisions can improve performance by utilizing
MATLAB built-in functions as we will show in the evaluation
section below.

2.4. Inline Code. While using built-in functions to improve
performance, they are still used inforward_diff() and-
back_diff() functions multiple times (2400 times in total)
in the loop. Since every function call requires memory access

4 International Journal of Biomedical Imaging



for stack operations to keep states of algorithms, frequent
function calls would incur additional performance over-
head. To address this issue, we revised theBregman_Hes-
sian_Denoise() function to calldiff() andmax()
directly in the loop instead of callingforward_diff()
andback_diff(), that is, using inline code, which is a
technique that replaces a function call with the contents

(body) of that function (Figure 4). In this manner, unnec-
essary memory access for function calls is reduced, further
improving performance.

2.5. Duplicated Operations. One of the most common mis-
takes observed in inefficiently written code is conducting
redundant operations in a loop (iteration). If the value is

(a) (b)

(c)

Figure 2: Hardware utilization monitoring is easily performed using Task Manager. A screen capture was performed during the execution
of the original Hessian-SIM denoising algorithm on the three test computers used in this study. (a) Baseline machine. (b) Intel machine. (c)
AMD machine. Red boxes highlight the CPU and GPU utilization by each computer during algorithm execution.

(a)

(b)

Figure 3: The impact of code revision. (a) Complex, unedited code. (b) Simplified and improved code. Revised code of forward_diff()
and back_diff() functions that use the built-in and avoid creating memory (matrixes) in each function call. We use the built-in function,
diff(), that calculates the differences between adjacent elements, and the differences are stored in a preallocated matrix (out). The matrix
is passed as a parameter to the revised function to avoid creating temporary matrixes in each function call, i.e., reduced slow main memory
operations. The variable, position, is created and used to indicate where to store the output of diff(), in the preallocated matrix, i.e., out.
For example, in the code of the right of (b), the output location is adjusted by increasing one of the dimensions based on the third parameter
(dim) by 1. This variable could be removed in the code on the left of (b) by updating the last line of code to out(1:SIZE(1), 1:SIZE(2),

1:SIZE(3). We kept using the variable to be consistent within both codes of (b). Note that the diff () function may create matrixes
internally or use preallocated matrixes, which are hidden from users. We assume that the overhead would be negligible due to
MATLAB’s highly optimized built-in functions.

5International Journal of Biomedical Imaging



known to be constant and used in loops repeatedly, it should
be computed only once to avoid redundant computation.
This follows because redundant operations require more
execution time, thereby degrading performance.

From the six tasks in the loop of the Bregman_Hes-

sian_Denoise() function mentioned previously, we found
that the same function with the same input and parameters
was called multiple times in a loop, e.g., diff (X, 1, 1)

three times in each iteration. Since the results are the same
for each function call, we keep the result of the function call
in the preallocated memory (matrix) at the beginning of the
iteration, e.g., temp_m =diff (X, 1, 1), and use temp_m

when the matrix is needed, thereby eliminating redundant
operations.

TheBregman_Hessian_Denoise() function initializes
the FFT of the difference operator of which values are deter-
mined based on input image size. That is, if the input image
size is the same, these lines of code result in the same value,
i.e., constant values based on image size. To avoid duplicated
calculations for the same image size, we store the results
(constant values) in persistent (secondary) storage, such as
the HDD or SSD. Note that we choose the filename for the
values based on image size to avoid any overwriting of files,
e.g., 128-256-180.mat. Once these values are placed in stor-
age, they can be read from storage from the next execution
instead of calculating them. This approach may provide
marginal benefits only when computing constant values
takes more time than reading them from storage. However,
such a small performance improvement would be highly
appreciated for the latency-strict image progressing algo-
rithms targeting less than a few hundred milliseconds. We
will show the benefit of this approach in the GPU-enabled
revised code in Section 2.10.

2.6. Floating-Point Number Precision. Any real number that
has an infinite number of digits such as 1/3, the square root
of 2, and PI cannot be represented completely since there are
only a finite number of bits for storing them. Computers use
the floating-point representation (IEEE754) citation [29],
either 32-bit (single) or 64-bit (double), to represent real
numbers by finding the closest numbers of real numbers,
which results in precision issues. For example, the real num-
ber 0.3 is represented as follows.

(i) Single precision: 0.300000011920928955078125

(ii) Double precision: 0.299999999999999988897769753
748434595763683319091796875

MATLAB uses double-precision floating-point numbers
by default. For example, X=zeros(10, 10) generates a
10 × 10 double-precision matrix X. In general, computing
single-precision floating numbers should be considerably
faster because it uses half memory compared to double,
which requires fewer floating-point operations. Note that
the performance of calculating floating numbers could vary
based on hardware architectures, e.g., CPU and GPU, that
determine how they are computed. For latency-critical algo-
rithms where single precision is sufficient, MATLAB allows
users to use single-precision floating numbers. For example,
users can use a simple conversion function, e.g., X=sin-
gle(X), or put the argument “single” when creating a
matrix, e.g., X = zeros(10, 10, ‘single’).

In the Hessian-SIM denoising code, we found that
single-precision matrixes and double-precision matrixes
are created and used together for computation, e.g., the
sum of a single-precision matrix and a double-precision
matrix. In this case, the result is always a single-precision
matrix, which makes double-precision useless. In addition,
this requires MATLAB to convert double-precision num-
bers to single-precision numbers at run-time, which incurs
additional overhead. Thus, we revised the code to use single
precision for all matrixes to improve performance. This
approach would result in outputs that are not binary iden-
tical compared to the original code due to precision issues
to represent real numbers. Based on the Hessian-SIM code
that uses both single and double precision interchangeably,
we suggest that such differences are acceptable. Note that
there are similar precision issues between the CPU and
the GPU due to different hardware architectures and algo-
rithms for computing floating-point numbers, which is
unavoidable.

For creating a single-precision matrix, using the zeros()
function with the “single” parameter, e.g., X=zeros(1000,
1000, ‘single’), provides much better performance than
using the single() function, e.g., X = single zeros 1000,
1000 . For example, X=zeros(1000, 1000, ‘single’)

takes 0.071 milliseconds while X=single(zeros(1000,

1000)) tasks 1.267 milliseconds in one of the machines that
we used for evaluating our approaches. This is because the
latter code creates a double-precision matrix first and con-
verts it into a single-precision matrix while the former code
creates a single-precision matrix from the first.

Figure 4: Inline code. The calling function requires additional
memory access to keep machine states in memory, called a stack.
Thus, frequent function calls will result in frequent memory
access, which results in performance degradation. The forward_

diff() and backward_diff() functions are called 24 times in
each iteration in the loop, which incurs significant performance
overhead. This figure shows that the function body can be
directly used instead of calling functions, i.e., inline code. Note
that the dimension of the input acted on by the diff () function
is reduced in size by n in the output. To preserve the matrix size
and avoid creating temporary variables, we use two preallocated
matrixes (temp1 and temp2) and store the reduced matrix
(output of diff()) using array indexing. We set the preallocated
matrixes (temp1 and temp2) to zeros, i.e., temp1 = temp1 ∗0,
before calling the diff() function as the original Hessian-SIM
code fills zeros to the reduced dimension. Note that we use
element-wise multiplication (.∗) to set a matrix to zeros as we
found that it offers better performance than other known
approaches, e.g., temp1 = 0.

6 International Journal of Biomedical Imaging



2.7. Code Structure: Scripts vs. Functions. For the sets of
MATLAB code that are repeatedly used, users can create
either scripts or functions. While both allow users to reuse
the same code, they work differently, which affects perfor-
mance. The scripts are ordinary MATLAB files (∗.m) con-
taining codes. To execute scripts, users can type the script
filename (without extension) in the Command Window,
double-click the script file, or put the filename in the code.
Scripts work like functions, but they do not take parameters
and return values. Functions contain sets of codes like
scripts but are declared by MATLAB keywords, i.e., start
with “function” and end with “end.” Unlike scripts, func-
tions take parameters and return values, which gives more
flexibility and extensibility to users.

In terms of performance, functions generally provide
better performance than scripts because of the reduced
search spaces for lookup variables. Each variable has its life-
time and scope based on where they are created. Variable
lifetime indicates whether a variable is loaded into memory
to be used by the CPU and variable scope determines the
code region where the variable is visible (accessible). If a var-
iable is created in a script, it is a “global” variable that starts
its life when the scripts are executed in the base workspace
and is visible throughout the scripts’ execution. Note that
the base workspace size increases when new scripts are exe-
cuted. When a global variable needs to be accessed, it needs
to be searched from the large base workspace, which yields
performance overhead due to the large search time. On the
other hand, a variable created in functions is a “local” vari-
able that starts its life when the functions are called in a
function workspace (separate from the base workspace)
and is visible only within that function, which has a nar-
rowed search space, which offers better performance com-
pared to searching global variables.

Code analysis shows that the Bregman_Hessian_

Denoise is executed as a script instead of a function, which
incurs a performance overhead due to a larger search space.
To reduce the search time, we converted the script to a func-
tion using MATLAB keywords, i.e., “function” and “end”
for the Bregman_Hessian_Denoise() function. Figure 5
shows the simple code revision to create a function to exploit
a reduced-size workspace for better performance.

Note that theBregman_Hessian_Denoise function
(script) is called only once, and thus, the overhead from
the function call is negligible. This approach offers marginal
performance improvement compared to vanilla code as the
dominant bottlenecks come from the other sets of code. This
approach is highly desirable for latency-sensitive image-
processing algorithms that should be executed in several
hundreds of milliseconds. We will show the benefit of this
approach in GPU-enabled revision code in Section 2.10.

2.8. Concurrency: Exploiting Multiple CPU Cores. Most
recent CPUs offer multiple processing units, i.e., CPU cores.
For example, there are 12, 24, and 64 CPU cores in the
machines that we used in this work. Each CPU core can pro-
cess different tasks independently, i.e., multitasking. Thus,
multiple CPU cores can be used for image-processing algo-
rithms to improve performance by processing different tasks

in parallel, i.e., concurrency. To achieve concurrency in
image-processing algorithms, researchers must know how
to write efficient code with consideration of multicores,
which can make the code more complex.

MATLAB offers an add-on product called the Parallel
Computing Toolbox (PCT) that allows users to easily utilize
multicores for parallel computing by making a parallel pool.
As mentioned earlier, there are six tasks in the loop of the
Bregman_Hessian_Denoise() function, and they can be
executed independently. Thus, six tasks can be executed in
separate six CPU cores in parallel. To run these six tasks in
parallel, we use parfool(resources, poolsize) func-
tion and parfeval(fcn, numout, X1, …, Xm) function
provided by the PCT. The parfool() function starts a par-
allel pool of workers (CPU cores), and the parfeval()

function schedules the function fcn to be executed asyn-
chronously. We revised the code to create six separate func-
tions for six tasks to be executed in each core in parallel.
Figure 6 shows one of the six functions for a xx direction
task while the other functions have similar code.

Users may want to use the parfor() function to run
each iteration in parallel. For example, for the loop with
two iterations, the first and second iterations can be executed
in parallel in different CPU cores using the parfor() func-
tion if there is no dependency between them. However, in
the loop in the Bregman_Hessian_Denoise() function,
each iteration depends on the previous iterations, e.g., the
second iteration uses the output from the first iteration as
an input. Thus, we used the parfeval()function to run
six tasks in parallel in each iteration.

For a parallel pool, MATLAB allows users to set the par-
allel environment, either process-based (default) or thread-
based environments, which offers different advantages. The
process is a program in execution that uses independent
resources including memory. Thread is a lightweight process
(segment of a process) that shares process resources. That is,
multiple threads can be executed in a single process. In both
environments, tasks can be executed in separate CPU cores.
We first set and use the process-based environment where
each task is executed in different processes. We found some
performance improvement compared to vanilla code as six
tasks can be executed in parallel in different CPU cores.
Then, we set and use the thread-based environment where
each task is executed in different threads that share process
resources. We observed better performance from the
thread-based environment, e.g., 63 seconds from the
thread-based environment and 85 sec in the process-based
environment in one of our machines. We predict that this
is because of inefficient memory usage in the process-based
environment. That is, each process of each task creates
matrixes (memory) independently, which requires a large
memory creation and data transfer among processes to com-
plete algorithms. Researchers should use the thread-based
parallel pool if the algorithms can be completed within a sin-
gle process to share memory without communication with
other processes (or computers).

Executing tasks in parallel with a parallel pool, unfortu-
nately, may not result in performance improvement if each
task is too small (completed quickly). This is because parallel

7International Journal of Biomedical Imaging



processing for concurrency requires additional overhead to
manage multiple workers (either process or thread) in a
thread pool such as splitting tasks, assigning tasks to cores,
and combining the results. To get benefits from parallel pro-
cessing with multiple CPU cores, each task must be large
enough. Otherwise, the overhead of parallel processing
would increase and thereby degrade performance. That is,
the overhead for using parallel processing is greater than
the performance gains, which would inflate the overall exe-
cution time. Note that there is a one-time cost to make a par-
allel pool active in MATLAB. We will discuss massive
parallelism using GPU in the following sections.

2.9. Implementation of the GPU. In many image-processing
algorithms, each image pixel can be processed independently
of each other. While the CPU provides parallel computing
with multiple complex and powerful cores, e.g., 64 CPU
cores, it is designed for general-purpose processing in
sequential order. Since processing a pixel is a very simple
and short task, using CPU cores for calculating each pixel
would incur a significant performance penalty due to the
overhead for parallel computing for small tasks as we dis-
cussed in the preceding.

In contrast, the GPU is designed for massive paralleliza-
tion with numerous single-purpose (graphics processing)
cores, e.g., 10,752 GPU cores in the Nvidia RTX 3090. Each
GPU core can compute each pixel independently in parallel,
which works well for most image-processing algorithms.
Thus, it is highly desirable to exploit the GPU for image-
processing algorithms to improve performance. The
MATLAB add-on, Parallel Computing Toolbox (PCT), also
allows researchers to easily exploit the GPUs.

With PCT, utilizing the GPU in MATLAB is straightfor-
ward. Users need to simply wrap each matrix with the
gpuArray() function which copies the data (matrix) stored
in CPU memory into GPU memory automatically. Since the
CPU and the GPU have their memory independently, data
such as matrix in CPU memory must be loaded to GPU
memory to be computed by the GPU. The matrix can be
stored in GPU memory using the gpuArray() function
(Figure 7).

Most MATLAB built-in functions that accept matrixes
as inputs check the input data type to see if data is stored
in either CPU or GPU memory. Based on data locations,
they automatically exploit either the CPU or the GPU. For
example, if the variable gpuMat in Figure 7 is passed to the
diff () function, MATLAB uses the GPU to compute the
differences of each adjacent pixel in parallel, which improves
performance significantly.

While using MATLAB’s built-in functions including the
gpuArray()function to easily exploit the GPU to produce a
performance improvement, the performance gain could be
limited due to inefficiently written code. Therefore, to max-
imize the benefits of the GPU, all approaches that we intro-
duced in previous sections must also be applied to GPU-
enabled code as well.

Since the architectures of the CPU and the GPU are dif-
ferent, it is important to understand that GPU operations
execute asynchronously to the CPU, which means that the
CPU and the GPU can run simultaneously for different
codes. After the CPU offloads computing tasks to the GPU,
the CPU executes the next line of code instead of waiting
for the results from the GPU, i.e., asynchronous execution.
If the CPU continuously offloads the tasks to the GPU, the

Figure 5: Converting script file into a function to reduce the workspace to search variables. Note that the figure shows the code snippet. The
parameters of the Bregman_Hessian_Denoise () function, i.e., mu, sigma, pathname, and filename, are used later in the function.

Figure 6: A function to exploit parallel computing with multiple
CPU cores. MATLAB supports parallel computing using multiple
CPU cores. To utilize multicores, users need to create functions
that are to be executed in different CPU cores concurrently and
independently. The figure shows a function of xx direction task
among independent six tasks. Note that the other five functions
have similar patterns of code. The body of functions is placed in
a loop together. We split the code into six tasks and use function
and end keywords to create functions for each task.

8 International Journal of Biomedical Imaging



tasks are queued and executed sequentially in the GPU.
When the CPU needs to get the results from the GPU, the
CPU needs to call the gather() function. The function will
wait until all offloaded tasks to the GPU are done and copy
the result data in GPU memory into CPU memory.

To measure the execution time for GPU operations,
users may want to use the tic-toc functions. In this case,
the measured elapsed time may not include the actual
GPU operations as the CPU keeps executing the code asyn-
chronously. Thus, tic-toc functions should include the func-
tions, e.g., the gather() that makes the CPU wait for results
from the GPU to measure elapsed time correctly. Users can
use the gputimeit(F) function to measure the elapsed time
to run the function (F) in the GPU.

In a GPU-enabled environment, data needs to be trans-
ferred between CPU and GPU. However, data transfer
between CPU and GPU memory requires a lot of time
due to the limited bandwidth between these components.
In addition, memory access is slower than CPU and GPU
performance as we discussed. Thus, frequent data transfer
between the CPU and the GPU during algorithm execution
incurs performance overhead and thus must be avoided. To
avoid unnecessary data transfer, all data required for
image-processing algorithms in CPU memory can be cop-
ied into GPU memory a priori, i.e., preallocating. This
makes all data processing done in the GPU without addi-
tional CPU memory access, which would improve perfor-
mance significantly.

2.10. Impact of Code and Hardware Improvements on
Improved Hessian-SIM Execution Time. To measure the
elapsed time for executing the Hessian-SIM algorithm, we
used the latest version of MATLAB (R2023a). We used the
unedited code as a performance baseline for the sake of per-
formance comparisons and then demonstrated the impact of
code revision and conversion to the GPU environment on
algorithm performance. We applied our approaches inde-
pendently to the Hessian-SIM code to demonstrate the per-
formance improvement from each. In addition, the impact
of two cost-effective high-performance computers on perfor-
mance, relative to a baseline computer, is also shown.

The three computers tested are a Dell notebook com-
puter which we consider as the baseline machine (Intel Core
i7 8750H (12-Cores), 32GB, Nvidia GeForce GTX 1050 TI
with Max-Q (4GB VRAM). Performance is compared to

the two performance machines, an Intel Core i9 12900K
(24-Cores), 64GB, Nvidia GeForce RTX 3090 (24GB
VRAM), and an AMD Ryzen Threadripper 3990X (64-
Cores), 128GB, 2 x Nvidia A6000 (total 96GB VRAM).

Results show that the improvements in the code
described in the preceding sections result in an approximate
overall 7-fold increase in processing speed on all computers
(Figure 8). The original code requires 330 sec execution time
on the baseline computer, and this decreases to 61 sec using
improved code on a single core of the CPU. On the Intel i9
computer, execution time decreases from 133 to 23 sec while
on the AMD-based machine, the improvement is from
175 sec to 32 sec. These results indicate that code improve-
ment, without conversion to the GPU environment, or
upgrading of hardware, produces a 5- to 6-fold improve-
ment in processing speed. Utilization of multiple cores on
each machine results in a further improvement of 12, 3.5,
and 7 sec, respectively, but this is only a modest, 1.3-fold
improvement.

Not surprisingly, the switch from the CPU to GPU-
based environments results in the largest jump in perfor-
mance. It is 24.5-fold on the base computer, 29-fold on the
i9 machine, and 31-fold on the AMD machine. This repre-
sents a 165-, 192-, and 218-fold overall improvement in exe-
cution speed relative to the starting Hessian-SIM code
executed in the CPU environment.

In addition to code improvement, it is important to note
that the hardware configuration impacts algorithm perfor-
mance as well. The baseline machine requires 330 sec to pro-
cess the 180-frame image stack using the original Hessian-
SIM code, whereas the i9 and Ryzen Threadripper machines
are 2.48- and 1.4-fold faster, respectively, requiring only 133
and 175 sec. When multiple CPU cores are used, the
improvement is 7-fold for all machines, relative to the pro-
cessing speed of the original code. Finally, when the
improved code is converted to the GPU-optimized form,
the execution speed increases 24.5-, 29-, and 31-fold for
the base, i9, and Ryzen-based machines, respectively.

In addition to the speed improvement, the improve-
ments in the code also demonstrate improved utilization of
hardware components. To demonstrate this, the Windows
Task Manager was operated during improved algorithm exe-
cution (Figure 9). First, the impact of all CPU cores was
assessed, and results show that for the notebook PC, CPU
utilization increased from 30 to 100%, whereas for the Intel
machine, the increase was 3.6-fold from 18 to 64%
(Figures 9(a) and 9(b)). When the impact of all code
improvements and execution in the GPU environment was
assessed, GPU utilization increased from ≤1% to 100% for
the notebook to 82% for the Intel machine (Figures 9(c)
and 9(d)). At the same time, CPU utilization decreased
5- and 9-fold to 17 and 7%, respectively.

In summary, code revision as described in the preceding
sections improves performance (that is algorithm execution
speed). If code remains in the CPU environment, this may
not require hardware upgrading. However, further improve-
ments to the code to utilize the GPU result in significant per-
formance improvements, and this is further enhanced when
the computer hardware is upgraded.

Figure 7: Create a matrix in CPU memory and GPU memory. The
CPU can access CPU memory only, and the GPU can access GPU
memory only. Data (images) must be loaded into corresponding
memory to be processed by either CPU or GPU. MATLAB also
supports creating a matrix (double precision) in GPU directly by
passing a parameter, e.g., zeros (sizex, ‘gpuArray’).
However, images cannot be directly loaded into GPU, which
requires that images need to be loaded into CPU memory first
and copied to GPU memory.

9International Journal of Biomedical Imaging



Execution time (seconds)
Intel core i7 8750H, 32 GB DDR4 RAM

CP
U

G
PU

M
ul

ti-
co

re
s

Si
ng

le
-c

or
e

0 50 100 150 200 250 300 350

330Vanilla (baseline)
Built in dif()

Built in max()
Inline dif()

Inline dif() + max()

Single precision
Non-duplicated code

All

All (Treads)

All
All (Func - dup)

All (Script - dup)
All (Script - non-dup)

gpuArray

Treads
Processes

313

291

223

181
123

112

162

161

152

61

49

4

2
2.7
3.3

(a) Intel Core i7 8750H, 32 GB DDR4 RAM

Execution time (seconds)
Intel core i9-12900K, 64 GB DDR5 RAM

CP
U

G
PU

M
ul

ti-
co

re
s

Si
ng

le
-c

or
e

0 20 40 60 80 100 120 140

133Vanilla (baseline)
Built in dif()

Built in max()
Inline dif()

Inline dif() + max()

Single precision
Non-duplicated code

All

All (Treads)

All
All (Func - dup)

All (Script - dup)
All (Script - non-dup)

gpuArray

Treads
Processes

123

114

85

71
54

46

64

64

51

23

19.5

1.1

0.67
0.9
0.8

(b) Intel Core i9-12900K, 64 GB DDR5 RAM

AMD Ryzen Treadripper 3990X, 128 GB DDR4 RAM
Execution time (seconds)

CP
U

G
PU

M
ul

ti-
co

re
s

Si
ng

le
-c

or
e

0 20 40 60 80 100 120 140 160 180 200

175Vanilla (baseline)
Built in dif()

Built in max()
Inline dif()

Inline dif() + max()

Single precision
Non-duplicated code

All

All (Treads)

All
All (Func - dup)

All (Script - dup)
All (Script - non-dup)

gpuArray

Treads
Processes

160

152

85

99
75

58

97

74

51

32

25

1.39

0.8
1.21
0.96

(c) AMD Ryzen Threadripper 3990X, 128 GB DDR4 RAM

Figure 8: Impact of improved hardware and code on algorithm execution performance. We first measured the elapsed time of the vanilla
code with a given image as a performance baseline from all the machines. Then, we applied each approach independently and measured the
elapsed time to show the performance improvement of each approach. We applied all approaches with the single CPU core in the CPU-
Single-core-All case. The CPU-Multicores-Process and CPU-Multicores-Threads cases show elapsed time when each task is executed in
different cores without applying other approaches (red bar number 1). We applied all the approaches including multicores with which
six tasks are executed in different cores, i.e., the CPU-Multicores-All case, which shows the best performance without exploiting the GPU
(red bar number 2). The GPU-gpuArray case shows the elapsed time when we utilize the GPU by using gpuArray() function only
without applying other approaches. This case clearly shows that performance improvement is limited even with the GPU if the code is
written inefficiently. The GPU-All (Script-dup) case, the GPU-All (Script-non-dup) case, and the GPU-All (Func-dup) case show the
benefits of avoiding duplicated operations and utilizing functions instead of scripts. While the performance improvement from these
approaches was marginal in CPU-only code, they affect overall execution time significantly in GPU-optimized code when the execution
time is less than a second. The GPU-All case shows the elapsed time with all approaches that we introduced in this work, and the best
performance we can achieve (bottom red bar in each image panel).

10 International Journal of Biomedical Imaging



The results from the GPU also show that small perfor-
mance improvements, e.g., several hundreds of milliseconds,
would be highly appreciated to reduce the overall execution

latency of the GPU-enabled optimized code as the GPU cat-
egories in Figure 8 indicate. For example, results from one of
the cost-effective high-performance computers (Figure 8(b))

(a) (b)

(c) (d)

Figure 9: The Task Manager reveals the changes in hardware utilization by code improvement. A screen capture was performed during the
execution of the improved Hessian-SIM denoising algorithm on the three test computers used in this study. (a, b) Multicores CPU
utilization on the base and Intel machines, respectively. (c, d) All GPU approaches on the same computers. The red boxes highlight the
relevant hardware components.

Binary snippet of the output image generated by vanilla code.

(a) Binary snippet of the output image generated by vanilla code

Binary snippet of the output image generated by code a single-precision approach applied.

(b) Binary snippet of the output image generated by a code—a single-precision approach applied

Binary snippet of the output image generated by code All approaches including GPU applied.

(c) Binary snippet of the output image generated by a code—all approaches including GPU applied

Figure 10: Byte differences due to the precision issues of floating-point numbers to represent real numbers. (a) Analysis of an image
produced by the original code. (b) Single-precision approach image. (c) Analysis of an image produced by the improved and GPU-
enhanced code. The red-colored numbers in (b) and (c) show the byte differences from the original output (baseline) image, which
occurred every 4 bytes. We propose that this is acceptable based on the original vanilla code that used the single-precision and double-
precision intermixed.

11International Journal of Biomedical Imaging



show that avoiding duplicated operations (GPU-All-Script-
non-dup) reduces 0.3 sec, and using a function instead of a
script (GPU-All-Func-dup) reduces 0.2 sec, which reduces
0.43 sec in total compared to the case using script and dupli-
cated operations (GPU-All-Script-dup).

2.11. Impact of Improvements on the Resulting Image(s).
While we have demonstrated that our approaches improved
the Hessian-SIM denoising algorithm execution speed sig-
nificantly, it is critical to determine if the quality of the final
image is unaffected by code changes and hardware utiliza-
tion. To assess this, we compared output images generated
after applying each approach using Beyond Compare [30]
and Fiji [31].

We confirmed that our approaches except for applying
single precision for the CPU (both single core and multiple
cores) yield binary identical output images (same results),
confirming that performance can be improved significantly
with no output changes. We used Beyond Compare 4 to
compare two images byte by bytes if they are the same or
not. However, using a single-precision approach and exploit-
ing the GPU resulted in nonbinary identical images due to
precision issues discussed in previous sections. Figure 10
shows the binary differences among three images generated
with (1) vanilla code, (2) single-precision approach code,

and (3) GPU-All approach code. While these figures show
one byte difference occurrence every four bytes, we suggest
that such differences are acceptable based on the vanilla code
which uses single- and double-precision numbers intermixed.

To confirm that our approaches do not degrade output
image quality, we compared these nonbinary identical out-
put images to the original result. To do this, we selected
frame 50 from each stack and performed line profile analysis
using the Plot Profile function in Fiji (Figure 11) [31]. To try
to analyze as much of the image as possible, the line profile
covered the length of the image in the approximate center.
Results show that the image quality produced by the
improved algorithms is identical and independent of the
high-performance hardware used (Figure 11(d)). Additional
analysis of the test image stack was done using the SNR plu-
gin in Fiji. This plugin evaluates the signal-to-noise ratio
(SNR), peak signal-to-noise ratio (PSNR), root mean square
error (RMSE), and mean absolute error (MAE). Here, the
entire image stack of 180 frames from the original code
was compared with improved algorithms executed on the
GPU-enhanced computers. The data for each frame was
then averaged to permit facile stack-to-stack comparison.
The SNR is 130 32 ± 0 8; PSNR is 138 72 ± 0 9; RMSE is
5 37 × 10−5 ± 4 1 × 10−6, and MAE is 4 28 × 10−5 ± 3 72 ×
10−6. Thus, even though the line profile analysis shows that

Time = 330 sec

(a) Time = 330 sec

Time = 0.67 sec

(b) Time = 0 67 sec

Time = 0.8 sec

(c) Time = 0 8 sec

Original
CPU
GPU

0

100

200

300

400

0 100
Distance (pixels)

G
ra

y 
va

lu
e

200

(d)

Figure 11: The combination of improved hardware and code produces an image stack identical to the original Hessian-SIM denoising
algorithm, but at 4- to 500-fold faster rates. (a–c) Frame 50 from the image stack produced using the (a) original algorithm and (b, c)
the improved algorithms, executed on superior cost-effective computers as shown in (d). Line profile analysis was performed using the
Plot Profile function in Fiji [31]. The resulting data were exported into GraphPad Prism (v8.43) and displayed on the same axes for
direct comparison.

12 International Journal of Biomedical Imaging



the images are identical, this analysis indicates that the
GPU-enhanced algorithms are superior to the original.

3. Conclusion

Our primary conclusion is that the performance of image-
processing algorithms in structured illumination microscopy
can be enhanced by improving the code, utilizing the GPU
environment, and purchasing a single, cost-effective, high-
performance computer.

The results show that a significant improvement can be
obtained by first improving the code of the algorithm with
the help of computer scientists. This will eliminate most, if
not all, software bottlenecks, in the original algorithm. Then,
once potential hardware bottlenecks have been identified,
the code must be further improved to utilize available hard-
ware more efficiently, taking advantage of multiple versus
single cores for example as well as using cache. A significant
component of hardware utilization is the use of the GPU. In
the original Hessian-SIM code, the GPU was not used at all.
When taken advantage of, a 165- to 218-fold overall
improvement in execution speed was observed. Finally, the
improved code can then be executed on a cost-efficient
high-performance computer. The combination of improved
code and superior hardware results in maximum perfor-
mance improvement.

The approaches described herein can be generally used
for performance improvement for noncomputer science
specialists. We recognize that there may be further room
for performance improvement utilizing MATLAB expertise
as indicated in the Supplementary Information. In addi-
tion, it is conceivable that additional speed improvement
may be observed when the computer contains two GPUs
or when a cluster is utilized. As our AMD machine con-
tains two Nvidia A6000 graphics cards, we are currently
evaluating the potential for further speed improvements
using this hardware.

While we recognize that speed is of the essence for live
cell imaging, it is critical to determine whether any of the
improvements in execution performance impact the quality
of the resulting image. Critically, the results show that the
improvements implemented herein have no detectable
impact on the final image while enhancing algorithm execu-
tion speed 4- to 500-fold (Figure 11). Finally, we suggest that
the high-performance computer can be used to control all
microscope and camera functions with both image capture
and analysis being performed on one machine. This is an
efficient and cost-effective approach to providing high-
speed superresolution image formation.

4. Materials and Methods

4.1. Computers. We used three different machines to show
performance improvement. The first unit was a laptop
designed and built by Dell (XPS 15 9570) (Intel Core i7-
8750H, 32GB of DDR 4 RAM; 1 SSD (2TB Samsung SSD
970 EVO Plus)). Finally, the system contains one NVIDIA
GeForce GTX 1050 Ti with Max-Q Design. The operating
system is Windows 10. Note that this laptop is designed

for energy-saving for longer battery life, which yields weaker
performance than desktop computers.

The second unit was designed and built by Dell (Preci-
sion 3660). The components include an Intel W680 (Alder
Lake-S PCH) motherboard; an Intel Core i9-12900K CPU,
64GB of DDR5 RAM; and 2 SSDs (1TB NVMe SK Hynix
and 4TB Seagate ST4000DX005). Finally, the system con-
tains one NVIDIA RTX 3090 graphics card with 24GB of
GPU memory. To ensure sufficient power, a 750W power
supply is used. The operating system is Windows 11.

The third machine was designed by our groups and built
by Digital Storm. The components include an ASUS ROG
Zenith II Extreme Alpha motherboard; an AMD Ryzen
Threadripper 3990X CPU, 128GB of DDR4 RAM; and 3
SSDs (1TB Samsung 970 EVO Plus; 2TB Samsung 860
Pro and a 4TB Samsung 860 Pro). Finally, the system con-
tains two NVIDIA RTX A6000 graphics cards with 48GB
of GPU memory each. To ensure sufficient power, an
850W power supply is used. The operating system is Win-
dows 11.

4.2. Software. The MathWorks, Inc. MATLAB, version
(R2023a); Fiji [31]; GraphPad Prism v. 8.43 (GraphPad Soft-
ware LLC); Beyond Compare 4 [30].

Data Availability

All MATLAB code of the presented approaches and other
related materials including result images are available on
GitHub https://github.com/mc2lab/GPU-enabled-Hessian-
SIM. Microscopy researchers who are interested in this work
can download the revised code to learn how to apply the
approaches to their code to reproduce the results.

Additional Points

Brief Summary Statement. Image-processing algorithms play
an important role in microscopy research to generate super-
resolution output images. Many microscopy researchers
who do not have computer science background knowledge
and programming skills have used MATLAB which allows
them to easily write diverse algorithms. However, they may
also easily encounter a performance bottleneck (a large
amount of time to complete the algorithms) due to their
inefficiently written code. In this work, we introduce simple
but efficient approaches that allow microscopy researchers
to write efficient MATLAB code, which could improve
image-processing algorithms’ performance. The experimen-
tal results using one of the popular open-sourced image-
processing algorithms (Hessian-SIM denoising) show signif-
icant performance improvement (up to 500-fold) by apply-
ing the presented approaches.

Disclosure

The manuscript was already published as a conference based
on the link https://experts.nebraska.edu/en/publications/
high-speed-image-reconstruction-for-super-resolution-struc
tured-i [http://experts.nebraska.edu].

13International Journal of Biomedical Imaging

https://github.com/mc2lab/GPU-enabled-Hessian-SIM
https://github.com/mc2lab/GPU-enabled-Hessian-SIM
https://experts.nebraska.edu/en/publications/high-speed-image-reconstruction-for-super-resolution-structured-i
https://experts.nebraska.edu/en/publications/high-speed-image-reconstruction-for-super-resolution-structured-i
https://experts.nebraska.edu/en/publications/high-speed-image-reconstruction-for-super-resolution-structured-i
http://experts.nebraska.edu


Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

PRB designed the overall project. KO developed the pre-
sented code revision approaches. KO carried out the experi-
ments by applying the approaches, and PRB verified the
impact of improvements on the resulting images. Both
authors discussed the results and wrote the manuscript.

Acknowledgments

Funding for this project came from a Collaboration Initia-
tive Grant Number 26124 from the University of Nebraska
to PRB and KO and the NIH with grant GM144414 to
PRB. Open access funding is enabled and organized by
BTAA 2023.

Supplementary Materials

In this section, we briefly discussed how the performance
can be further improved using approaches that we have
not yet implemented. These improvements include (1) cache
performance, (2) MEX functions, (3) porting MATLAB code
into C and C++, (4) exploiting multiple GPUs, and (5) Addi-
tional performance improvement opportunities from Math-
Works [32–34]. (Supplementary Materials)

References

[1] R. Heintzmann and T. Huser, “Super-resolution structured
illumination microscopy,” Chemical Reviews, vol. 117, no. 23,
pp. 13890–13908, 2017.

[2] Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements
in structured-illumination microscopy toward live-cell imag-
ing,” Microscopy, vol. 64, no. 4, pp. 237–249, 2015.

[3] M. G. Gustafsson, “Surpassing the lateral resolution limit by a
factor of two using structured illumination microscopy,” Jour-
nal of Microscopy, vol. 198, no. 2, pp. 82–87, 2000.

[4] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G.
Gustafsson, “Super-resolution video microscopy of live cells
by structured illumination,” Nature Methods, vol. 6, no. 5,
pp. 339–342, 2009.

[5] A. Curd, A. Cleasby, K. Makowska, A. York, H. Shroff, and
M. Peckham, “Construction of an instant structured illumina-
tion microscope,” Methods, vol. 88, pp. 37–47, 2015.

[6] Y. Ma, K. Wen, M. Liu et al., “Recent advances in structured
illumination microscopy,” Journal of Physics: Photonics,
vol. 3, no. 2, article 024009, 2021.

[7] M. Muller, V. Monkemoller, S. Hennig, W. Hubner, and
T. Huser, “Open-source image reconstruction of super-
resolution structured illumination microscopy data in Ima-
geJ,”Nature Communications, vol. 7, no. 1, article 10980, 2016.

[8] Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured
illumination microscopy for biological imaging,” Nature
Methods, vol. 15, no. 12, pp. 1011–1019, 2018.

[9] T. Zhao, Z. Wang, T. Chen, M. Lei, B. Yao, and P. R. Bianco,
“Advances in high-speed structured illumination microscopy,”
Frontiers in Physics, vol. 9, article 672555, 2021.

[10] J. Fan, X. Huang, L. Li, S. Tan, and L. Chen, “A protocol for
structured illumination microscopy with minimal reconstruc-
tion artifacts,” Biophysics Reports, vol. 5, no. 2, pp. 80–90, 2019.

[11] J. Pospíšil, K. Fliegel, and M. Klíma, “Analysis of image recon-
struction artifacts in structured illumination microscopy,” in
Proc. SPIE 10396, Applications of Digital Image Processing
XL, 1039632, pp. 1–12, San Diego, California, United States,
2017.

[12] C. S. Smith, J. A. Slotman, L. Schermelleh et al., “Structured
illumination microscopy with noise-controlled image recon-
structions,” Nature Methods, vol. 18, no. 7, pp. 821–828, 2021.

[13] G. Wen, S. Li, L. Wang et al., “High-fidelity structured illumi-
nation microscopy by point-spread-function engineering,”
Light: Science & Applications, vol. 10, no. 1, p. 70, 2021.

[14] R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolu-
tion in continuous samples,” Nature Photonics, vol. 3, no. 7,
pp. 362–364, 2009.

[15] S. J. Sahl, F. Balzarotti, J. Keller-Findeisen et al., “Comment on
"extended-resolution structured illumination imaging of endo-
cytic and cytoskeletal dynamics",” Science, vol. 352, no. 6285,
p. 527, 2016.

[16] K. Chu, P. J. McMillan, Z. J. Smith et al., “Image reconstruction
for structured-illumination microscopy with low signal level,”
Optics Express, vol. 22, no. 7, pp. 8687–8702, 2014.

[17] K. Wicker, “Non-iterative determination of pattern phase in
structured illumination microscopy using auto-correlations
in Fourier space,” Optics Express, vol. 21, no. 21, pp. 24692–
24701, 2013.

[18] X. Huang, J. Fan, L. Li et al., “Fast, long-term, super-resolution
imaging with Hessian structured illumination microscopy,”
Nature Biotechnology, vol. 36, no. 5, pp. 451–459, 2018.

[19] R. Forster, K. Wicker, W. Muller, A. Jost, and R. Heintzmann,
“Motion artefact detection in structured illumination micros-
copy for live cell imaging,” Optics Express, vol. 24, no. 19,
pp. 22121–22134, 2016.

[20] L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumi-
nation microscopy: artefact analysis and reduction utilizing a
parameter optimization approach,” Journal of Microscopy,
vol. 216, no. 2, pp. 165–174, 2004.

[21] X. Zhou, M. Lei, D. Dan et al., “Image recombination trans-
form algorithm for superresolution structured illumination
microscopy,” Journal of Biomedical Optics, vol. 21, no. 9, arti-
cle 96009, 2016.

[22] M. Aydin, Y. Uysalli, E. Ozgonul, B. Morova, and A. Kiraz,
“An LED-based super resolution GPU implemented structured
illumination microscope,” in Single Molecule Spectroscopy and
Superresolution Imaging XIII, I. Gregor, F. Koberling, and R.
Erdmann, Eds., SPIE, San Francisco, CA, 2020.

[23] H. Gong, W. Guo, and M. A. A. Neil, “GPU-accelerated real-
time reconstruction in Python of three-dimensional datasets
from structured illumination microscopy with hexagonal pat-
terns,” Philosophical Transactions of the Royal Society A,
vol. 379, no. 2199, article 20200162, 2021.

[24] G. Lu, M. A. Baertsch, J. W. Hickey et al., “A real-time GPU-
accelerated parallelized image processor for large-scale multi-
plexed fluorescence microscopy data,” Frontiers in Immunol-
ogy, vol. 13, article 981825, 2022.

[25] A. Markwirth, M. Lachetta, V. Monkemoller et al., “Video-rate
multi-color structured illumination microscopy with simulta-
neous real-time reconstruction,” Nature Communications,
vol. 10, no. 1, p. 4315, 2019.

14 International Journal of Biomedical Imaging

https://downloads.hindawi.com/journals/ijbi/2024/8862387.f1.docx


[26] T. Z. Zhaojun Wang, H. Hao, Y. Cai et al., “High-speed image
reconstruction for optically sectioned, super-resolution struc-
tured illumination microscopy,” Advanced Photonics, vol. 4,
no. 2, article 026003, 2022.

[27] W. Meiniel, J. C. Olivo-Marin, and E. D. Angelini, “Denoising
of microscopy images: a review of the state-of-the-art, and a
new sparsity-based method,” IEEE Transactions on Image Pro-
cessing, vol. 27, no. 8, pp. 3842–3856, 2018.

[28] J. Roels, F. Vernaillen, A. Kremer et al., “An interactive ImageJ
plugin for semi-automated image denoising in electron
microscopy,” Nature Communications, vol. 11, no. 1, p. 771,
2020.

[29] “What every computer scientist should know about floating-
point arithmetic,” https://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html.

[30] I. Scooter Software, “Beyond Compare,” https://www.scoo
tersoftware.com.

[31] J. Schindelin, I. Arganda-Carreras, E. Frise et al., “Fiji: an open-
source platform for biological-image analysis,” Nature Methods,
vol. 9, no. 7, pp. 676–682, 2012.

[32] Mathworks, Call C/C++ MEX Functions from MATLAB,
https://www.mathworks.com/help/matlab/call-mex-file-
functions.html?s_tid=CRUX_lftnav.

[33] Mathworks, Optimization Strategieshttps://www.mathworks.
com/help/coder/ug/optimize-generated-code.html.

[34] Matlab, Techniques to Improve Performance, https://www.
mathworks.com/help/matlab/matlab_prog/techniques-for-
improving-performance.html.

15International Journal of Biomedical Imaging

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.scootersoftware.com
https://www.scootersoftware.com
https://www.mathworks.com/help/matlab/call-mex-file-functions.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/matlab/call-mex-file-functions.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/coder/ug/optimize-generated-code.html
https://www.mathworks.com/help/coder/ug/optimize-generated-code.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

	Facile Conversion and Optimization of Structured Illumination Image Reconstruction Code into the GPU Environment
	1. Introduction
	2. Results and Discussion
	2.1. Identifying Algorithm Performance Bottlenecks
	2.2. Monitoring Hardware Limitations
	2.3. Memory Access and Built-In MATLAB Functions
	2.4. Inline Code
	2.5. Duplicated Operations
	2.6. Floating-Point Number Precision
	2.7. Code Structure: Scripts vs. Functions
	2.8. Concurrency: Exploiting Multiple CPU Cores
	2.9. Implementation of the GPU
	2.10. Impact of Code and Hardware Improvements on Improved Hessian-SIM Execution Time
	2.11. Impact of Improvements on the Resulting Image(s)

	3. Conclusion
	4. Materials and Methods
	4.1. Computers
	4.2. Software

	Data Availability
	Additional Points
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



